1
|
Song SZ, Li ZY, Liu YY, Wu YC, Yu KY, He Z. Establishment of a rapid method for the detection of Brucella canis based on recombinase-mediated thermostable nucleic acid amplification technology. Front Cell Infect Microbiol 2025; 14:1493492. [PMID: 39831107 PMCID: PMC11739156 DOI: 10.3389/fcimb.2024.1493492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/25/2024] [Indexed: 01/22/2025] Open
Abstract
Objective To establish a rapid detection method for canine brucellosis using recombinase-aided amplification (RAA) technology. Methods The outer membrane protein 25 gene fragment (Omp25) of Brucella canis was targeted. Primers and fluorescent probes were designed and synthesized, and recombinant plasmids were constructed as standards. The RAA assay was optimized by screening primers and establishing a fluorescent reaction system. Sensitivity was analyzed using plasmid standards with varying copy numbers. Specificity was tested using genomes from Brucella canis, Brucella suis, Brucella melitensis, Brucella abortus, Staphylococcus aureus, pathogenic Escherichia coli, Salmonella enteritidis, Shigella spp., Proteus mirabilis, and Listeria monocytogenes. Reproducibility was evaluated using plasmid standards from the same and different batches. Results The optimized RAA system used primers bOmp25-F2/bOmp25-R2 and probe bOmp25-P, with a constant reaction temperature of 39°C for 15 minutes. The detection sensitivity was 1 copy/μL. No cross-reaction was observed with other Brucella species or pathogenic bacteria, indicating high specificity. Intra-batch variability was below 1.00%, and inter-batch variability was below 2.00%. The positive detection coincidence rate of RAA was significantly higher than that of commercial real-time fluorescence quantitative PCR (100% VS 86.96%, P<0.05). Conclusion The RAA-based rapid detection method for Brucella canis is suitable for clinical rapid testing. It offers advantages such as quick detection, high sensitivity, strong specificity, and good reproducibility. This method provides new insights for the rapid detection of canine brucellosis and the precise diagnosis of other pet diseases, making it suitable for promotion and application.
Collapse
Affiliation(s)
- Shao-Zheng Song
- School of Health and Nursing/Department of Basic, Wuxi Taihu University, Wuxi, Jiangsu, China
| | - Zi-Yuan Li
- School of Health and Nursing/Department of Nursing, Wuxi Taihu University, Wuxi, Jiangsu, China
| | - Yuan-Yuan Liu
- School of Health and Nursing/Department of Nursing, Wuxi Taihu University, Wuxi, Jiangsu, China
| | - Ying-Chao Wu
- Department of Internal Medicine, Jiangyin Lingfeng Pet Hospital, Wuxi, Jiangsu, China
| | - Kang-Ying Yu
- School of Health and Nursing/Department of Basic, Wuxi Taihu University, Wuxi, Jiangsu, China
| | - Zhengyi He
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
2
|
Li W, Zhang S, Dang S, Gao L, Li G, Cheng D, Jiang L, Huang T, Zhai J. Establishment of an A/T-Rich Specifically MGB Probe digital droplet PCR Assays Based on SNP for Brucella wild strains and vaccine strains. Diagn Microbiol Infect Dis 2024; 110:116432. [PMID: 39024932 DOI: 10.1016/j.diagmicrobio.2024.116432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
In recent years, immunization with the S2 live-attenuated vaccine has been recognized as the most economical and effective strategy for preventing brucellosis in Inner Mongolia, China. However, there are still challenges related to vaccine toxicity and the inability to distinguish between vaccine immunization and natural infection. Therefore, in this study, we developed a digital droplet polymerase chain reaction (ddPCR) assay based on single-nucleotide polymorphism (SNP) loci to identify wild Brucella strains and S2 vaccine strains. The assay demonstrated excellent linearity (R2> 0.99) with a lower detection limit of 10 copies/µL for both wild and vaccine strains. Additionally, the ddPCR assay outperformed the real-time fluorescent quantitative PCR (qPCR) assay in screening 50 clinical samples. We have established an effective and highly sensitive ddPCR assay for Brucella, providing an efficient method for detecting and differentiating wild strains of Brucella from the S2 vaccine strain.
Collapse
Affiliation(s)
- Wanyang Li
- Medical College, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Shuai Zhang
- Medical College, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Sheng Dang
- Keerqin District First People's Hospital, Tongliao 028000, China
| | - Lanzhu Gao
- Tongliao Infectious Disease Hospital, Tongliao 028000, China
| | - Guangchen Li
- Tongliao Infectious Disease Hospital, Tongliao 028000, China
| | - Dawei Cheng
- Beidahuang Industry Group General Hospital, Harbin 150000, China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou 350000, China
| | - Tianpeng Huang
- College of Public Health, Inner Mongolia Minzu University, Tongliao 028000, China; Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao 028000, China; Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao 028000, China
| | - Jingbo Zhai
- Medical College, Inner Mongolia Minzu University, Tongliao 028000, China; Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao 028000, China; Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao 028000, China.
| |
Collapse
|
3
|
Jin H, Cai H, Liao S, Qi N, Li J, Lv M, Lin X, Hu J, Song Y, Zhu Y, Chen X, Yin L, Zhang X, Zhang J, Zhang X, Sun M. Development of a TaqMan polymerase chain reaction detection method for the precise identification and quantification of an attenuated Eimeria maxima vaccine strain in poultry. Front Vet Sci 2024; 11:1397166. [PMID: 38840634 PMCID: PMC11151167 DOI: 10.3389/fvets.2024.1397166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
Avian coccidiosis, a parasitic disease prevalent in poultry, is caused by Eimeria species and leads to significant economic losses. The use of attenuated live oocyst vaccines has been adopted as an alternative to the use of anticoccidial drugs. However, the accurate detection and differentiation of vaccine strains from virulent ones remain challenging. Therefore, this study presents a novel TaqMan polymerase chain reaction (PCR) detection method that offers enhanced sensitivity, specificity, and reproducibility compared with traditional PCR techniques. Through whole-genome resequencing and bioinformatics analysis, we identified a molecular marker gene, Em_marker6, with a unique 21-base pair deletion specific to the Eimeria maxima attenuated vaccine strain. Optimized primers and probes targeting this marker enabled rapid quantification cycle value achievement and high fluorescence intensity. The standard curve's slope of -3.540 and correlation coefficient of 0.9971 confirmed precise quantification capabilities. The TaqMan PCR method detected as few as 30 plasmid DNA copies and 50 oocysts per reaction, outperforming traditional PCR techniques by an order of magnitude. No cross-reactivity was observed with other E. maxima wide-type strains or common intestinal pathogens, ensuring the exclusive detection of the E. maxima EMPY vaccine strain. Weekly testing over 3 weeks demonstrated minimal variability, indicating robust consistency in the method's application. Testing on 61 clinical samples revealed a 57.38% positivity rate for E. maxima species and 13.11% for the vaccine strain. The Em_marker6 gene exhibited genetic stability across multiple generations, confirming the detection method's robust stability for the attenuated E. maxima vaccine strain. This study significantly advances the field of avian coccidiosis research and control by providing a valuable tool for monitoring vaccine purity and preventing inadvertent infections in vaccinated flocks, aligning with global efforts to curb antibiotic use in animal feed.
Collapse
Affiliation(s)
- Haozhan Jin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Haiming Cai
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shenquan Liao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Nanshan Qi
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Juan Li
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Minna Lv
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xuhui Lin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Junjing Hu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yongle Song
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yibin Zhu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiangjie Chen
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lijun Yin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaohui Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jianfei Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xu Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Mingfei Sun
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
4
|
Qin L, Nan W, Wang Y, Zhang Y, Tan P, Chen Y, Mao K, Chen Y. A novel approach for detection of brucella using a real-time recombinase polymerase amplification assay. Mol Cell Probes 2019; 48:101451. [PMID: 31541671 DOI: 10.1016/j.mcp.2019.101451] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 10/26/2022]
Abstract
Brucella, the etiological agent of brucellosis, is an important zoonosis pathogen worldwide. Brucella infects humans and various domestic and wild animals, and represents a great threat to public health and animal husbandry. In the present study, we developed a real-time recombinase polymerase amplification (RPA) assay for the detection of Brucella. The assay targeted the bcsp31 gene of Brucella, and an RPA exo probe and a pair of primers were selected for assay validation. RPA sensitivity and specificity were evaluated using plasmid standards, Brucella representative strains, and non-Brucella strains. The RPA assay achieved a detection limit of 17 molecules in 95% of cases based on probit analysis, and could successfully distinguish 18 representative Brucella strains (B. abortus biovars 1, 2, 3, 4, 5, 6, 7 and 9, B. melitensis biovars 1, 2 and 3, B. suis biovars 1, 2, 3 and 4, B. canis, B. neotomae and B. ovis), and four Brucella vaccine strains (A19, S19, S2 and M5). A total of 52 Brucella field strains were detected by real-time PCR and RPA in parallel, and compared with real-time PCR, the sensitivity of the RPA assay was 94% (49/52). Thus, this RPA assay may be a rapid, sensitive, and specific tool for the prevention and control of Brucellosis.
Collapse
Affiliation(s)
- Lide Qin
- Laboratory of Diagnositics Development, China Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, Shandong, 266032, China
| | - Wenlong Nan
- Laboratory of Diagnositics Development, China Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, Shandong, 266032, China
| | - Yong Wang
- Laboratory of Diagnositics Development, China Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, Shandong, 266032, China; College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Yueyong Zhang
- Laboratory of Diagnositics Development, China Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, Shandong, 266032, China
| | - Pengfei Tan
- Laboratory of Diagnositics Development, China Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, Shandong, 266032, China; College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Yuqi Chen
- Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, Jiangsu Province, 215123, China
| | - Kairong Mao
- China Institute of Veterinary Drug Control, 8 Zhongguanchun South Street, Beijing, 100081, China
| | - Yiping Chen
- Laboratory of Diagnositics Development, China Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, Shandong, 266032, China.
| |
Collapse
|