1
|
Railey AF, Adamson D, Simmons HL, Rushton J. Economics of reducing response time to foreign-animal disease in the United States with point-of-care diagnostic tests. Prev Vet Med 2024; 230:106284. [PMID: 39089162 DOI: 10.1016/j.prevetmed.2024.106284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/16/2024] [Accepted: 07/10/2024] [Indexed: 08/03/2024]
Abstract
BACKGROUND As low probability events, United States producers, value chain actors, and veterinary services (VS) have limited experience with identifying foreign animal disease (FAD), which can allow FADs to spread undetected. Point-of-care (POC) diagnostic testing may help reduce the time from detecting an initial suspect case to implementing actionable interventions compared to the current approach of only using laboratory diagnostic testing for disease diagnosis and confirmation. To evaluate the value of the reduced response time, we compare the associated costs between the two diagnostic approaches while accounting for the uncertainty surrounding the size of a FAD event. METHODS We apply a state-contingent approach (SCA) to model the uncertainty surrounding a FAD through alternative events, where the event defines the scale of outbreak size and its duration. We apply this approach within a cost-benefit framework (CBA) to determine the economic value from the two testing investment strategies to help explain the policymaker's response (and costs) to alternative FAD events while also considering the cost impacts on the producers from each event. RESULTS Compared to the current laboratory strategy, a POC strategy that reduces response time by 0.5-days (swine, cattle scenarios) and 1.5-days (poultry scenario) may provide cost-saving to both producers and public response efforts. The benefit-cost analysis further suggests that despite the higher fixed costs to adopt the POC strategy, the swine and cattle sectors may benefit while the benefits may not be as pronounced in the poultry sector. DISCUSSION POC testing that can reduce the time between detection and response during a FAD event may be a sound strategy for public expenditure and provide cost-savings for producers, especially when minimal fixed costs are incurred. However, to fully determine the value of POC testing, the consequences (costs) associated with potential actions if something goes wrong, (e.g. false positive results), should be considered in future studies.
Collapse
Affiliation(s)
- Ashley F Railey
- Department of Sociology, Oklahoma State University, OK, USA.
| | - David Adamson
- School of Agriculture, Food and Environment, Royal Agricultural University, Cirencester, UK.
| | - Heather L Simmons
- Institute for Infectious Animal Diseases, Texas A&M AgriLife Research, TX, USA.
| | - Jonathan Rushton
- Centre of Excellence for Sustainable Food Systems, University of Liverpool, Liverpool UK.
| |
Collapse
|
2
|
Serafini Poeta Silva AP, Mugabi R, Rotolo ML, Krantz S, Hu D, Robbins R, Hemker D, Diaz A, Tucker AW, Main R, Cano JP, Harms P, Wang C, Clavijo MJ. Effect of pooled tracheal sample testing on the probability of Mycoplasma hyopneumoniae detection. Sci Rep 2024; 14:10226. [PMID: 38702379 PMCID: PMC11068755 DOI: 10.1038/s41598-024-60377-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
Tracheal pooling for Mycoplasma hyopneumoniae (M. hyopneumoniae) DNA detection allows for decreased diagnostic cost, one of the main constraints in surveillance programs. The objectives of this study were to estimate the sensitivity of pooled-sample testing for the detection of M. hyopneumoniae in tracheal samples and to develop probability of M. hyopneumoniae detection estimates for tracheal samples pooled by 3, 5, and 10. A total of 48 M. hyopneumoniae PCR-positive field samples were pooled 3-, 5-, and 10-times using field M. hyopneumoniae DNA-negative samples and tested in triplicate. The sensitivity was estimated at 0.96 (95% credible interval [Cred. Int.]: 0.93, 0.98) for pools of 3, 0.95 (95% Cred. Int: 0.92, 0.98) for pools of 5, and 0.93 (95% Cred. Int.: 0.89, 0.96) for pools of 10. All pool sizes resulted in PCR-positive if the individual tracheal sample Ct value was < 33. Additionally, there was no significant decrease in the probability of detecting at least one M. hyopneumoniae-infected pig given any pool size (3, 5, or 10) of tracheal swabs. Furthermore, this manuscript applies the probability of detection estimates to various real-life diagnostic testing scenarios. Combining increased total animals sampled with pooling can be a cost-effective tool to maximize the performance of M. hyopneumoniae surveillance programs.
Collapse
Affiliation(s)
| | - Robert Mugabi
- Veterinary Diagnostic and Population Animal Medicine, Iowa State University, Ames, IA, USA
| | | | | | - Dapeng Hu
- College of Liberal Arts and Sciences, Iowa State University, Ames, IA, USA
| | | | | | | | | | - Rodger Main
- Veterinary Diagnostic and Population Animal Medicine, Iowa State University, Ames, IA, USA
| | | | | | - Chong Wang
- Veterinary Diagnostic and Population Animal Medicine, Iowa State University, Ames, IA, USA
- College of Liberal Arts and Sciences, Iowa State University, Ames, IA, USA
| | - Maria Jose Clavijo
- Veterinary Diagnostic and Population Animal Medicine, Iowa State University, Ames, IA, USA.
- PIC®, Hendersonville, TN, USA.
| |
Collapse
|
3
|
Harder T, de Wit S, Gonzales JL, Ho JHP, Mulatti P, Prajitno TY, Stegeman A. Epidemiology-driven approaches to surveillance in HPAI-vaccinated poultry flocks aiming to demonstrate freedom from circulating HPAIV. Biologicals 2023; 83:101694. [PMID: 37494751 DOI: 10.1016/j.biologicals.2023.101694] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/19/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023] Open
Abstract
Incursion pressure of high pathogenicity avian influenza viruses (HPAIV) by secondary spread among poultry holdings and/or from infected migratory wild bird populations increases worldwide. Vaccination as an additional layer of protection of poultry holdings using appropriately matched vaccines aims at reducing clinical sequelae of HPAIV infection, disrupting HPAIV transmission, curtailing economic losses and animal welfare problems and cutting exposure risks of zoonotic HPAIV at the avian-human interface. Products derived from HPAIV-vaccinated poultry should not impose any risk of virus spread or exposure. Vaccination can be carried out with zero-tolerance for infection in vaccinated herds and must then be flanked by appropriate surveillance which requires tailoring at several levels: (i) Controlling appropriate vaccination coverage and adequate population immunity in individual flocks and across vaccinated populations; (ii) assessing HPAI-infection trends in unvaccinated and vaccinated parts of the poultry population to provide early detection of new/re-emerged HPAIV outbreaks; and (iii) proving absence of HPAIV circulation in vaccinated flocks ideally by real time-monitoring. Surveillance strategies, i.e. selecting targets, tools and random sample sizes, must be accommodated to the specific epidemiologic and socio-economic background. Methodological approaches and practical examples from three countries or territories applying AI vaccination under different circumstances are reviewed here.
Collapse
Affiliation(s)
- Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler Institute, Greifswald-Insel Riems, Germany.
| | - Sjaak de Wit
- Royal GD, Deventer, the Netherlands; Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jose L Gonzales
- Epidemiology, Bio-informatics & Animal Models, Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | - Jeremy H P Ho
- Agriculture, Fisheries and Conservation Department, Government of the Hong Kong Special Administrative Region, Hong Kong, China
| | - Paolo Mulatti
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Teguh Y Prajitno
- Japfa Comfeed Indonesia, Vaksindo Satwa Nusantara, Animal Health & Laboratory Services, Jakarta, Indonesia
| | - Arjan Stegeman
- Department Population Health Sciences, Farm Animal Health, Veterinary Epidemiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
4
|
Pieterse R, Strydom C, Abolnik C. Effects of swab pool size and transport medium on the detection and isolation of avian influenza viruses in ostriches. BMC Vet Res 2022; 18:48. [PMID: 35042528 PMCID: PMC8764811 DOI: 10.1186/s12917-022-03150-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 01/05/2022] [Indexed: 12/03/2022] Open
Abstract
Background Rigorous testing is a prerequisite to prove freedom of notifiable influenza A virus infections in commercially farmed ostriches, as is the isolation and identification of circulating strains. Pooling 5 ostrich tracheal swabs in a 50 % v/v phosphate-buffered saline (PBS): glycerol transport medium (without antibiotics) is the current standard practice to increase reverse transcription real time PCR (RT-rtPCR) testing throughput and simultaneously reduce the test costs. In this study we investigated whether doubling ostrich tracheal swabs to 10 per pool would affect the sensitivity of detection of H5N8 high pathogenicity avian influenza virus (HPAIV) and H7N1 low pathogenicity avian influenza virus (LPAIV) by quantitative RT-rtPCR, and we also compared the effect of a protein-rich, brain heart infusion broth (BHI) virus transport media containing broad spectrum antimicrobials (VTM) on the efficacy of isolating the H5N8 and H7N1 viruses from ostrich tracheas, since the historical isolation success rate from these birds has been poor. Results Increasing the ostrich swabs from 5 to 10 per pool in 3 mls of transport medium had no detrimental effect on the sensitivity of the RT-rtPCR assay in detecting H5N8 HPAIV or H7N1 LPAIV; and doubling of the swab pool size even seemed to improve the sensitivity of virus detection at levels that were statistically significant (p less than or equal to 0.05) in medium and low doses of spiked H5N8 HPAIV and at high levels of spiked H7N1 LPAIV. On virus isolation, more samples were positive when swabs were stored in a protein-rich viral transport medium supplemented with antimicrobials in PBS: glycerol (10/18 vs. 7/18 for H5N8 HPAI); although the differences were not statistically significant, overall higher virus titres were detected (106.7 – 103.0 vs. 106.6 - 103.1 EID50 for H5N8 HPAIV and 105.5 - 101.4 vs. 105.1 – 101.3 EID50 for H7N1 LPAIV); and fewer passages were required with less filtration for both H5N8 HPAI and H7N1 LPAI strains. Conclusion Ostrich tracheal swab pool size could be increased from 5 to 10 in 3mls of VTM with no loss in sensitivity of the RT-rtPCR assay in detecting HPAI or LPAI viruses, and HPAI virus could be isolated from a greater proportion of swabs stored in VTM compared to PBS: glycerol without antibiotics.
Collapse
|
5
|
Murray KN, Clark TS, Kebus MJ, Kent ML. Specific Pathogen Free - A review of strategies in agriculture, aquaculture, and laboratory mammals and how they inform new recommendations for laboratory zebrafish. Res Vet Sci 2021; 142:78-93. [PMID: 34864461 PMCID: PMC9120263 DOI: 10.1016/j.rvsc.2021.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/04/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
Specific pathogen-free (SPF) animals are bred and managed to exclude pathogens associated with significant morbidity or mortality that may secondarily pose a risk to public health, food safety and food security, and research replicability. Generating and maintaining SPF animals requires detailed biosecurity planning for control of housing, environmental, and husbandry factors and a history of regimented pathogen testing. Successful programs involve comprehensive risk analysis and exclusion protocols that are rooted in a thorough understanding of pathogen lifecycle and modes of transmission. In this manuscript we review the current state of SPF in domestic agriculture (pigs and poultry), aquaculture (salmonids and shrimp), and small laboratory mammals. As the use of laboratory fish, especially zebrafish (Danio rerio), as models of human disease is expanding exponentially, it is prudent to define standards for SPF in this field. We use the guiding principles from other SPF industries and evaluate zebrafish pathogens against criteria to be on an SPF list, to propose recommendations for establishing and maintaining SPF laboratory zebrafish.
Collapse
Affiliation(s)
- Katrina N Murray
- Zebrafish International Resource Center, University of Oregon, Eugene, OR 97403, USA.
| | - Tannia S Clark
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Myron J Kebus
- Wisconsin Department of Agriculture, Trade and Consumer Protection, Madison, WI 53708, USA
| | - Michael L Kent
- Zebrafish International Resource Center, University of Oregon, Eugene, OR 97403, USA; Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA; Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
6
|
Implementation of Antibody Rapid Diagnostic Testing versus Real-Time Reverse Transcription-PCR Sample Pooling in the Screening of COVID-19: a Case of Different Testing Strategies in Africa. mSphere 2020; 5:5/4/e00524-20. [PMID: 32727861 PMCID: PMC7392544 DOI: 10.1128/msphere.00524-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has wreaked havoc across the globe; although the number of cases in Africa remains lower than in other regions, it is on a gradual upward trajectory. To date, COVID-19 cases have been reported in 54 out of 55 African countries. However, due to limited severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) real-time reverse transcription-PCR (rRT-PCR) testing capacity and scarcity of testing reagents, it is probable that the total number of cases could far exceed published statistics. In this viewpoint, using Ghana, Malawi, South Africa, and Zimbabwe as examples of countries that have implemented different testing strategies, we argue that the implementation of sample pooling for rRT-PCR over antibody rapid diagnostic testing could have a greater impact in assessing disease burden. Sample pooling offers huge advantages compared to single test rRT-PCR, as it reduces diagnostic costs, personnel time, burnout, and analytical run times. Africa is already strained in terms of testing resources for COVID-19; hence, cheaper alternative ways need to be implemented to conserve resources, maximize mass testing, and reduce transmission in the wider population.
Collapse
|
7
|
Ssematimba A, Malladi S, Hagenaars TJ, Bonney PJ, Weaver JT, Patyk KA, Spackman E, Halvorson DA, Cardona CJ. Estimating within-flock transmission rate parameter for H5N2 highly pathogenic avian influenza virus in Minnesota turkey flocks during the 2015 epizootic. Epidemiol Infect 2019; 147:e179. [PMID: 31063119 PMCID: PMC6518789 DOI: 10.1017/s0950268819000633] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/13/2019] [Accepted: 03/11/2019] [Indexed: 11/29/2022] Open
Abstract
Better control of highly pathogenic avian influenza (HPAI) outbreaks requires deeper understanding of within-flock virus transmission dynamics. For such fatal diseases, daily mortality provides a proxy for disease incidence. We used the daily mortality data collected during the 2015 H5N2 HPAI outbreak in Minnesota turkey flocks to estimate the within-flock transmission rate parameter (β). The number of birds in Susceptible, Exposed, Infectious and Recovered compartments was inferred from the data and used in a generalised linear mixed model (GLMM) to estimate the parameters. Novel here was the correction of these data for normal mortality before use in the fitting process. We also used mortality threshold to determine HPAI-like mortality to improve the accuracy of estimates from the back-calculation approach. The estimated β was 3.2 (95% confidence interval (CI) 2.3-4.3) per day with a basic reproduction number of 12.8 (95% CI 9.2-17.2). Although flock-level estimates varied, the overall estimate was comparable to those from other studies. Sensitivity analyses demonstrated that the estimated β was highly sensitive to the bird-level latent period, emphasizing the need for its precise estimation. In all, for fatal poultry diseases, the back-calculation approach provides a computationally efficient means to obtain reasonable transmission parameter estimates from mortality data.
Collapse
Affiliation(s)
- A. Ssematimba
- Secure Food Systems Team, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, Saint Paul, MN 55108, USA
- Department of Mathematics, Faculty of Science, Gulu University, P.O. Box 166, Gulu, Uganda
| | - S. Malladi
- Secure Food Systems Team, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, Saint Paul, MN 55108, USA
| | - T. J. Hagenaars
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, P.O. Box 65, 8200AB Lelystad, The Netherlands
| | - P. J. Bonney
- Secure Food Systems Team, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, Saint Paul, MN 55108, USA
| | - J. T. Weaver
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Science, Technology, and Analysis Services, Center for Epidemiology and Animal Health, Natural Resources Research Center, Bldg. B MS-2W4, 2150 Centre Avenue, Fort Collins, CO 80526, USA
| | - K. A. Patyk
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Science, Technology, and Analysis Services, Center for Epidemiology and Animal Health, Natural Resources Research Center, Bldg. B MS-2W4, 2150 Centre Avenue, Fort Collins, CO 80526, USA
| | - E. Spackman
- Exotic and Emerging Avian Viral Diseases Unit, US National Poultry Research Center, USDA-ARS, 934 College Station Rd. Athens, GA 30605, USA
| | - D. A. Halvorson
- Secure Food Systems Team, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, Saint Paul, MN 55108, USA
| | - C. J. Cardona
- Secure Food Systems Team, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, Saint Paul, MN 55108, USA
| |
Collapse
|