1
|
Liu Z, Zhou S, Meng C, Ren D, Xiong W, Liu G, Xu J. A TaqMan-MGB real-time PCR for discriminating between MS-H-live vaccine and field Mycoplasma synoviae strains. Microbiol Spectr 2025; 13:e0359123. [PMID: 40172194 PMCID: PMC12054173 DOI: 10.1128/spectrum.03591-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/11/2025] [Indexed: 04/04/2025] Open
Abstract
Mycoplasma synoviae (MS) is an important pathogen in the poultry industry and has caused significant economic losses. Worldwide, the use of live attenuated vaccine for the MS-H strain has increased to prevent MS infection. However, there is no test available to discriminate the MS-H vaccine strains from the MS strains that are causing field infection. In this study, a TaqMan-MGB real-time PCR method (qPCR) was established, validated, and evaluated to discriminate between MS-H-live vaccine and field strains based on nucleotide differences in the hlyC gene. The validation was performed for sensitivity and reproducibility by constructing recombinant plasmids. The limits of detection were 1.07 × 101 copies/µL for the MS-H and 1.95 × 101 copies/µL for field strains, respectively. The intra- and inter-assay results were less than 2.5% based on the reproducibility test. No cross-amplification signals from other common chicken pathogens were detected. Thus, our data indicated that this qPCR is sensitive, specific, and reproducible. In addition, 709 chicken clinical samples were used to evaluate this qPCR test. The results showed that positive signals could be detected from the chicken choanal cleft swabs and are 100% in concordance with the PCR sequencing method. To the best of our knowledge, we found for the first time that both L- and C-type field MS were present in flocks immunized against the MS-H vaccine strain during the validation process. In addition, this is the first report of a field strain of C-type in China.IMPORTANCEMycoplasma synoviae (MS) is an important pathogen in the poultry industry and has caused significant economic losses. Worldwide, an increasing number of farms are using the live attenuated vaccine MS-H strain to prevent MS infections. In order to monitor vaccinated and naturally infected flocks and to continue the MS control and eradication program, a differentiation of infected from vaccinated animals (DIVA) test for MS is urgently needed. We developed a TaqMan-MGB real-time qPCR (qPCR) method with a pair of primers and two competitive TaqMan-MGB probes. We performed an evaluation that can discriminate between the MS-H-live vaccine and field MS strains based on nucleotide differences in the hlyC gene. It has great sensitivity and reproducibility, and greater specificity than other methods which were established by SNP sites of the obg gene and oppF gene.
Collapse
Affiliation(s)
- Ziqing Liu
- School of Life Science and Food Engineering, Hebei University of Engineering, Hebei, China
- Huayu Agricultural Science and Technology Co., Ltd., Hebei, China
| | - Shouchang Zhou
- Huayu Agricultural Science and Technology Co., Ltd., Hebei, China
- Hebei Laying Hen Industrial Technology Research Institute, Handan, China
| | - Chenchen Meng
- Huayu Agricultural Science and Technology Co., Ltd., Hebei, China
| | - Doudou Ren
- School of Life Science and Food Engineering, Hebei University of Engineering, Hebei, China
- Huayu Agricultural Science and Technology Co., Ltd., Hebei, China
| | - Weizhen Xiong
- School of Life Science and Food Engineering, Hebei University of Engineering, Hebei, China
| | - Guanhui Liu
- School of Life Science and Food Engineering, Hebei University of Engineering, Hebei, China
| | - Jinpeng Xu
- School of Life Science and Food Engineering, Hebei University of Engineering, Hebei, China
- Hebei Laying Hen Industrial Technology Research Institute, Handan, China
| |
Collapse
|
2
|
Zhang Y, Wu Y, He J, Lai J, Ding H. Recombinant MS087-based indirect ELISA for the diagnosis of Mycoplasma synoviae. Front Vet Sci 2024; 11:1472979. [PMID: 39534400 PMCID: PMC11555648 DOI: 10.3389/fvets.2024.1472979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Accurate detection is a prerequisite for effective prevention and control of Mycoplasma synoviae infection. ELISA is the most popular method for the clinical detection of M. synoviae because of its convenience, low cost, and high detection rate. However, the cross-reactivity of commercially available ELISA kits with other avian pathogen-positive sera needs to be addressed. The aim of this study was to establish an ELISA method with high specificity for the detection of anti-M. synoviae antibodies in chicken serum to evaluate the M. synoviae infection status on poultry farms. The recombinant MS087 (rMS087) protein was expressed in Escherichia coli BL21 (DE3) and purified by Ni2+ affinity chromatography. An antibody against rMS087 was generated by immunizing BALB/c mice. Bioinformatic analysis revealed that MS087 was conserved among M. synoviae strains. Western blotting and indirect immunofluorescence results indicated that MS087 was not only localized in the cytoplasm and on the membrane but also secreted by the organism. For the established ELISA method based on rMS087, the optimal antigen concentration, blocking buffer, blocking duration, serum dilution, serum incubation duration, secondary antibody dilution, secondary antibody incubation duration and colorimetric reaction duration were 2 μg/mL, 1% BSA, 3 h, 1:500, 1.5 h, 1:20,000, 2 h and 5 min, respectively. Validation of the rMS087-based ELISA revealed a cut-off value of 0.5. The coefficients of variation of both the intra-batch and inter-batch methods were less than 9%. The assay was able to differentiate positive serum against M. synoviae from antisera against nine other avian pathogens and was able to recognize M. synoviae-positive sera at a dilution of 1:1,000. Compared with the commercial ELISA method, the rMS087-based ELISA has the potential to recognize more positive sera against M. synoviae. Collectively, the rMS087-based ELISA is a reproducible, specific, and sensitive serological method for detecting antibodies against M. synoviae in chicken serum and has robust potential for large-scale serological epidemiology of M. synoviae infection on poultry farms.
Collapse
Affiliation(s)
| | | | | | | | - Honglei Ding
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Liu R, Lin Q, Cai Q, Liang Y, Xu X, Chen Q, Xu C, Liu H, Liao M, Zhang J. A novel high sensitive, specificity duplex enzyme-activated differentiating probes PCR method for the SNP detection and differentiation of MS-H vaccine strains from wild-type Mycoplasma synoviae strains. Poult Sci 2024; 103:103874. [PMID: 38833744 PMCID: PMC11190711 DOI: 10.1016/j.psj.2024.103874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
Mycoplasma synoviae (MS) is a contagious pathogen that poses a significant threat to the poultry industry. Detection plays an important role in the prevention and control of MS, particularly in differentiating between wild-type MS and live attenuated vaccine strains for vaccination selection and culling of animals with wild-type only. The live attenuated ts+ vaccine strain MS-H is recognized as the most effective and widely used vaccine. In this study, we have developed a method called double enzyme-activated differentiation probes PCR (DEA-probes PCR) for the differentiation of MS-H vaccine strain from wild-type strain by targeting the single nucleotide polymorphism (SNP) of the 367th nucleotide in the Obg gene sequence. We developed 2 modified probes with the ribonucleotide insert. When the probe perfectly complements with the target, the ribonuclease H2 (RNase H2) will cleave the ribonucleotide, resulting in the generation of fluorescent signal. With a detection limit of 5.8 copies/µL, the DEA-probes PCR method demonstrates 100% specificity in distinguishing wild-type MS from MS-H strains in 1 h. The method demonstrated great performance in real application of 100 superior palate cleft swab samples from chickens in poultry farms. Twenty-eight samples were detected as MS positive, consistent with the results of the Chinese industry standard method. Additionally, our method was able to distinguish 19 wild-type MS strains from 9 MS-H vaccine strains. The DEA-probes PCR method is rapid, specific and sensitive for SNP detection, overcoming the misidentification in MS detection and differentiation. It can be also applied to the differentiation of infected from vaccinated animals (DIVA) for other pathogens.
Collapse
Affiliation(s)
- Ruidong Liu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Qijie Lin
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Qianyi Cai
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yucen Liang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaozhen Xu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Qiuyan Chen
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Chenggang Xu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Haixia Liu
- Guangdong AIB Polytechnic, Tropical agriculture and Forestry College, Guangzhou, Guangdong 510507, China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; School of Resources and Environmental, Zhongkai College of Agricultural Engineering, Guangzhou, Guangdong 510550, China
| | - Jianmin Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Ma X, Wang L, Li J, Guo Y, He S. The pathogenicity and immune effects of different generations of Mycoplasma synoviae on chicken embryos. Br Poult Sci 2024; 65:19-27. [PMID: 38018666 DOI: 10.1080/00071668.2023.2287733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/05/2023] [Indexed: 11/30/2023]
Abstract
1. Mycoplasma synoviae (MS) is the primary causative agent of synovitis in avian species. In order to investigate the pathogenicity and immunological responses associated with MS in specific pathogen-free chicken embryos, a series of generations (F1, F95, F120, F160 and F200) of MS were introduced into 7-day-old SPF chicken embryos and subsequent mortality rates were recorded and analysed2. Reverse transcription-quantitative polymerase chain reaction was performed to detect expression of heat shock proteins HSP27, HSP40, HSP60, HSP70 and HSP90 and inflammatory factors interleukin (IL)-1β, caspase-1 and IL-18 in the tracheal tissue.3. The results showed that the mortality rate of SPF chicken embryos decreased with an increase in the number of passages, with the highest being 80% (8/10) for F1 generation and the lowest being 10% (1/10) for F200. The expression of HSP27, IL-1β, HSP40, caspase-1, HSP70 and HSP90 showed a significant downregulation trend with an increase in the generation (except IL-18; P < 0.05). The HSP60 expression was significantly upregulated with increasing generations (P < 0.05).4. A relationship between pathogenicity and the number of passages was observed and the decrease in pathogenicity appeared to be associated with HSP and genes related to inflammatory factors. The present work offers a scientific foundation for screening potential MS strains that might be employed to develop attenuated vaccines.
Collapse
Affiliation(s)
- X Ma
- School of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia, China
| | - L Wang
- School of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia, China
| | - J Li
- School of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia, China
| | - Y Guo
- Ningxia Academy of Agricultural and Forestry Science's Yinchuan, Institute of Animal Science, Yinchuan, Ningxia, China
| | - S He
- School of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
5
|
Han S, Wang Y, Chang W, Wang L, Fang J, Han J, Hou X, Qi X, Wang J. Evaluation of the protective efficacy of six major immunogenic proteins of Mycoplasma Synoviae. Front Vet Sci 2024; 10:1334638. [PMID: 38239753 PMCID: PMC10794622 DOI: 10.3389/fvets.2023.1334638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/15/2023] [Indexed: 01/22/2024] Open
Abstract
Mycoplasma synoviae (MS) is a primary avian pathogen prevalent worldwide that causes airsacculitis and synovitis in birds. Vaccination is recommended as the most cost-effective strategy in the control of MS infection. Novel alternative vaccines are needed for eradicating and controlling MS infection in flocks. DnaK, enolase, elongation factor Tu (EF-Tu), MSPB, NADH oxidase and LP78 are the major immunogenic antigens of MS and are promising targets for subunit vaccine candidates. In the present study, genes encoding DnaK, enolase, EF-Tu, MSPB, LP78, and NADH oxidase were cloned and expressed in Escherichia coli. Enzyme-linked immunosorbent assay showed that the six recombinant proteins were recognized by convalescent sera, indicating that they were expressed during infection. Two injections of the six subunit vaccines induced a robust antibody response and increased the concentrations of IFN-γ and IL-4, especially rEnolase and rEF-Tu. The proliferation of peripheral blood lymphocytes was enhanced in all of the immunized groups. Chickens immunized with rEnolase, rEF-Tu, rLP78, and rMSPB conferred significant protection against MS infection, as indicated by significantly lower DNA copies in the trachea, lower scores of air sac lesions, and lesser tracheal mucosal thickness than that in the challenge control. Especially, rEnolase provided the best protective efficacy, followed by rEF-Tu, rMSPB, and rLP78. Our finds demonstrate that the subunit vaccines and bacterin can only reduce the lesions caused by MS infection, but not prevent colonization of the organism. Our findings may contribute to the development of novel vaccine agents against MS infection.
Collapse
Affiliation(s)
- Shuizhong Han
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ying Wang
- College of Food and Drugs, Luoyang Polytechnic, Luoyang, China
| | - Wenchi Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Lizhen Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Junyang Fang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jingjing Han
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaolan Hou
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
6
|
Chaidez-Ibarra MA, Velazquez DZ, Enriquez-Verdugo I, Castro Del Campo N, Rodriguez-Gaxiola MA, Montero-Pardo A, Diaz D, Gaxiola SM. Pooled molecular occurrence of Mycoplasma gallisepticum and Mycoplasma synoviae in poultry: A systematic review and meta-analysis. Transbound Emerg Dis 2021; 69:2499-2511. [PMID: 34427387 DOI: 10.1111/tbed.14302] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 12/30/2022]
Abstract
Worldwide, Mycoplasma gallisepticum (MG) and M. synoviae (MS) are the main agents responsible for chronic respiratory disease in poultry. Therefore, we conducted a systematic review and meta-analysis to estimate their occurrence. We searched electronic databases to find peer-reviewed publications reporting the molecular detection of MG and MS in poultry and used meta-analysis to estimate their pooled global occurrence (combined flock and individual), aggregating results at the regional and national levels. We performed a subgroup meta-analysis for subpopulations (broilers, layers, breeders and diverse poultry including turkeys, ducks and ostriches) and used meta-regression with categorical modifiers. We retrieved 2294 publications from six electronic databases and included 85 publications from 33 countries that reported 62 studies with 22,162 samples for MG and 48 studies with 26,413 samples for MS. The pooled global occurrence was 38.4% (95% CI: 23.5-54.5) for MS and 27.0% (20.4-34.2) for MG. Among regions, Europe and Central Asia had the lowest occurrence for both pathogens, while MG and MS were highly prevalent in South Asia and sub-Saharan Africa, respectively. At the national level, MG occurrence was higher in Algeria, Saudi Arabia and Sudan, whereas China, Egypt and Ethiopia reported higher values of MS. Among the poultry subpopulations, MS and MG were more prevalent in the breeders and layers (62.6% and 31.2%, respectively) than in diverse poultry. The year of publication, the sample size and the level of ambient air pollution (measured indirectly by PM2.5) were associated with the occurrence of both mycoplasmas. Our study revealed high and heterogeneous occurrence values of MG and MS and justifies the need for early detection and improved control measures to reduce the spread of these pathogens.
Collapse
Affiliation(s)
- Miguel Angel Chaidez-Ibarra
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa, Culiacán Rosales 80246, Sinaloa, México
| | - Diana Zuleika Velazquez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa, Culiacán Rosales 80246, Sinaloa, México
| | - Idalia Enriquez-Verdugo
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa, Culiacán Rosales 80246, Sinaloa, México
| | - Nohemi Castro Del Campo
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa, Culiacán Rosales 80246, Sinaloa, México
| | | | - Arnulfo Montero-Pardo
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa, Culiacán Rosales 80246, Sinaloa, México
| | - Daniel Diaz
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa, Culiacán Rosales 80246, Sinaloa, México.,Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Coyoacán 04510, Ciudad de México, México
| | - Soila Maribel Gaxiola
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa, Culiacán Rosales 80246, Sinaloa, México
| |
Collapse
|
7
|
Feberwee A, de Wit S, Dijkman R. Clinical expression, epidemiology and monitoring of Mycoplasma gallisepticum and Mycoplasma synoviae: an update. Avian Pathol 2021; 51:2-18. [PMID: 34142880 DOI: 10.1080/03079457.2021.1944605] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Mycoplasma gallisepticum (MG) and Mycoplasma synoviae (MS) are of clinical and economic importance for the global poultry industry. Many countries and integrations are involved in monitoring programs to control both mycoplasma species. This review provides an extensive historic overview of the last seven decades on the development of the knowledge regarding the factors that influence the clinical expression of the disease, the epidemiology and monitoring of both MG and MS. This includes the detection of new virulent strains, studies unravelling the transmission routes, survival characteristics and the role of other avian hosts. Also the role of molecular typing tests in unravelling epidemiology, and factors that complicate the interpretation of test results such as heterologous mycoplasma infections, use of heterologous oil-emulsion vaccines, use of antibiotic treatments, occurrence of MG and MS strains with low virulence, and last but not least the use of live and/or inactivated MG and MS vaccines are discussed.
Collapse
Affiliation(s)
| | - Sjaak de Wit
- Royal GD, Deventer, the Netherlands.,Department of Farm Animal Health, Veterinary Faculty, Utrecht University, the Netherlands
| | | |
Collapse
|
8
|
de Jong A, Youala M, Klein U, El Garch F, Simjee S, Moyaert H, Rose M, Gautier-Bouchardon AV, Catania S, Ganapathy K, Gyuranecz M, Möller Palau-Ribes F, Pridmore A, Ayling RD. Minimal inhibitory concentration of seven antimicrobials to Mycoplasma gallisepticum and Mycoplasma synoviae isolates from six European countries. Avian Pathol 2021; 50:161-173. [PMID: 33291970 DOI: 10.1080/03079457.2020.1861216] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Mycoplasma gallisepticum and Mycoplasma synoviae are bacterial pathogens that cause disease in poultry, adversely affecting their health and welfare, and are a financial burden on producers. This manuscript describes the results of the MycoPath project that is the first international antimicrobial susceptibility programme for mycoplasma pathogens isolated from poultry. Improved comparative analysis of minimal inhibitory concentration (MIC) results from participating countries was facilitated by using one laboratory determining all MICs. Chicken and turkey isolates were obtained from France, Germany, Great Britain, Hungary, Italy and Spain during 2014-2016. One isolate per farm was retained. The MIC of seven antimicrobial agents was determined using a broth microdilution method, with Friis Medium (M. gallisepticum) or Modified Chanock's Medium (M. synoviae). Of the 222 isolates recovered, 82 were M. gallisepticum and 130 were M. synoviae. M. gallisepticum MIC50/90 values were 0.12/0.5, 2/8, 0.5/4, 0.12/>64, 0.008/0.062, 0.008/32, 0.062/4 mg/l for doxycycline, enrofloxacin, oxytetracycline, spiramycin, tiamulin, tilmicosin and tylosin, respectively. For M. synoviae, the values were 0.5/1, 8/16, 0.5/1, 0.5/8, 0.25/0.5, 0.062/2 and 0.062/16 mg/l respectively. A bimodal MIC distribution for the fluoroquinolone (enrofloxacin) and the macrolides (spiramycin, tilmicosin and tylosin) indicate that both species have sub-populations that are less susceptible in vitro to those antimicrobials. Some differences in susceptibilities were observed according to host species, Mycoplasma species, and country of origin. This study provides a baseline of novel data for future monitoring of antimicrobial resistance in poultry Mycoplasma species. Additionally, this information will facilitate the selection of the antimicrobial agents most likely to be effective, thus ensuring their minimal use with targeted and correct therapeutic treatments.Highlights First large-scale pan-European collection of representative Mg and Ms isolates.MIC values assessed in central laboratory for Mg and Ms from chickens and turkeys.Range of MIC values for 82 Mg and 130 Ms isolates to seven licenced antibiotics shown.Data can be used to help determine Mg and Ms veterinary-specific breakpoints.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Markus Rose
- MycoPath Study Group, CEESA, Brussels, Belgium
| | - Anne V Gautier-Bouchardon
- Mycoplasmology, Bacteriology, and Antimicrobial Resistance Unit, French Agency for Food, Environmental and Occupational Health and Safety (Anses), Ploufragan, France
| | - Salvatore Catania
- Mycoplasma Unit, Istituto Zooprofilattico Sperimentale delle Venezie, Verona, Italy
| | - Kannan Ganapathy
- University of Liverpool, Institute of Infection and Global Health, Neston, United Kingdom
| | - Miklos Gyuranecz
- Institute for Veterinary Medical Research CAR-HAS, Budapest, Hungary
| | | | | | | |
Collapse
|
9
|
Catania S, Bottinelli M, Fincato A, Gastaldelli M, Barberio A, Gobbo F, Vicenzoni G. Evaluation of Minimum Inhibitory Concentrations for 154 Mycoplasma synoviae isolates from Italy collected during 2012-2017. PLoS One 2019; 14:e0224903. [PMID: 31697761 PMCID: PMC6837496 DOI: 10.1371/journal.pone.0224903] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/23/2019] [Indexed: 11/30/2022] Open
Abstract
Mycoplasma synoviae (MS) is a highly prevalent bacterial species in poultry causing disease and severe economic losses. Antibiotic treatment is one of the control strategies that can be applied to contain clinical outbreaks in MS-free flocks, especially because this bacterium can be transmitted in ovo. It becomes, then, very important for veterinarians to know the antibiotic susceptibility of the circulating strains in order to choose the most appropriate first-line antibiotic molecule as a proactive role in fighting antibiotic resistance. We evaluated the Minimum Inhibitory Concentrations (MICs) of enrofloxacin, oxytetracycline, doxycycline, erythromycin, tylosin, tilmicosin, spiramycin, tiamulin, florfenicol and lincomycin for MS isolates collected between 2012 and 2017 in Italy. A total of 154 MS isolates from different poultry commercial categories (broiler, layer, and turkey sectors) was tested using commercial MIC plates. All MS isolates showed very high MIC values of erythromycin (MIC90 ≥8 μg/mL) and enrofloxacin (MIC90 ≥16 μg/mL). MIC values of doxycycline and oxytetracycline obtained were superimposable to each other with only a one-fold dilution difference. Discrepancies between MIC values of tylosin and tilmicosin were observed. Interestingly, seven isolates showed very high MIC values of lincomycin and tilmicosin, but not all of them showed very high MIC values of tylosin. Most of the MS isolates showed low MIC values of spiramycin, but seven strains showed a MIC ≥16 μg/mL. In the observation period, the frequency of the different MIC classes varied dependently on the tested antibiotic. Interestingly, tilmicosin MICs clearly showed a time-dependent progressive shift towards high-concentration classes, indicative of an on-going selection process among MS isolates. Until standardized breakpoints become available to facilitate data interpretation, it will be fundamental to continue studying MIC value fluctuations in the meantime in order to create a significant database that would facilitate veterinarians in selecting the proper drug for treating this impactful Mycoplasma.
Collapse
Affiliation(s)
- Salvatore Catania
- Istituto Zooprofilattico Sperimentale delle Venezie, viale Dell’Università 10, Legnaro (PD), Italy
- * E-mail:
| | - Marco Bottinelli
- Istituto Zooprofilattico Sperimentale delle Venezie, viale Dell’Università 10, Legnaro (PD), Italy
| | - Alice Fincato
- Istituto Zooprofilattico Sperimentale delle Venezie, viale Dell’Università 10, Legnaro (PD), Italy
| | - Michele Gastaldelli
- Istituto Zooprofilattico Sperimentale delle Venezie, viale Dell’Università 10, Legnaro (PD), Italy
| | - Antonio Barberio
- Istituto Zooprofilattico Sperimentale delle Venezie, viale Dell’Università 10, Legnaro (PD), Italy
| | - Federica Gobbo
- Istituto Zooprofilattico Sperimentale delle Venezie, viale Dell’Università 10, Legnaro (PD), Italy
| | - Gaddo Vicenzoni
- Istituto Zooprofilattico Sperimentale delle Venezie, viale Dell’Università 10, Legnaro (PD), Italy
| |
Collapse
|