1
|
Abdu SMN, Abdalla IM, Zhen Y, Zhang C, Xi Z, Ma J, Zhong Y, Lin J, Ali R, Wang M. Gastric Infusion of Short-Chain Fatty Acids Improves Health via Enhance Liver and Intestinal Immune Response and Antioxidant Capacity in Goats. Vet Sci 2025; 12:395. [PMID: 40431488 DOI: 10.3390/vetsci12050395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/17/2025] [Accepted: 04/04/2025] [Indexed: 05/29/2025] Open
Abstract
In the present study, we comprehensively investigated the impacts of the infusion of three short-chain fatty acids (SCFAs), sodium acetate (SA), propionate (SP), and butyrate (SB), to examine their respective roles in the gastrointestinal tract (GIT) health and innate immunity of twenty adult Guanzhong milk goats of 1.5 years of age. Infusion of SCFAs resulted in upregulating the activity of certain antioxidant enzymes in comparison with the control group. The SA group significantly (p < 0.05) increased the activity of the catalase (CAT) in the liver, glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) in the colon, and maleic dialdehyde (MDA) in the jejunum. SP significantly (p < 0.05) upregulated the activity of the total antioxidant capacity (T-AOC) in the ileum, CAT and MDA in the jejunum, CAT in the colon, and SOD in the liver. SB was significantly (p < 0.05) upregulated the activity of the T-AOC in the ileum, CAT in the jejunum, and T-AOC, CAT, SOD, and GSH-Px in the colon. Infusion of SCFAs resulted in significant (p < 0.05) increases in pro-inflammatory and anti-inflammatory cytokines in the intestine compared to the control group. We found that the SA group significantly (p < 0.05) upregulated the level of interleukin-1 beta (IL-1β) in the ileum and jejunum, as well as the levels of IL-6 and TNF-α in the colon, while the SP group significantly (p < 0.05) increased the level of IL-1β in the jejunum and the level of interleukin-10 (IL-10) in the colon. Furthermore, the SB group significantly (p < 0.05) upregulated levels of IL-1β in the jejunum, interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α) in the colon, and IL-10 in the cecum. Furthermore, some intestinal tight-junction proteins were significantly increased by SCFA infusion. SA significantly (p < 0.05) increased the claudin level in the ileum and occludin in the colon, while the SP group significantly (p < 0.05) upregulated the level of occludin in the jejunum and the claudin level in the ileum. Moreover, SB significantly (p < 0.05) increased the occludin level in the jejunum, claudin level in the ileum, and zonula occludens-1 (ZO-1) level in the colon and cecum. There are many positive associations among antioxidant, inflammatory cytokine, and tight-junction protein indexes in the liver and intestine. In conclusion, our results suggest that the gastric infusion of SA, SP, and SB might improve goat intestinal health through the positive influence on the antioxidant capacity, pro-inflammatory and anti-inflammatory cytokines, and tight-junction proteins.
Collapse
Affiliation(s)
- Shaima Mohmed Nasr Abdu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | | | - Yongkang Zhen
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Chong Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zanna Xi
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jianjun Ma
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yuhong Zhong
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jiaqi Lin
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Rahmat Ali
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Kuru M, Makav M, Boğa Kuru B, Bektaşoğlu F, Demir MC, Bulut M, Alwazeer D. Hydrogen-rich water supplementation improves metabolic profile during peripartum period in Gurcu goats and enhances the health and survival of kids. Res Vet Sci 2024; 171:105208. [PMID: 38458045 DOI: 10.1016/j.rvsc.2024.105208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
In this study, the effect of intaking hydrogen-rich water (HRW) on the metabolic profile of Gurcu goats during the peripartum period and the survival/growth performance of kids were evaluated. Twenty-three pregnant goats were divided into two groups 21-23 days before the due date. Group 1 (G1, n = 10) was given HRW from day 21 before delivery until day 21 after delivery. Group 2 (G2, n = 13) served as the control. Blood samples were weekly taken from 21 days before delivery until 21 days after delivery. Hydrogen-rich water increased serum glucose concentration on the delivery day more than in G2 (P = 0.016). Hydrogen-rich water decreased serum total cholesterol (P = 0.02) and creatinine (P = 0.05) concentration at delivery. Group effect and time effect were significant in triglyceride (P < 0.001, P = 0.001, respectively) and albumin (P < 0.001, P = 0.002, respectively) concentration. Aspartate transaminase decreased towards the delivery day in G1 (P < 0.05). Serum non-esterified fatty acids concentration was lower in G1 than in G2, but there was no significant differences (P > 0.05). Beta-hydroxybutyric acid concentration an increased in both groups during the prepartum period, although there was no significance (P > 0.05). Hydrogen-rich water did not affect the birth weight and growth performance of the kids (P > 0.05), but it increased their survival rates and overall health, although there was no significance (P > 0.05). In conclusion, HRW may have an impact on the metabolic profiles during the peripartum period and have a positive effect on lipid profiles. Additionally, intaking HRW to goats during the peripartum period may improve the health and survival of kids and reduce their mortality.
Collapse
Affiliation(s)
- Mushap Kuru
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Kafkas University, Kars, Türkiye.
| | - Mustafa Makav
- Department of Physiology, Faculty of Veterinary Medicine, Kafkas University, Kars, Türkiye
| | - Buket Boğa Kuru
- Department of Animal Breeding and Husbandry, Faculty of Veterinary Medicine, Kafkas University, Kars, Türkiye
| | - Fikret Bektaşoğlu
- Department of Animal Breeding and Husbandry, Faculty of Veterinary Medicine, Kafkas University, Kars, Türkiye
| | - Murat Can Demir
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Kafkas University, Kars, Türkiye
| | - Menekşe Bulut
- Research Center for Redox Applications in Foods, Iğdır University, Iğdır, Türkiye; Innovative Food Technologies Development, Application, and Research Center, Iğdır University, Iğdır, Türkiye; Department of Food Engineering, Iğdır University, Iğdır, Türkiye
| | - Duried Alwazeer
- Research Center for Redox Applications in Foods, Iğdır University, Iğdır, Türkiye; Innovative Food Technologies Development, Application, and Research Center, Iğdır University, Iğdır, Türkiye; Department of Nutrition and Dietetic, Faculty of Health Sciences, Iğdır University, Iğdır, Türkiye
| |
Collapse
|
3
|
Ma T, Meng Z, Ghaffari M, Lv J, Xin H, Zhao Q. Characterization and profiling of the microRNA in small extracellular vesicles isolated from goat milk samples collected during the first week postpartum. JDS COMMUNICATIONS 2023; 4:507-512. [PMID: 38045901 PMCID: PMC10692291 DOI: 10.3168/jdsc.2022-0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/06/2023] [Indexed: 12/05/2023]
Abstract
Colostrum contains nutrients, immunoglobulins, and various bioactive compounds such as microRNA (miRNA). Less is known about the temporal changes in miRNA profiles in ruminant milk samples during the first week postpartum. In this study, we characterized and compared the profiles of miRNA in the small extracellular vesicles (sEV) isolated from colostrum (CM, collected immediately after parturition, n = 8) and transition milk (TM, collected 7 d postpartum, n = 8) from eight 1-yr-old Guanzhong dairy goats with a milk yield of approximately 500 kg/year. A total of 192 unique sEV-associated miRNA (transcripts per million >1 at least 4 samples in either CM or TM) were identified in all samples. There were 29 miRNA uniquely identified in the TM samples while no miRNA was uniquely identified in the CM samples. The abundance of the top 10 miRNA accounted for 82.4% ± 4.0% (± SD) of the total abundance, with let-7 families (e.g., let-7a/b/c-5p) being predominant in all samples. The top 10 miRNA were predicted to target 1,008 unique genes that may regulate pathways such as focal adhesion, TGF-β signaling, and axon guidance. The expression patterns of EV miRNA were similar between the 2 sample groups, although the abundance of let-7c-5p and miR-30a-3p was higher, whereas that of let-7i-5p and miR-103-3p was lower in CM than in TM. In conclusion, the core miRNAome identified in the samples from CM and TM may play an important role in cell proliferation, bone homeostasis, and neuronal network formation in newborn goat kids. The lack of differential miRNA expression between the CM and TM samples may be due to a relatively short sampling interval in which diet composition, intake and health status of ewes, and environment were relatively stable.
Collapse
Affiliation(s)
- T. Ma
- Institute of Feed Research, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Z. Meng
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, 010030, China
| | - M.H. Ghaffari
- Institute of Animal Science, University of Bonn, Bonn, 53115, Germany
| | - J. Lv
- College of Animal Sciences and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - H. Xin
- College of Animal Sciences and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Q. Zhao
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, 010030, China
| |
Collapse
|
4
|
Huang Y, Kong Y, Li B, Zhao C, Loor JJ, Tan P, Yuan Y, Zeng F, Zhu X, Qi S, Zhao B, Wang J. Effects of perinatal stress on the metabolites and lipids in plasma of dairy goats. STRESS BIOLOGY 2023; 3:11. [PMID: 37676623 PMCID: PMC10441998 DOI: 10.1007/s44154-023-00088-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/13/2023] [Indexed: 09/08/2023]
Abstract
Dairy goats experience metabolic stress during the peripartal period, and their ability to navigate this stage of lactation is related to the occurrence and development of metabolic diseases. Unlike dairy cows, there is a lack of comprehensive analysis of changes in the plasma profiles of peripartal dairy goats, particularly using high-throughput techniques. A subset of 9 clinically-healthy dairy goats were used from a cohort of 96 primiparous Guanzhong dairy goats (BCS, 2.75 ± 0.15). Blood samples were collected at seven time points around parturition (d 21, 14, 7 before parturition, the day of kidding, and d 7, 14, 21 postpartum), were analyzed using untargeted metabolomics and targeted lipidomics. The orthogonal partial least squares discriminant analysis model revealed a total of 31 differential metabolites including p-cresol sulfate, pyruvic acid, cholic acid, and oxoglutaric acid. The pathway enrichment analysis identified phenylalanine metabolism, aminoacyl-tRNA biosynthesis, and citrate cycle as the top three significantly-altered pathways. The Limma package identified a total of 123 differentially expressed lipids. Phosphatidylserine (PS), free fatty acids (FFA), and acylcarnitines (ACs) were significantly increased on the day of kidding, while diacylglycerols (DAG) and triacylglycerols (TAG) decreased. Ceramides (Cer) and lyso-phosphatidylinositols (LPI) were significantly increased during postpartum period, while PS, FFA, and ACs decreased postpartum and gradually returned to antepartum levels. Individual species of FFA and phosphatidylcholines (PC) were segregated based on the differences in the saturation and length of the carbon chain. Overall, this work generated the largest repository of the plasma lipidome and metabolome in dairy goats across the peripartal period, which contributed to our understanding of the multifaceted adaptations of transition dairy goats.
Collapse
Affiliation(s)
- Yan Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yezi Kong
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Bowen Li
- LipidALL Technologies Company Limited, Changzhou, 213022, Jiangsu, China
| | - Chenxu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Juan J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Panpan Tan
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yang Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fangyuan Zeng
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Simeng Qi
- LipidALL Technologies Company Limited, Changzhou, 213022, Jiangsu, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
5
|
Huang Y, Kong Y, Shen B, Li B, Loor JJ, Tan P, Wei B, Mei L, Zhang Z, Zhao C, Zhu X, Qi S, Wang J. Untargeted metabolomics and lipidomics to assess plasma metabolite changes in dairy goats with subclinical hyperketonemia. J Dairy Sci 2023; 106:3692-3705. [PMID: 37028962 DOI: 10.3168/jds.2022-22812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/20/2022] [Indexed: 04/08/2023]
Abstract
Subclinical hyperketonemia (SCHK) is the major metabolic disease observed during the transition period in dairy goats, and is characterized by high plasma levels of nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHB). However, no prior study has comprehensively assessed metabolomic profiles of dairy goats with SCHK. Plasma samples were collected within 1 h after kidding from SCHK goats (BHB concentration >0.8 mM, n = 7) and clinically healthy goats (BHB concentration <0.8 mM, n = 7) with similar body condition score (2.75 ± 0.15, mean ± standard error of the mean) and parity (primiparous). A combination of targeted and untargeted mass spectrometric approaches was employed for analyzing the various changes in the plasma lipidome and metabolome. Statistical analyses were performed using the GraphPad Prism 8.0, SIMCA-P software (version 14.1), and R packages (version 4.1.3). Plasma aminotransferase, nonesterified fatty acids, and BHB concentrations were greater in the SCHK group, but plasma glucose concentrations were lower. A total of 156 metabolites and 466 lipids were identified. The analysis of untargeted metabolomics data by principal component analysis and orthogonal partial least squares discriminant analysis revealed a separation between SCHK and clinically healthy goats. According to the screening criteria (unpaired t-test, P < 0.05), 30 differentially altered metabolites and 115 differentially altered lipids were detected. Pathway enrichment analysis identified citrate cycle, alanine, aspartate and glutamate metabolism, glyoxylate and dicarboxylate metabolism, and phenylalanine metabolism as significantly altered pathways. A greater concentration of plasma isocitric acid and cis-aconitic acid levels was observed in SCHK goats. In addition, AA such as lysine and isoleucine were greater, whereas alanine and phenylacetylglycine were lower in SCHK dairy goats. Dairy goats with SCHK also exhibited greater oleic acid, acylcarnitine, and phosphatidylcholine and lower choline and sphingomyelins. Acylcarnitines, oleic acid, and tridecanoic acid displayed positive correlations with several lipid species. Alanine, hippuric acid, and histidinyl-phenylalanine were negatively correlated with several lipids. Overall, altered metabolites in SCHK dairy goats indicated a more severe degree of negative energy balance. Data also indicated an imbalance in the tricarboxylic acid (TCA) cycle, lipid metabolism, and AA metabolism. The findings provide a more comprehensive understanding of the pathogenesis of SCHK in dairy goats.
Collapse
Affiliation(s)
- Yan Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yezi Kong
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bingyu Shen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bowen Li
- LipidALL Technologies Company Limited, Changzhou, Jiangsu 213022, China
| | - Juan J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Panpan Tan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bo Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Linshan Mei
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zixin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chenxu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Simeng Qi
- LipidALL Technologies Company Limited, Changzhou, Jiangsu 213022, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
6
|
So-In C. Influence of goat management systems on hematological, oxidative stress profiles, and parasitic gastrointestinal infection. Vet World 2023; 16:483-490. [PMID: 37041825 PMCID: PMC10082745 DOI: 10.14202/vetworld.2023.483-490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/18/2023] [Indexed: 03/19/2023] Open
Abstract
Background and Aim: Good management in goats is known for good quality health and increasing productivity. The physiological change studies in goats are limited despite some existing studies on the relationship of various patterns to growth rates. This study aimed to determine the hematological parameters, oxidative stress, and parasitic infection in three management systems in Thai native goats.
Materials and Methods: A total of 18 male goats were randomly assigned to the three systems: The free-range model (FREE), the semi-intensive model (SEMI), and the kept-in-a-cage model (BARN) for 35 days. Blood, fecal sampling, and weight data were collected and monitored every 5 days for analysis.
Results: No statistical differences were found in the FREE and SEMI groups, but significance was observed in the BARN group. The body weight of the goats gradually reduced from 13.0 ± 2.44 kg to 10.18 ± 2.61 kg (mean ± standard deviation). In contrast, the significantly increasing red blood cells, packed-cell volume, white blood cells, neutrophil-to-lymphocyte (N/L) ratio, cortisol hormone, and antioxidation profiles were observed to be higher in BARN than in FREE and SEMI groups. The intensity of the parasite eggs was remarkably significant. It was observed in the BARN group between the beginning and end of the experiment (supported by a high level of eosinophils).
Conclusion: These data can be applied for the realistic evaluation and improvement of management practices, especially fully restrained management (BARN) for monitoring the health status of goats.
Keywords: goat, hematology values, management systems, oxidative stress, parasites.
Collapse
Affiliation(s)
- Charinya So-In
- Department of Veterinary Technology, Faculty of Agricultural Technology, Kalasin University, Kalasin 46000, Thailand
| |
Collapse
|
7
|
Effect of parturition time and climatic conditions on milk productivity, milk quality and udder morphometry in Saanen goats in a semi-intensive system. J DAIRY RES 2022; 89:397-403. [PMID: 36530165 DOI: 10.1017/s0022029922000838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This study is the first report to investigate the relationships between time of parturition and milk productivity and quality, as well as indices related to udder measurements and meteorological variables, in Saanen goats raised under semi-intensive conditions. Goats giving birth in the hours of darkness had higher milk production than those that gave birth in the hours of daylight, while those giving birth during the evening hours had lower somatic cell count (SCC) than those with parturition during the daylight and night hours (P < 0.05). In addition, the time of parturition was associated with rear udder depth, udder circumference, and udder volume traits (P < 0.01). Parity and time of parturition × parity interaction had significant effects on lactation milk yield and lactation length, as well as milk fat, protein, lactose, total solids content and electrical conductivity (P < 0.05 to P < 0.01). The lactation stage, daily milk yield level and parity affected milk SCC (P < 0.05). Ambient temperature and daylight length had strong effects on daily milk yield (P < 0.05). These findings have practical implications for productivity, quality and health promotion efforts aimed at increasing Saanen goat dairy productivity consistently in the face of climatic changes in a semi-intensive system.
Collapse
|
8
|
ALYETHODI RAFEEQUER, SUNDER JAI, KARTHIK S, PERUMAL P, BALA PA, MUNISWAMY K, DE ARUNK, BHATTACHARYA D. Influence of breed, production system and fecundity on serum antioxidant profiles of goats reared in the tropical Island conditions. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2022. [DOI: 10.56093/ijans.v92i10.124993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The present study assessed the physiological antioxidant status of goats reared under the humid tropical island ecosystem of the Andaman and Nicobar Islands (ANI). From 2019 to 2020, 25 multiparous non-pregnant does with three to six kidding records maintained in the organized farm of Central Island Agricultural Institute (CIARI) and farmer’s field flocks from South Andaman district were selected for the study. Antioxidant markers such as total antioxidant capacity (TAC), superoxide dismutase (SOD), TG (Total glutathione) and catalase (CAT) were analyzed in blood serum with respect to rearing systems, breeds and level of fecundity. Correlation analyses of all dependent variables were performed using Pearson’s correlation. The endogenous antioxidant systems, viz. CAT, TG and SOD was non-significant with respect to rearing systems, breeds and fecundity. Similarly, TAC was non-significant among the breeds and with fecundity; however, semi-intensively managed goats showed significantly higher values than goats under the extensive condition. Correlation analysis showed that CAT was positively correlated with SOD and negatively correlated with TAC. TG showed no correlation with any of the studied antioxidants. Regression analysis of CAT as dependent variable and SOD and TAC as independent variables showed significance. It is concluded that values of antioxidant in the study can be considered as a baseline data for the ALG and other goat breeds of Andaman and Nicobar Islands and other islands or topographies with similar ecosystems for further studies.
Collapse
|
9
|
Yu H, Fan M, Chen X, Jiang X, Loor JJ, Aboragah A, Zhang C, Bai H, Fang Z, Shen T, Wang Z, Song Y, Li X, Liu G, Li X, Du X. Activated autophagy-lysosomal pathway in dairy cows with hyperketonemia is associated with lipolysis of adipose tissues. J Dairy Sci 2022; 105:6997-7010. [PMID: 35688731 DOI: 10.3168/jds.2021-21287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/31/2022] [Indexed: 11/19/2022]
Abstract
Activated autophagy-lysosomal pathway (ALP) can degrade virtually all kinds of cellular components, including intracellular lipid droplets, especially during catabolic conditions. Sustained lipolysis and increased plasma fatty acids concentrations are characteristic of dairy cows with hyperketonemia. However, the status of ALP in adipose tissue during this physiological condition is not well known. The present study aimed to ascertain whether lipolysis is associated with activation of ALP in adipose tissues of dairy cows with hyperketonemia and in calf adipocytes. In vivo, blood and subcutaneous adipose tissue (SAT) biopsies were collected from nonhyperketonemic (nonHYK) cows [blood β-hydroxybutyrate (BHB) concentration <1.2 mM, n = 10] and hyperketonemic (HYK) cows (blood BHB concentration 1.2-3.0 mM, n = 10) with similar days in milk (range: 3-9) and parity (range: 2-4). In vitro, calf adipocytes isolated from 5 healthy Holstein calves (1 d old, female, 30-40 kg) were differentiated and used for (1) treatment with lipolysis inducer isoproterenol (ISO, 10 µM, 3 h) or mammalian target of rapamycin inhibitor Torin1 (250 nM, 3 h), and (2) pretreatment with or without the ALP inhibitor leupeptin (10 μg/mL, 4 h) followed by ISO (10 µM, 3 h) treatment. Compared with nonHYK cows, serum concentration of free fatty acids was greater and serum glucose concentration, DMI, and milk yield were lower in HYK cows. In SAT of HYK cows, ratio of phosphorylated hormone-sensitive lipase to hormone-sensitive lipase, and protein abundance of adipose triacylglycerol lipase were greater, but protein abundance of perilipin 1 (PLIN1) and cell death-inducing DNA fragmentation factor-α-like effector c (CIDEC) was lower. In addition, mRNA abundance of autophagy-related 5 (ATG5), autophagy-related 7 (ATG7), and microtubule-associated protein 1 light chain 3 beta (MAP1LC3B), protein abundance of lysosome-associated membrane protein 1, and cathepsin D, and activity of β-N-acetylglucosaminidase were greater, whereas protein abundance of sequestosome-1 (p62) was lower in SAT of HYK cows. In calf adipocytes, treatment with ISO or Torin1 decreased protein abundance of PLIN1, and CIDEC, and triacylglycerol content in calf adipocytes, but increased glycerol content in the supernatant of calf adipocytes. Moreover, the mRNA abundance of ATG5, ATG7, and MAP1LC3B was upregulated, the protein abundance of lysosome-associated membrane protein 1, cathepsin D, and activity of β-N-acetylglucosaminidase were increased, whereas the protein abundance of p62 was decreased in calf adipocytes treated with ISO or Torin1 compared with control group. Compared with treatment with ISO alone, the protein abundance of p62, PLIN1, and CIDEC, and triacylglycerol content in calf adipocytes were higher, but the glycerol content in the supernatant of calf adipocytes was lower in ISO and leupeptin co-treated group. Overall, these data indicated that activated ALP is associated with increased lipolysis in adipose tissues of dairy cows with hyperketonemia and in calf adipocytes.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Minghe Fan
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Xiying Chen
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Xiuhuan Jiang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Ahmad Aboragah
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Cai Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Hongxu Bai
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Zhiyuan Fang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Taiyu Shen
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Zhe Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Yuxiang Song
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Xinwei Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Guowen Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Xiaobing Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Xiliang Du
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China.
| |
Collapse
|
10
|
Mandour AS, Samir H, El-Beltagy MA, Hamabe L, Abdelmageed HA, Watanabe I, Elfadadny A, Shimada K, El-Masry G, Al-Rejaie S, Tanaka R, Watanabe G. Monthly Dynamics of Plasma Elements, Hematology, Oxidative Stress Markers, and Hormonal Concentrations in Growing Male Shiba Goats ( Capra hircus) Reared in Tokyo-Japan. Animals (Basel) 2022; 12:ani12050645. [PMID: 35268214 PMCID: PMC8909858 DOI: 10.3390/ani12050645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 12/16/2022] Open
Abstract
Simple Summary During the first stage of an animal’s life, various physiological alterations with the concomitant development of different body organs occur. This period is also accompanied by different kinds of stressors, including, but not limited to, the stress of weaning, metabolic change, and peri-puberty changes in reproductive functions. Shiba goats, the main goat breed in Japan, are not commonly used as food animals. However, male Shiba goats largely contribute to reproductive and cardiology research activities, as well as being used for educational purposes for elementary school children. The physiological data regarding laboratory measurements in Shiba goats are lacking, especially at a young age. In this study, we investigated the age-related changes in hematology, plasma mineral concentrations, hormones, and oxidative stress markers during the first five months (neonatal and peri-puberty age) in male Shiba goats. Abstract From a clinical point of view, the establishment of laboratory variables during the first few months of an animal’s life helps clinicians to make sure they base their medical decisions on laboratory values for the specific breed and age group. The present study aimed to investigate the monthly dynamics in some plasma elements, hematology, reproductive hormones, and oxidative stress marker profiles during the first five months of age (neonatal and peri-puberty stage) in male Shiba goat’s kids. Sixteen kids were investigated from the first to the fifth month (M1 to M5), and the data were presented as the statistical difference between them. Whole blood and plasma samples were collected monthly for analysis of basal hematology, plasma elements concentration (trace elements: Cu, Zn, Se, Fe, and Cr; macroelements: Ca and Mg), circulating hormones (cortisol, FSH, LH, IGF1, immunoreactive inhibin, testosterone, T3, and T4), and oxidative stress markers (MDA, CAT, SOD, and GPX). The results showed age-related changes in the observed parameters. The fifth month recorded the lowest level of almost all investigated minerals, except for Cr. Plasma hormone levels revealed age-dependent increases in IGF-1 and testosterone, age-related decreases in T3 and T4, and non-significant changes in cortisol and FSH. Besides, the concentrations of inhibin and LH were significantly higher at M1–M3 compared with M4–M5. Plasma SOD, GPX, and CAT were increased with age. In conclusion, age-related changes and a distinction of age in months was found necessary to interpret the laboratory results, specifically in terms of age in months and the peri-puberty stage in young goats, which are important to follow up the age-specific diseases, reproductive status, and treatment follow-ups in this stage.
Collapse
Affiliation(s)
- Ahmed S. Mandour
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-0054, Japan; (L.H.); (K.S.); (R.T.)
- Correspondence:
| | - Haney Samir
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo 183-0054, Japan;
| | - Marwa A. El-Beltagy
- Department of Biochemistry, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Lina Hamabe
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-0054, Japan; (L.H.); (K.S.); (R.T.)
| | - Hend A. Abdelmageed
- Department of Bacteriology, Animal Health Research Institute, Agriculture Research Center, Ismailia Laboratory, First District, Ismailia 41511, Egypt;
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Izumi Watanabe
- Laboratory of Environmental Toxicology, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
| | - Ahmed Elfadadny
- Department of Animal Internal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Kazumi Shimada
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-0054, Japan; (L.H.); (K.S.); (R.T.)
| | - Gamal El-Masry
- Agricultural Engineering Department, Faculty of Agriculture, Suez Canal University, Ismailia 21522, Egypt;
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11564, Saudi Arabia;
| | - Salim Al-Rejaie
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11564, Saudi Arabia;
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-0054, Japan; (L.H.); (K.S.); (R.T.)
| | - Gen Watanabe
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo 183-0054, Japan;
| |
Collapse
|
11
|
Yu H, Gao X, Loor JJ, Jiang Q, Fang Z, Hao X, Shi Z, Fan M, Chen M, Li X, Liu G, Wang Z, Li X, Du X. Activation of Transcription Factor EB Is Associated With Adipose Tissue Lipolysis in Dairy Cows With Subclinical Ketosis. Front Vet Sci 2022; 9:816064. [PMID: 35211541 PMCID: PMC8861084 DOI: 10.3389/fvets.2022.816064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022] Open
Abstract
Excessive lipid mobilization for adipose tissue caused by severe negative energy balance is the pathological basis for subclinical ketosis (SCK) in dairy cows. In non-ruminants, transcription factor EB (TFEB) was reported to play a role in the regulation of lipid catabolism, but its role in the control of lipolysis in the bovine is unknown. The present study aimed to determine whether the enhanced TFEB transcriptional activity contributes to lipolysis of adipose tissue in SCK cows, and to explore the possibility of establishing a therapeutic strategy by using TFEB as a target to control lipolysis. Thirty cows with similar lactation number (median = 3, range = 2–4) and days in milk (median = 6 d, range = 3–9) were selected into a healthy control (n = 15) and SCK (n = 15) group, and used for subcutaneous adipose tissue biopsies and blood sampling. Adipocytes from healthy Holstein calves were used as a model for in vitro studies involving treatment with 10 μM isoproterenol (ISO) for 0, 1, 2 and 3 h, 250 nM of the TFEB activator Torin1 for 3 h, or used for transfection with TFEB small interfering RNA for 48 h followed by treatment with 10 μM ISO for 3 h. Compared with healthy cows, adipose tissue in SCK cows showed increased lipolysis accompanied by enhanced TFEB transcriptional activity. In vitro, ISO and Torin1 treatment increased lipolysis and enhanced TFEB transcriptional activity in calf adipocytes. However, knockdown of TFEB attenuated ISO-induced lipolysis in adipocytes. Overall, these findings indicated that enhanced transcriptional activity of TFEB may contribute to lipolysis of adipose tissue in dairy cows with SCK. The regulation of TFEB activity may be an effective therapeutic strategy for controlling overt lipolysis in ketotic cows.
Collapse
Affiliation(s)
- Hao Yu
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Xinxing Gao
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Juan J. Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Zhiyuan Fang
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Xue Hao
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Zhen Shi
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Minghe Fan
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Meng Chen
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Xinwei Li
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Guowen Liu
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Zhe Wang
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Xiaobing Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
- *Correspondence: Xiaobing Li
| | - Xiliang Du
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
- Xiliang Du
| |
Collapse
|
12
|
Changes in Acute-Phase Proteins in Plasma during the Periparturient Period of Dairy Goats. Vet Sci 2021; 8:vetsci8120311. [PMID: 34941838 PMCID: PMC8707259 DOI: 10.3390/vetsci8120311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022] Open
Abstract
The present study was conducted regarding four acute-phase proteins (APPs) including C-reactive protein (CRP), ceruloplasmin (CP), serum amyloid A (SAA), and haptoglobin (HP) in dairy goats during the periparturient period. The aim of this study was to detect the changes in APPs in plasma during the periparturient period of healthy dairy goats. Guanzhong dairy goats with no other symptoms (n = 15) were selected on the basis of their blood calcium (Ca) and β-hydroxybutyrate (BHBA) concentration. The plasma was collected once a week for ±3 weeks delivery. The concentrations of the four APPs mentioned above were determined using goat-specific ELISA kits. The results showed the CRP level in plasma decreased from 3 weeks to 1 week antepartum and increased later until 1 week postpartum and then decreased to a similar level with antepartum between 1 and 3 weeks postpartum. The content of CP showed a decline in 3 weeks before parturition and an upward trend between 1 week antepartum and 3 weeks postpartum. The SAA concentration decreased from 3 weeks antepartum to 2 weeks postpartum and rebounded later. The level of HP decreased during 3 weeks before parturition and increased until 1 week postpartum, then reached a stable value. Clear variation range and rules of APPs contribute to perinatal health monitoring of dairy goats.
Collapse
|
13
|
NEFA Promotes Autophagosome Formation through Modulating PERK Signaling Pathway in Bovine Hepatocytes. Animals (Basel) 2021; 11:ani11123400. [PMID: 34944177 PMCID: PMC8697899 DOI: 10.3390/ani11123400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022] Open
Abstract
During the perinatal period, the abnormally high plasma non-esterified fatty acids (NEFA) concentration caused by the negative energy balance (NEB) can impose a significant metabolic stress on the liver of dairy cows. Endoplasmic reticulum (ER) stress is an important adaptive response that can serve to maintain cell homeostasis in the event of stress. The protein kinase R-like endoplasmic reticulum kinase (PERK) pathway is the most rapidly activated cascade when ER stress occurs in cells and has an important impact on the regulation of hepatic lipid metabolism and autophagy modulation. However, it is unknown whether NEFA can affect autophagy through modulating the PERK pathway, under NEB conditions. In this study, we provide evidence that NEFA treatment markedly increased lipid accumulation, the phosphorylation level of PERK and eukaryotic initiation factor 2α (eIF2α), and the expression of glucose-regulated protein 78 (Grp78), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP). More importantly, NEFA treatment can cause a substantial increase in the protein levels of autophagy-related gene 7 (ATG7), Beclin-1 (BECN1), sequestosome-1 (p62), and microtubule-associated protein 1 light chain 3 (LC3)-II, and in the number of autophagosomes in primary bovine hepatocytes. The addition of GSK2656157 (PERK phosphorylation inhibitor) can significantly inhibit the effect of NEFA on autophagy and can further increase lipid accumulation. Overall, our results indicate that NEFA could promote autophagy via the PERK pathway in bovine hepatocytes. These findings provide novel evidence about the potential role of the PERK signaling pathway in maintaining bovine hepatocyte homeostasis.
Collapse
|