1
|
Schmitz SS. Evidence-based use of biotics in the management of gastrointestinal disorders in dogs and cats. Vet Rec 2024; 195:26-32. [PMID: 39545596 DOI: 10.1002/vetr.4916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The gut microbiome plays a vital role in the overall health of dogs and cats, particularly their gastrointestinal (GI) health. Imbalances in the gut microbiome, termed dysbiosis, are associated with a range of GI disorders, including diarrhoea and chronic enteropathy. Emerging evidence tentatively supports the therapeutic use of pre-, pro- and postbiotics (collectively called biotics) to restore gut homeostasis and manage these conditions, especially due to their potential antibiotic-sparing effects. This article explores their evidence-based use in the treatment of GI disorders in dogs and cats.
Collapse
|
2
|
McGrath AP, Motsinger LA, Brejda J, Hancock L. Prebiotic fiber blend supports growth and development and favorable digestive health in puppies. Front Vet Sci 2024; 11:1409394. [PMID: 38872806 PMCID: PMC11173085 DOI: 10.3389/fvets.2024.1409394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction A healthy gastrointestinal (GI) microbiome has been shown to be essential for proper nutrient absorption and metabolism, maintenance of intestinal epithelial integrity and osmolarity, gut immunomodulation, and overall health. One of the most effective ways to promote a healthy GI microbiome is through dietary interventions, such as the addition of prebiotics. Prebiotics are substrates that are selectively utilized by the host GI microbiome through fermentation to confer a health benefit. However, research on prebiotics in companion animals is limited, especially in growing animals. Thus, this study was conducted to assess the effects of a novel prebiotic fiber blend on key parameters related to intestinal health and growth in puppies. Methods Twenty-two puppies at least 4 months of age but not older than 10 months were fed a commercially available dry food during a prefeed period, and then fed a similarly formulated test food with the addition of the prebiotic fiber blend for a minimum of 90 days. Serum and fecal samples were collected at the end of the prefeed period and throughout the test period. Results Puppies fed the test food grew as expected for puppies of this age. Complete blood count and serum chemistry analyses were clinically normal for all animals. Fecal score increased linearly, fecal moisture decreased linearly, and pH exhibited a cubic trend throughout the study duration. There was a linear increase in short-chain fatty acids throughout the study, which is associated with favorable digestive and overall health. The inflammatory cytokine interleukin-7 decreased linearly and interleukin-18 trended towards linear decrease. Conclusion This study showed that puppies continued to grow and develop normally, and experienced serum and stool characteristics indicative of improved GI health when fed a growth food fortified with a novel prebiotic fiber blend. Furthermore, these results contribute to the overall understanding of the effects of prebiotics on the GI health of growing companion animals.
Collapse
Affiliation(s)
| | | | - John Brejda
- Alpha Statistical Consulting, Lincoln, NE, United States
| | | |
Collapse
|
3
|
Salavati Schmitz S, Salgado JPA, Glendinning L. Microbiota of healthy dogs demonstrate a significant decrease in richness and changes in specific bacterial groups in response to supplementation with resistant starch, but not psyllium or methylcellulose, in a randomized cross-over trial. Access Microbiol 2024; 6:000774.v4. [PMID: 38868374 PMCID: PMC11165627 DOI: 10.1099/acmi.0.000774.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/20/2024] [Indexed: 06/14/2024] Open
Abstract
Even though dietary fibres are often used as prebiotic supplements in dogs, the effect of individual types of fibres on canine microbiota composition is unknown. The objective of this study was to assess changes in faecal microbiota richness, diversity and taxonomic abundance with three different fibre supplements in dogs. These were psyllium husk, resistant starch from banana flour and methylcellulose. They were administered to 17 healthy dogs in a cross-over trial after transition to the same complete feed. Faecal scores and clinical activity indices were recorded, and faecal samples were collected before and at the end of supplementation, as well as 2 weeks after each supplement (washout). Illumina NovaSeq paired-end 16S rRNA gene sequencing was performed on all samples. After quality control and chimera removal, alpha diversity indices were calculated with QIIME. Differences in specific taxa between groups were identified using Metastats. Methylcellulose significantly increased faecal scores but had no effect on microbiota. Psyllium resulted in minor changes in the abundance of specific taxa, but with questionable biological significance. Resistant starch reduced microbiota richness and resulted in the most abundant changes in taxa, mostly a reduction in short-chain fatty acid-producing genera of the phylum Bacillota, with an increase in genera within the Bacteroidota, Pseudomonadota, Actinomycetota and Saccharibacteria. In conclusion, while psyllium and methylcellulose led to few changes in the microbiota composition, the taxonomic changes seen with resistant starch may indicate a less favourable composition. Based on this, the type of resistant starch used here cannot be recommended as a prebiotic in dogs.
Collapse
Affiliation(s)
- Silke Salavati Schmitz
- Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, College of Medicine and Veterinary Medicine,, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Jorge Perez-Accino Salgado
- Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, College of Medicine and Veterinary Medicine,, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Laura Glendinning
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| |
Collapse
|
4
|
Ing NH, Steiner JM. The Use of Diets in the Diagnosis and Treatment of Common Gastrointestinal Diseases in Dogs and Cats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1446:39-53. [PMID: 38625524 DOI: 10.1007/978-3-031-54192-6_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The nutritional health of dogs and cats is important to pet owners around the world. Nutrition is inextricably linked to the health of the gastrointestinal system and vice versa. Gastrointestinal signs, such as vomiting, diarrhea, anorexia, or weight loss, are one of the most common reasons that dog and cat owners make non-routine appointments with veterinarians. Those patients are evaluated systematically to identify and/or rule out the causes of the symptoms. Some causes of chronic diarrhea are within the gastrointestinal tract while others are secondary to pathogenic factors outside the digestive system. Some useful biomarkers of chronic intestinal disease (enteropathy) exist in serum and feces. After determination that the clinical signs are due to primary gastrointestinal disease and that there is no parasitism, specific diets are used for at least two weeks. There are several types of diets for pets with chronic enteropathies. There are limited ingredient diets and hydrolyzed protein diets with reduced levels of allergens. There are also highly digestible and fiber-enhanced diets. Some diets contain probiotics and/or prebiotics. If symptoms do not improve and the patient is stable, a diet from a different class may be tried. For chronic enteropathies, the prognosis is generally good for symptom resolution or at least improvement. However, if interventions with novel diets do not ameliorate the symptoms of chronic enteropathy, then antibiotic, anti-inflammatory, or immunosuppressant therapy or further, more invasive diagnostics such as taking an intestinal biopsy, may be indicated. Pancreatitis is a common gastrointestinal disease in dogs and cats and patients may present with mild to severe disease. Many patients with mild to moderate disease can be successfully treated with early supportive care, including feeding a low-fat diet. A novel pharmaceutical, fuzapladib (Panoquell-CA1) looks very promising for treating more severe forms of acute pancreatitis in dogs. Maintenance on a low-fat diet may prevent pancreatitis in at-risk dogs. Future advances in medicine will allow pet owners and veterinarians to use dietary management to maximize the health of their dogs and cats.
Collapse
Affiliation(s)
- Nancy H Ing
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| | - Joerg M Steiner
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
5
|
Menard J, Bagheri S, Menon S, Yu YT, Goodman LB. Noninvasive sampling of the small intestinal chyme for microbiome, metabolome and antimicrobial resistance genes in dogs, a proof of concept. Anim Microbiome 2023; 5:64. [PMID: 38104116 PMCID: PMC10725013 DOI: 10.1186/s42523-023-00286-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND The gastrointestinal microbiome and metabolome vary greatly throughout the different segments of the gastrointestinal tract, however current knowledge of gastrointestinal microbiome and metabolome in health and disease is limited to fecal samples due to ease of sampling. The engineered Small Intestinal MicroBiome Aspiration (SIMBA™) capsule allows specific sampling of the small intestine in humans. We aimed to determine whether administration of SIMBA™ capsules to healthy beagle dogs could reliably and safely sample the small intestinal microbiome and metabolome when compared to their fecal microbiome and metabolome. RESULTS Eleven beagle dogs were used for the study. Median transit time of capsules was 29.93 h (range: 23.83-77.88). Alpha diversity, as measured by the Simpson diversity, was significantly different (P = 0.048). Shannon diversity was not different (P = 0.114). Beta diversity results showed a significant difference between capsule and fecal samples regarding Bray-Curtis, weighted and unweighted unifrac (P = 0.002) and ANOSIM distance metric s (R = 0.59, P = 0.002). In addition to observing a statistically significant difference in the microbial composition of capsules and feces, distinct variation in the metabolite profiles was seen between the sample types. Heat map analysis showed 16 compounds that were significantly different between the 2 sampling modes (adj-P value ranged between 0.004 and 0.036) with 10 metabolites more abundant in the capsule than in the feces and 6 metabolites more abundant in the feces compared to the capsules. CONCLUSIONS The engineered Small Intestinal MicroBiome Aspiration (SIMBA™) capsule was easy and safe to administer to dogs. Microbiome and metabolome analysis from the capsule samples were significantly different than that of the fecal samples and were like previously published small intestinal microbiome and metabolome composition.
Collapse
Affiliation(s)
- Julie Menard
- Department of Veterinary Diagnostic and Clinical Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| | - Sahar Bagheri
- International Microbiome Center, Snyder Institute for Chronic Diseases, Cummings School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Y Tina Yu
- Baker Institute for Animal Health and Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Laura B Goodman
- Baker Institute for Animal Health and Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
6
|
Liang J, Cai W, Xu Z, Zhou G, Li J, Xiang Z. A Fine-Grained Image Classification Approach for Dog Feces Using MC-SCMNet under Complex Backgrounds. Animals (Basel) 2023; 13:ani13101660. [PMID: 37238089 DOI: 10.3390/ani13101660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
In a natural environment, factors such as weathering and sun exposure will degrade the characteristics of dog feces; disturbances such as decaying wood and dirt are likely to make false detections; the recognition distinctions between different kinds of feces are slight. To address these issues, this paper proposes a fine-grained image classification approach for dog feces using MC-SCMNet under complex backgrounds. First, a multi-scale attention down-sampling module (MADM) is proposed. It carefully retrieves tiny feces feature information. Second, a coordinate location attention mechanism (CLAM) is proposed. It inhibits the entry of disturbance information into the network's feature layer. Then, an SCM-Block containing MADM and CLAM is proposed. We utilized the block to construct a new backbone network to increase the efficiency of fecal feature fusion in dogs. Throughout the network, we decrease the number of parameters using depthwise separable convolution (DSC). In conclusion, MC-SCMNet outperforms all other models in terms of accuracy. On our self-built DFML dataset, it achieves an average identification accuracy of 88.27% and an F1 value of 88.91%. The results of the experiments demonstrate that it is more appropriate for dog fecal identification and maintains stable results even in complex backgrounds, which may be applied to dog gastrointestinal health checks.
Collapse
Affiliation(s)
- Jinyu Liang
- College of Computer & Information Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Weiwei Cai
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China
| | - Zhuonong Xu
- College of Computer & Information Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Guoxiong Zhou
- College of Computer & Information Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Johnny Li
- Department of Soil and Water Systems, University of Idaho, Moscow, ID 83844, USA
| | - Zuofu Xiang
- Institute of Evolutionary Ecology and Conservation Biology, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
7
|
Fritsch DA, Jackson MI, Wernimont SM, Feld GK, Badri DV, Brejda JJ, Cochrane CY, Gross KL. Adding a polyphenol-rich fiber bundle to food impacts the gastrointestinal microbiome and metabolome in dogs. Front Vet Sci 2023; 9:1039032. [PMID: 36744230 PMCID: PMC9896628 DOI: 10.3389/fvets.2022.1039032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/09/2022] [Indexed: 01/21/2023] Open
Abstract
Introduction Pet foods fortified with fermentable fibers are often indicated for dogs with gastrointestinal conditions to improve gut health through the production of beneficial post-biotics by the pet's microbiome. Methods To evaluate the therapeutic underpinnings of pre-biotic fiber enrichment, we compared the fecal microbiome, the fecal metabolome, and the serum metabolome of 39 adult dogs with well-managed chronic gastroenteritis/enteritis (CGE) and healthy matched controls. The foods tested included a test food (TF1) containing a novel pre-biotic fiber bundle, a control food (CF) lacking the fiber bundle, and a commercially available therapeutic food (TF2) indicated for managing fiber-responsive conditions. In this crossover study, all dogs consumed CF for a 4-week wash-in period, were randomized to either TF1 or TF2 and fed for 4 weeks, were fed CF for a 4-week washout period, and then received the other test food for 4 weeks. Results Meaningful differences were not observed between the healthy and CGE dogs in response to the pre-biotic fiber bundle relative to CF. Both TF1 and TF2 improved stool scores compared to CF. TF1-fed dogs showed reduced body weight and fecal ash content compared to either CF or TF2, while stools of TF2-fed dogs showed higher pH and lower moisture content vs. TF1. TF1 consumption also resulted in unique fecal and systemic metabolic signatures compared to CF and TF2. TF1-fed dogs showed suppressed signals of fecal bacterial putrefactive metabolism compared to either CF or TF2 and increased saccharolytic signatures compared to TF2. A functional analysis of fecal tryptophan metabolism indicated reductions in fecal kynurenine and indole pathway metabolites with TF1. Among the three foods, TF1 uniquely increased fecal polyphenols and the resulting post-biotics. Compared to CF, consumption of TF1 largely reduced fecal levels of endocannabinoid-like metabolites and sphingolipids while increasing both fecal and circulating polyunsaturated fatty acid profiles, suggesting that TF1 may have modulated gastrointestinal inflammation and motility. Stools of TF1-fed dogs showed reductions in phospholipid profiles, suggesting fiber-dependent changes to colonic mucosal structure. Discussion These findings indicate that the use of a specific pre-biotic fiber bundle may be beneficial in healthy dogs and in dogs with CGE.
Collapse
Affiliation(s)
| | - Matthew I. Jackson
- Hill's Pet Nutrition, Inc., Topeka, KS, United States,*Correspondence: Matthew I. Jackson ✉
| | | | | | | | - John J. Brejda
- Alpha Statistical Consulting Inc., Lincoln, NE, United States
| | | | | |
Collapse
|
8
|
Moreno AA, Parker VJ, Winston JA, Rudinsky AJ. Dietary fiber aids in the management of canine and feline gastrointestinal disease. J Am Vet Med Assoc 2022; 260:S33-S45. [DOI: 10.2460/javma.22.08.0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Dietary fiber describes a diverse assortment of nondigestible carbohydrates that play a vital role in the health of animals and maintenance of gastrointestinal tract homeostasis. The main roles dietary fiber play in the gastrointestinal tract include physically altering the digesta, modulating appetite and satiety, regulating digestion, and acting as a microbial energy source through fermentation. These functions can have widespread systemic effects. Fiber is a vital component of nearly all commercial canine and feline diets. Key features of fiber types, such as fermentability, solubility, and viscosity, have been shown to have clinical implications as well as health benefits in dogs and cats. Practitioners should know how to evaluate a diet for fiber content and the current knowledge on fiber supplementation as it relates to common enteropathies including acute diarrhea, chronic diarrhea, constipation, and hairball management. Understanding the fundamentals of dietary fiber allows the practicing clinician to use fiber optimally as a management modality.
Collapse
Affiliation(s)
- Adam A. Moreno
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
- The Comparative Hepatobiliary and Intestinal Research Program, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Valerie J. Parker
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
- The Comparative Hepatobiliary and Intestinal Research Program, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Jenessa A. Winston
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
- The Comparative Hepatobiliary and Intestinal Research Program, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Adam J. Rudinsky
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
- The Comparative Hepatobiliary and Intestinal Research Program, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|