1
|
Micheletti S, Schlauch D, Quackenbush J, Ben Guebila M. Higher-order correction of persistent batch effects in correlation networks. Bioinformatics 2024; 40:btae531. [PMID: 39226186 PMCID: PMC11441315 DOI: 10.1093/bioinformatics/btae531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/06/2024] [Accepted: 09/01/2024] [Indexed: 09/05/2024] Open
Abstract
MOTIVATION Systems biology analyses often use correlations in gene expression profiles to infer co-expression networks that are then used as input for gene regulatory network inference or to identify functional modules of co-expressed or putatively co-regulated genes. While systematic biases, including batch effects, are known to induce spurious associations and confound differential gene expression analyses (DE), the impact of batch effects on gene co-expression has not been fully explored. Methods have been developed to adjust expression values, ensuring conditional independence of mean and variance from batch or other covariates for each gene, resulting in improved fidelity of DE analysis. However, such adjustments do not address the potential for spurious differential co-expression (DC) between groups. Consequently, uncorrected, artifactual DC can skew the correlation structure, leading to the identification of false, non-biological associations, even when the input data are corrected using standard batch correction. RESULTS In this work, we demonstrate the persistence of confounders in covariance after standard batch correction using synthetic and real-world gene expression data examples. We then introduce Co-expression Batch Reduction Adjustment (COBRA), a method for computing a batch-corrected gene co-expression matrix based on estimating a conditional covariance matrix. COBRA estimates a reduced set of parameters expressing the co-expression matrix as a function of the sample covariates, allowing control for continuous and categorical covariates. COBRA is computationally efficient, leveraging the inherently modular structure of genomic data to estimate accurate gene regulatory associations and facilitate functional analysis for high-dimensional genomic data. AVAILABILITY AND IMPLEMENTATION COBRA is available under the GLP3 open source license in R and Python in netZoo (https://netzoo.github.io).
Collapse
Affiliation(s)
- Soel Micheletti
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| | - Daniel Schlauch
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, United States
- Genospace, LLC, Boston, MA 02108, United States
| | - John Quackenbush
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, United States
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, United States
| | - Marouen Ben Guebila
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| |
Collapse
|
2
|
Sarmah D, Meredith WO, Weber IK, Price MR, Birtwistle MR. Predicting anti-cancer drug combination responses with a temporal cell state network model. PLoS Comput Biol 2023; 19:e1011082. [PMID: 37126527 PMCID: PMC10174488 DOI: 10.1371/journal.pcbi.1011082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 05/11/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
Cancer chemotherapy combines multiple drugs, but predicting the effects of drug combinations on cancer cell proliferation remains challenging, even for simple in vitro systems. We hypothesized that by combining knowledge of single drug dose responses and cell state transition network dynamics, we could predict how a population of cancer cells will respond to drug combinations. We tested this hypothesis here using three targeted inhibitors of different cell cycle states in two different cell lines in vitro. We formulated a Markov model to capture temporal cell state transitions between different cell cycle phases, with single drug data constraining how drug doses affect transition rates. This model was able to predict the landscape of all three different pairwise drug combinations across all dose ranges for both cell lines with no additional data. While further application to different cell lines, more drugs, additional cell state networks, and more complex co-culture or in vivo systems remain, this work demonstrates how currently available or attainable information could be sufficient for prediction of drug combination response for single cell lines in vitro.
Collapse
Affiliation(s)
- Deepraj Sarmah
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina, United States of America
| | - Wesley O. Meredith
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina, United States of America
| | - Ian K. Weber
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina, United States of America
- The University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Madison R. Price
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina, United States of America
- College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Marc R. Birtwistle
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina, United States of America
- Department of Bioengineering, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
3
|
Ben Guebila M, Wang T, Lopes-Ramos CM, Fanfani V, Weighill D, Burkholz R, Schlauch D, Paulson JN, Altenbuchinger M, Shutta KH, Sonawane AR, Lim J, Calderer G, van IJzendoorn DGP, Morgan D, Marin A, Chen CY, Song Q, Saha E, DeMeo DL, Padi M, Platig J, Kuijjer ML, Glass K, Quackenbush J. The Network Zoo: a multilingual package for the inference and analysis of gene regulatory networks. Genome Biol 2023; 24:45. [PMID: 36894939 PMCID: PMC9999668 DOI: 10.1186/s13059-023-02877-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 02/15/2023] [Indexed: 03/11/2023] Open
Abstract
Inference and analysis of gene regulatory networks (GRNs) require software that integrates multi-omic data from various sources. The Network Zoo (netZoo; netzoo.github.io) is a collection of open-source methods to infer GRNs, conduct differential network analyses, estimate community structure, and explore the transitions between biological states. The netZoo builds on our ongoing development of network methods, harmonizing the implementations in various computing languages and between methods to allow better integration of these tools into analytical pipelines. We demonstrate the utility using multi-omic data from the Cancer Cell Line Encyclopedia. We will continue to expand the netZoo to incorporate additional methods.
Collapse
Affiliation(s)
- Marouen Ben Guebila
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tian Wang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Present Address: Biology Department, Boston College, Chestnut Hill, MA, USA
| | - Camila M Lopes-Ramos
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Viola Fanfani
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Des Weighill
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Present Address: Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rebekka Burkholz
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Present Address: CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
| | - Daniel Schlauch
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Present Address: Genospace, LLC, Boston, MA, USA
| | - Joseph N Paulson
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Michael Altenbuchinger
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Present Address: Department of Medical Bioinformatics, University Medical Center Göttingen, Göttingen, Germany
| | - Katherine H Shutta
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Abhijeet R Sonawane
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Present Address: Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - James Lim
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
- Present Address: Monoceros Biosystems, LLC, San Diego, CA, USA
| | - Genis Calderer
- Center for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - David G P van IJzendoorn
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Present Address: Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Daniel Morgan
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Present Address: School of Biomedical Sciences, Hong Kong University, Pokfulam, Hong Kong
| | | | - Cho-Yi Chen
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Present Address: Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Qi Song
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Present Address: Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Enakshi Saha
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Megha Padi
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - John Platig
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Marieke L Kuijjer
- Center for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Center for Computational Oncology, Leiden University, Leiden, The Netherlands
| | - Kimberly Glass
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - John Quackenbush
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
4
|
Boe RH, Ayyappan V, Schuh L, Raj A. Allelic correlation is a marker of trade-offs between barriers to transmission of expression variability and signal responsiveness in genetic networks. Cell Syst 2022; 13:1016-1032.e6. [PMID: 36450286 PMCID: PMC9811561 DOI: 10.1016/j.cels.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/28/2022] [Accepted: 10/28/2022] [Indexed: 12/03/2022]
Abstract
Genetic networks should respond to signals but prevent the transmission of spontaneous fluctuations. Limited data from mammalian cells suggest that noise transmission is uncommon, but systematic claims about noise transmission have been limited by the inability to directly measure it. Here, we build a mathematical framework modeling allelic correlation and noise transmission, showing that allelic correlation and noise transmission correspond across model parameters and network architectures. Limiting noise transmission comes with the trade-off of being unresponsive to signals, and within responsive regimes, there is a further trade-off between response time and basal noise transmission. Analysis of allele-specific single-cell RNA-sequencing data revealed that genes encoding upstream factors in signaling pathways and cell-type-specific factors have higher allelic correlation than downstream factors, suggesting they are more subject to regulation. Overall, our findings suggest that some noise transmission must result from signal responsiveness, but it can be minimized by trading off for a slower response. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Ryan H Boe
- Genetics and Epigenetics, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vinay Ayyappan
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Lea Schuh
- Institute of AI for Health, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; Department of Mathematics, Technical University of Munich, Garching 85748, Germany
| | - Arjun Raj
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Ascoli C, Schott CA, Huang Y, Turturice BA, Wang W, Ecanow N, Sweiss NJ, Perkins DL, Finn PW. Altered transcription factor targeting is associated with differential peripheral blood mononuclear cell proportions in sarcoidosis. Front Immunol 2022; 13:848759. [PMID: 36311769 PMCID: PMC9608777 DOI: 10.3389/fimmu.2022.848759] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionIn sarcoidosis, peripheral lymphopenia and anergy have been associated with increased inflammation and maladaptive immune activity, likely promoting development of chronic and progressive disease. However, the molecular mechanisms that lead to reduced lymphocyte proportions, particularly CD4+ T-cells, have not been fully elucidated. We posit that paradoxical peripheral lymphopenia is characterized by a dysregulated transcriptomic network associated with cell function and fate that results from altered transcription factor targeting activity.MethodsMessenger RNA-sequencing (mRNA-seq) was performed on peripheral blood mononuclear cells (PBMCs) from ACCESS study subjects with sarcoidosis and matched controls and findings validated on a sarcoidosis case-control cohort and a sarcoidosis case series. Preserved PBMC transcriptomic networks between case-control cohorts were assessed to establish cellular associations with gene modules and define regulatory targeting involved in sarcoidosis immune dysregulation utilizing weighted gene co-expression network analysis and differential transcription factor involvement analysis. Network centrality measures identified master transcriptional regulators of subnetworks related to cell proliferation and death. Predictive models of differential PBMC proportions constructed from ACCESS target gene expression corroborated the relationship between aberrant transcription factor regulatory activity and imputed and clinical PBMC populations in the validation cohorts.ResultsWe identified two unique and preserved gene modules significantly associated with sarcoidosis immune dysregulation. Strikingly, increased expression of a monocyte-driven, and not a lymphocyte-driven, gene module related to innate immunity and cell death was the best predictor of peripheral CD4+ T-cell proportions. Within the gene network of this monocyte-driven module, TLE3 and CBX8 were determined to be master regulators of the cell death subnetwork. A core gene signature of differentially over-expressed target genes of TLE3 and CBX8 involved in cellular communication and immune response regulation accurately predicted imputed and clinical monocyte expansion and CD4+ T-cell depletion.ConclusionsAltered transcriptional regulation associated with aberrant gene expression of a monocyte-driven transcriptional network likely influences lymphocyte function and survival. Although further investigation is warranted, this indicates that crosstalk between hyperactive monocytes and lymphocytes may instigate peripheral lymphopenia and underlie sarcoidosis immune dysregulation and pathogenesis. Future therapies selectively targeting master regulators, or their targets, may mitigate dysregulated immune processes in sarcoidosis and disease progression.
Collapse
Affiliation(s)
- Christian Ascoli
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Cody A. Schott
- University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| | - Yue Huang
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | | | - Wangfei Wang
- Department of Bioengineering, University of Illinois at Chicago College of Engineering and Medicine, Chicago, IL, United States
| | - Naomi Ecanow
- University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| | - Nadera J. Sweiss
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - David L. Perkins
- Division of Nephrology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Patricia W. Finn
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- *Correspondence: Patricia W. Finn,
| |
Collapse
|
6
|
Jo K, Santos-Buitrago B, Kim M, Rhee S, Talcott C, Kim S. Logic-based analysis of gene expression data predicts association between TNF, TGFB1 and EGF pathways in basal-like breast cancer. Methods 2020; 179:89-100. [PMID: 32445696 DOI: 10.1016/j.ymeth.2020.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/30/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022] Open
Abstract
For breast cancer, clinically important subtypes are well characterized at the molecular level in terms of gene expression profiles. In addition, signaling pathways in breast cancer have been extensively studied as therapeutic targets due to their roles in tumor growth and metastasis. However, it is challenging to put signaling pathways and gene expression profiles together to characterize biological mechanisms of breast cancer subtypes since many signaling events result from post-translational modifications, rather than gene expression differences. We designed a logic-based computational framework to explain the differences in gene expression profiles among breast cancer subtypes using Pathway Logic and transcriptional network information. Pathway Logic is a rewriting-logic-based formal system for modeling biological pathways including post-translational modifications. Our method demonstrated its utility by constructing subtype-specific path from key receptors (TNFR, TGFBR1 and EGFR) to key transcription factor (TF) regulators (RELA, ATF2, SMAD3 and ELK1) and identifying potential association between pathways via TFs in basal-specific paths, which could provide a novel insight on aggressive breast cancer subtypes. Codes and results are available at http://epigenomics.snu.ac.kr/PL/.
Collapse
Affiliation(s)
- Kyuri Jo
- Department of Computer Engineering, Chungbuk National University, Cheongju, Republic of Korea
| | - Beatriz Santos-Buitrago
- Department of Computer Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Minsu Kim
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Sungmin Rhee
- Department of Computer Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | | | - Sun Kim
- Department of Computer Science and Engineering, Seoul National University, Seoul, Republic of Korea; Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea; Institute of Engineering Research, Seoul National University, Seoul, Republic of Korea; Bioinformatics Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Schuh L, Saint-Antoine M, Sanford EM, Emert BL, Singh A, Marr C, Raj A, Goyal Y. Gene Networks with Transcriptional Bursting Recapitulate Rare Transient Coordinated High Expression States in Cancer. Cell Syst 2020; 10:363-378.e12. [PMID: 32325034 PMCID: PMC7293108 DOI: 10.1016/j.cels.2020.03.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 02/03/2020] [Accepted: 03/24/2020] [Indexed: 10/24/2022]
Abstract
Non-genetic transcriptional variability is a potential mechanism for therapy resistance in melanoma. Specifically, rare subpopulations of cells occupy a transient pre-resistant state characterized by coordinated high expression of several genes and survive therapy. How might these rare states arise and disappear within the population? It is unclear whether the canonical models of probabilistic transcriptional pulsing can explain this behavior, or if it requires special, hitherto unidentified mechanisms. We show that a minimal model of transcriptional bursting and gene interactions can give rise to rare coordinated high expression states. These states occur more frequently in networks with low connectivity and depend on three parameters. While entry into these states is initiated by a long transcriptional burst that also triggers entry of other genes, the exit occurs through independent inactivation of individual genes. Together, we demonstrate that established principles of gene regulation are sufficient to describe this behavior and argue for its more general existence. A record of this paper's transparent peer review process is included in the Supplemental Information.
Collapse
Affiliation(s)
- Lea Schuh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg 85764, Germany; Department of Mathematics, Technical University of Munich, Garching 85748, Germany
| | - Michael Saint-Antoine
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA
| | - Eric M Sanford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Benjamin L Emert
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Abhyudai Singh
- Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA
| | - Carsten Marr
- Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg 85764, Germany
| | - Arjun Raj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yogesh Goyal
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Conte F, Fiscon G, Licursi V, Bizzarri D, D'Antò T, Farina L, Paci P. A paradigm shift in medicine: A comprehensive review of network-based approaches. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194416. [PMID: 31382052 DOI: 10.1016/j.bbagrm.2019.194416] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/19/2019] [Accepted: 07/28/2019] [Indexed: 02/01/2023]
Abstract
Network medicine is a rapidly evolving new field of medical research, which combines principles and approaches of systems biology and network science, holding the promise to uncovering the causes and to revolutionize the diagnosis and treatments of human diseases. This new paradigm reflects the fact that human diseases are not caused by single molecular defects, but driven by complex interactions among a variety of molecular mediators. The complexity of these interactions embraces different types of information: from the cellular-molecular level of protein-protein interactions to correlational studies of gene expression and regulation, to metabolic and disease pathways up to drug-disease relationships. The analysis of these complex networks can reveal new disease genes and/or disease pathways and identify possible targets for new drug development, as well as new uses for existing drugs. In this review, we offer a comprehensive overview of network types and algorithms used in the framework of network medicine. This article is part of a Special Issue entitled: Transcriptional Profiles and Regulatory Gene Networks edited by Dr. Dr. Federico Manuel Giorgi and Dr. Shaun Mahony.
Collapse
Affiliation(s)
- Federica Conte
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
| | - Giulia Fiscon
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy.
| | - Valerio Licursi
- Biology and Biotechnology Department "Charles Darwin" (BBCD), Sapienza University of Rome, Rome, Italy
| | - Daniele Bizzarri
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Tommaso D'Antò
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Farina
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy
| | - Paola Paci
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
| |
Collapse
|
9
|
Kuijjer ML, Tung MG, Yuan G, Quackenbush J, Glass K. Estimating Sample-Specific Regulatory Networks. iScience 2019; 14:226-240. [PMID: 30981959 PMCID: PMC6463816 DOI: 10.1016/j.isci.2019.03.021] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/30/2019] [Accepted: 03/21/2019] [Indexed: 10/28/2022] Open
Abstract
Biological systems are driven by intricate interactions among molecules. Many methods have been developed that draw on large numbers of expression samples to infer connections between genes (or their products). The result is an aggregate network representing a single estimate for the likelihood of each interaction, or "edge," in the network. Although informative, aggregate models fail to capture population heterogeneity. Here we propose a method to reverse engineer sample-specific networks from aggregate networks. We demonstrate our approach in several contexts, including simulated, yeast microarray, and human lymphoblastoid cell line RNA sequencing data. We use these sample-specific networks to study changes in network topology across time and to characterize shifts in gene regulation that were not apparent in the expression data. We believe that generating sample-specific networks will greatly facilitate the application of network methods to large, complex, and heterogeneous multi-omic datasets, supporting the emerging field of precision network medicine.
Collapse
Affiliation(s)
- Marieke Lydia Kuijjer
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Matthew George Tung
- Department of Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - GuoCheng Yuan
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - John Quackenbush
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Kimberly Glass
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Sleurs C, Madoe A, Lagae L, Jacobs S, Deprez S, Lemiere J, Uyttebroeck A. Genetic Modulation of Neurocognitive Development in Cancer Patients throughout the Lifespan: a Systematic Review. Neuropsychol Rev 2019; 29:190-219. [DOI: 10.1007/s11065-019-09399-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 02/19/2019] [Indexed: 12/14/2022]
|
11
|
Association study in African-admixed populations across the Americas recapitulates asthma risk loci in non-African populations. Nat Commun 2019; 10:880. [PMID: 30787307 PMCID: PMC6382865 DOI: 10.1038/s41467-019-08469-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 01/08/2019] [Indexed: 12/15/2022] Open
Abstract
Asthma is a complex disease with striking disparities across racial and ethnic groups. Despite its relatively high burden, representation of individuals of African ancestry in asthma genome-wide association studies (GWAS) has been inadequate, and true associations in these underrepresented minority groups have been inconclusive. We report the results of a genome-wide meta-analysis from the Consortium on Asthma among African Ancestry Populations (CAAPA; 7009 asthma cases, 7645 controls). We find strong evidence for association at four previously reported asthma loci whose discovery was driven largely by non-African populations, including the chromosome 17q12-q21 locus and the chr12q13 region, a novel (and not previously replicated) asthma locus recently identified by the Trans-National Asthma Genetic Consortium (TAGC). An additional seven loci reported by TAGC show marginal evidence for association in CAAPA. We also identify two novel loci (8p23 and 8q24) that may be specific to asthma risk in African ancestry populations.
Collapse
|
12
|
Abstract
Growth rate is one of the most important and most complex phenotypic characteristics of unicellular microorganisms, which determines the genetic mutations that dominate at the population level, and ultimately whether the population will survive. Translating changes at the genetic level to their growth-rate consequences remains a subject of intense interest, since such a mapping could rationally direct experiments to optimize antibiotic efficacy or bioreactor productivity. In this work, we directly map transcriptional profiles to growth rates by gathering published gene-expression data from Escherichia coli and Saccharomyces cerevisiae with corresponding growth-rate measurements. Using a machine-learning technique called k-nearest-neighbors regression, we build a model which predicts growth rate from gene expression. By exploiting the correlated nature of gene expression and sparsifying the model, we capture 81% of the variance in growth rate of the E. coli dataset, while reducing the number of features from >4,000 to 9. In S. cerevisiae, we account for 89% of the variance in growth rate, while reducing from >5,500 dimensions to 18. Such a model provides a basis for selecting successful strategies from among the combinatorial number of experimental possibilities when attempting to optimize complex phenotypic traits like growth rate.
Collapse
|
13
|
Hurgobin B, de Jong E, Bosco A. Insights into respiratory disease through bioinformatics. Respirology 2018; 23:1117-1126. [PMID: 30218470 DOI: 10.1111/resp.13401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/18/2018] [Accepted: 08/22/2018] [Indexed: 12/21/2022]
Abstract
Respiratory diseases such as asthma, chronic obstructive pulmonary disease and lung cancer represent a critical area for medical research as millions of people are affected globally. The development of new strategies for treatment and/or prevention, and the identification of biomarkers for patient stratification and early detection of disease inception are essential to reducing the impact of lung diseases. The successful translation of research into clinical practice requires a detailed understanding of the underlying biology. In this regard, the advent of next-generation sequencing and mass spectrometry has led to the generation of an unprecedented amount of data spanning multiple layers of biological regulation (genome, epigenome, transcriptome, proteome, metabolome and microbiome). Dealing with this wealth of data requires sophisticated bioinformatics and statistical tools. Here, we review the basic concepts in bioinformatics and genomic data analysis and illustrate the application of these tools to further our understanding of lung diseases. We also highlight the potential for data integration of multi-omic profiles and computational drug repurposing to define disease subphenotypes and match them to targeted therapies, paving the way for personalized medicine.
Collapse
Affiliation(s)
- Bhavna Hurgobin
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Emma de Jong
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Anthony Bosco
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|