1
|
Zhang C, Ma R, Liu W, Ma S, Wang Z, Sun Z. MicroRNAs from Yishen Tongluo formula can repair sperm DNA damage caused by benzo( a)pyrene. PHARMACEUTICAL BIOLOGY 2024; 62:781-789. [PMID: 39435988 PMCID: PMC11497566 DOI: 10.1080/13880209.2024.2417002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
CONTEXT Plant microRNAs (miRNAs) present in Yishen Tongluo formula (YSTL, a traditional Chinese herbal medicine formula) are considered as potential therapeutic drugs for reducing the sperm DNA fragmentation index (DFI). OBJECTIVE To study the effectiveness of plant miRNAs in YSTL for repairing mouse sperm DNA damage caused by benzo(a)pyrene (BaP). METHODS AND MATERIALS Twenty-four male SPF ICR (CD1) mice were divided into control, BaP and YSTL groups. A BaP-induced (100 mg/kg) sperm DNA damage model was established in the BaP and YSTL groups, and the mice in the YSTL group were treated with YSTL (23.78 g/kg) for 8 weeks. Sperm DFI was determined via a sperm chromatin structure assay (SCSA). MicroRNAs in the testes of the mice were analysed via RNA-seq, and the top four plant miRNAs were screened, identified and overexpressed in GC cells. The effects of plant miRNAs on the viability and DNA integrity of GC cells exposed to benzo(a)pyrene diol epoxide (BPDE) (1 μM) were tested using CCK8 and comet assays. RESULTS Compared with that of the BaP group, the DFI of the YSTL group decreased (9.57% vs. 18.54%, F = 18.645, p = 0.0236). miR166-y, miR894-x, miR822-x and miR396-x were screened. The CCK8 and comet assays revealed that the DFI of the mimic group was significantly lower than that of the BPDE (IC50 = 1.006 μM) group, with the most significant difference in the miR396-x group. DISCUSSION AND CONCLUSIONS Plant miRNAs such as miR396-x can penetrate the blood-testis barrier through the digestive system to repair sperm DNA.
Collapse
Affiliation(s)
- Chenming Zhang
- The Second Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Ruimin Ma
- Traditional Chinese Medicine (ZHONG JING) School, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Wenbang Liu
- Traditional Chinese Medicine (ZHONG JING) School, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Sicheng Ma
- Traditional Chinese Medicine (ZHONG JING) School, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Zulong Wang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Zixue Sun
- Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Zhu L, Xu L, Huang Y, Xie C, Dou D, Xu J. Correlations between ecological factors and the chemical compositions of mountainous forest cultivated ginseng. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Meng X, Zhang T, Chen C, Li Q, Liu J. Regulatory network of ginsenoside biosynthesis under Ro stress in the hairy roots of Panax ginseng revealed by RNA sequencing. Front Bioeng Biotechnol 2022; 10:1006386. [PMID: 36394021 PMCID: PMC9659575 DOI: 10.3389/fbioe.2022.1006386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
P. ginseng C.A. Meyer is a valuable Chinese herbal medicine that belongs to the Araliaceae family. Major obstacles to the continuous cropping of ginseng have severely restricted the sustainable development of the ginseng industry. The allelopathic effects of triterpenoid saponins play an important role in disorders related to continuous cropping; however, the mechanisms underlying the allelopathic autotoxicity of triterpenoid ginsenosides remain unknown. In this study, we performed mRNA and miRNA sequencing analyses to identify candidate genes and miRNAs that respond differentially to ginsenoside Ro stress in ginseng and their targets. The growth of the ginseng hairy roots was significantly inhibited under Ro stress (0.5 mg/L, Ro-0.5). The inhibition of root growth and injury to root-tip cells promoted the accumulation of the endogenous hormones indole-3-acetic acid and salicylic acid and inhibited the accumulation of abscisic acid and jasmonate acid. The accumulation of ginsenosides, except Rg3, was significantly inhibited under Ro-0.5 stress. An mRNA analysis of the Ro-0.5 and control groups showed that differentially expressed genes were mostly concentrated in the hormone signal transduction pathway. ARF7 and EFM were upregulated, whereas XTH23 and ZOX1 were downregulated. These genes represent important potential candidates for hormone-responsive continuous cropping diseases. In total, 74 differentially expressed miRNAs were identified based on the miRNA sequencing analysis, of which 22 were upregulated and 52 were downregulated. The target genes of ptc-miR156k_L + 1, mtr-miR156b-5p, gma-miR156a_R + 1, and mtr-miR156e all belonged to TRINITY_DN14567_c0_g4, which is a gene in the plant hormone signal transduction pathway. These four miRNAs were all negatively correlated with mRNA, indicating their likely involvement in the response of ginseng to continuous cropping disorders and the regulation of ginsenoside synthesis. Our findings provide useful insights for removing the barriers to continuous ginseng cropping and have important implications in the genetic engineering of plant stress responses.
Collapse
Affiliation(s)
| | - Tao Zhang
- *Correspondence: Tao Zhang, ; Changbao Chen,
| | | | | | | |
Collapse
|
4
|
MicroRNAs in Medicinal Plants. Int J Mol Sci 2022; 23:ijms231810477. [PMID: 36142389 PMCID: PMC9500639 DOI: 10.3390/ijms231810477] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Medicinal plant microRNAs (miRNAs) are an endogenous class of small RNA central to the posttranscriptional regulation of gene expression. Biosynthetic research has shown that the mature miRNAs in medicinal plants can be produced from either the standard messenger RNA splicing mechanism or the pre-ribosomal RNA splicing process. The medicinal plant miRNA function is separated into two levels: (1) the cross-kingdom level, which is the regulation of disease-related genes in animal cells by oral intake, and (2) the intra-kingdom level, which is the participation of metabolism, development, and stress adaptation in homologous or heterologous plants. Increasing research continues to enrich the biosynthesis and function of medicinal plant miRNAs. In this review, peer-reviewed papers on medicinal plant miRNAs published on the Web of Science were discussed, covering a total of 78 species. The feasibility of the emerging role of medicinal plant miRNAs in regulating animal gene function was critically evaluated. Staged progress in intra-kingdom miRNA research has only been found in a few medicinal plants, which may be mainly inhibited by their long growth cycle, high demand for growth environment, immature genetic transformation, and difficult RNA extraction. The present review clarifies the research significance, opportunities, and challenges of medicinal plant miRNAs in drug development and agricultural production. The discussion of the latest results furthers the understanding of medicinal plant miRNAs and helps the rational design of the corresponding miRNA/target genes functional modules.
Collapse
|
5
|
Yan W, Cao S, Wu Y, Ye Z, Zhang C, Yao G, Yu J, Yang D, Zhang J. Integrated Analysis of Physiological, mRNA Sequencing, and miRNA Sequencing Data Reveals a Specific Mechanism for the Response to Continuous Cropping Obstacles in Pogostemon cablin Roots. FRONTIERS IN PLANT SCIENCE 2022; 13:853110. [PMID: 35432413 PMCID: PMC9010791 DOI: 10.3389/fpls.2022.853110] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/07/2022] [Indexed: 06/02/2023]
Abstract
Pogostemon cablin (patchouli) is a commercially important medicinal and industrial crop grown worldwide for its medicinal and aromatic properties. Patchoulol and pogostone, derived from the essential oil of patchouli, are considered valuable components in the cosmetic and pharmaceutical industries. Due to its high application value in the clinic and industry, the demand for patchouli is constantly growing. Unfortunately, patchouli cultivation has suffered due to severe continuous cropping obstacles, resulting in a significant decline in yield and quality. Moreover, the physiological and transcriptional changes in patchouli in response to continuous cropping obstacles remain unclear. This has greatly restricted the development of the patchouli industry. To explore the mechanism underlying the rapid response of patchouli roots to continuous cropping stress, integrated analysis of the transcriptome and miRNA profiles of patchouli roots under continuous and noncontinuous cropping conditions in different growth periods was conducted using RNA sequencing (RNA-seq) and miRNA-seq and complemented with physiological data. The physiological and biochemical results showed that continuous cropping significantly inhibited root growth, decreased root activity, and increased the activity of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) and the levels of osmoregulators (malondialdehyde, soluble protein, soluble sugar, and proline). Subsequently, we found 4,238, 3,494, and 7,290 upregulated and 4,176, 3,202, and 8,599 downregulated differentially expressed genes (DEGs) in the three growth periods of continuously cropped patchouli, many of which were associated with primary carbon and nitrogen metabolism, defense responses, secondary metabolite biosynthesis, and transcription factors. Based on miRNA-seq, 927 known miRNAs and 130 novel miRNAs were identified, among which 67 differentially expressed miRNAs (DEMIs) belonging to 24 miRNA families were induced or repressed by continuous cropping. By combining transcriptome and miRNA profiling, we obtained 47 miRNA-target gene pairs, consisting of 18 DEMIs and 43 DEGs, that likely play important roles in the continuous cropping response of patchouli. The information provided in this study will contribute to clarifying the intricate mechanism underlying the patchouli response to continuous cropping obstacles. In addition, the candidate miRNAs and genes can provide a new strategy for breeding continuous cropping-tolerant patchouli.
Collapse
|
6
|
Li Y, Song Z, Zhang T, Ding C, Chen H. Gene expression variation of Astragalus adsurgens Pall. through discharge plasma and its activated water. Free Radic Biol Med 2022; 182:1-10. [PMID: 35182731 DOI: 10.1016/j.freeradbiomed.2022.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 11/25/2022]
Abstract
To explore the effects of plasma-activated water (PAW) on gene expression, the combined treatment of PAW and discharge plasma on Astragalus adsurgens Pall seeds were performed, and then the gene expression of seedlings after treatmentwas analyzed at the molecular level. A needle array-plate dielectric-barrier discharge plasma was used to treat Astragalus adsurgens Pall seeds for 1, 2, and 3 h, and PAW was prepared at the same time to cultivate seeds. When the treatment time was 3 h, the survival rate of Plasma + PAW seedlings was only 9.2% of that of the CK. The Astragalus adsurgens Pall seedlings were analyzed using reactive oxygen species (ROS) and RNA-Seq. The ROS content of the seedlings in treatment group was significantly higher than that in the CK after 3 days of culture, that PAW cultivated can cause oxidative stress damage to Astragalus adsurgens Pall. The enzyme activity of the treated plant increased and the metabolic rate was accelerated. It helped to regulate the growth process of plants and improve the yield and quality of crops. This study discussed the gene expression of plasma and PAW induced Astragalus adsurgens Pall at the molecular level, and provided experimental data support for plasma and PAW treatment and selection of Astragalus adsurgens Pall.
Collapse
Affiliation(s)
- Yibing Li
- Application Laboratory for Discharge Plasma & Functional Materials, Inner Mongolia University of Technology, Hohhot, 010051, China; College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China.
| | - Zhiqing Song
- Application Laboratory for Discharge Plasma & Functional Materials, Inner Mongolia University of Technology, Hohhot, 010051, China; College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China; Center for Energy Conservation and Emission Reduction in Fermentation Industry of Inner Mongolia Autonomous Region, Hohhot, 010051, China.
| | - Tao Zhang
- Application Laboratory for Discharge Plasma & Functional Materials, Inner Mongolia University of Technology, Hohhot, 010051, China; College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China.
| | - Changjiang Ding
- Application Laboratory for Discharge Plasma & Functional Materials, Inner Mongolia University of Technology, Hohhot, 010051, China; College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China; Center for Energy Conservation and Emission Reduction in Fermentation Industry of Inner Mongolia Autonomous Region, Hohhot, 010051, China.
| | - Hao Chen
- Application Laboratory for Discharge Plasma & Functional Materials, Inner Mongolia University of Technology, Hohhot, 010051, China; College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China; Center for Energy Conservation and Emission Reduction in Fermentation Industry of Inner Mongolia Autonomous Region, Hohhot, 010051, China.
| |
Collapse
|
7
|
Li C, Wang M, Qiu X, Zhou H, Lu S. Noncoding RNAs in Medicinal Plants and their Regulatory Roles in Bioactive Compound Production. Curr Pharm Biotechnol 2021; 22:341-359. [PMID: 32469697 DOI: 10.2174/1389201021666200529101942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/14/2020] [Accepted: 03/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), small interfering RNAs (siRNAs) and long noncoding RNAs (lncRNAs), play significant regulatory roles in plant development and secondary metabolism and are involved in plant response to biotic and abiotic stresses. They have been intensively studied in model systems and crops for approximately two decades and massive amount of information have been obtained. However, for medicinal plants, ncRNAs, particularly their regulatory roles in bioactive compound biosynthesis, are just emerging as a hot research field. OBJECTIVE This review aims to summarize current knowledge on herbal ncRNAs and their regulatory roles in bioactive compound production. RESULTS So far, scientists have identified thousands of miRNA candidates from over 50 medicinal plant species and 11794 lncRNAs from Salvia miltiorrhiza, Panax ginseng, and Digitalis purpurea. Among them, more than 30 miRNAs and five lncRNAs have been predicted to regulate bioactive compound production. CONCLUSION The regulation may achieve through various regulatory modules and pathways, such as the miR397-LAC module, the miR12112-PPO module, the miR156-SPL module, the miR828-MYB module, the miR858-MYB module, and other siRNA and lncRNA regulatory pathways. Further functional analysis of herbal ncRNAs will provide useful information for quality and quantity improvement of medicinal plants.
Collapse
Affiliation(s)
- Caili Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Meizhen Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiaoxiao Qiu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Hong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| |
Collapse
|
8
|
Yang Q, Liu S, Han X, Ma J, Deng W, Wang X, Guo H, Xia X. Integrated transcriptome and miRNA analysis uncovers molecular regulators of aerial stem-to-rhizome transition in the medical herb Gynostemma pentaphyllum. BMC Genomics 2019; 20:865. [PMID: 31730459 PMCID: PMC6858658 DOI: 10.1186/s12864-019-6250-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gynostemma pentaphyllum is an important perennial medicinal herb belonging to the family Cucurbitaceae. Aerial stem-to-rhizome transition before entering the winter is an adaptive regenerative strategy in G. pentaphyllum that enables it to survive during winter. However, the molecular regulation of aerial stem-to-rhizome transition is unknown in plants. Here, integrated transcriptome and miRNA analysis was conducted to investigate the regulatory network of stem-to-rhizome transition. RESULTS Nine transcriptome libraries prepared from stem/rhizome samples collected at three stages of developmental stem-to-rhizome transition were sequenced and a total of 5428 differentially expressed genes (DEGs) were identified. DEGs associated with gravitropism, cell wall biosynthesis, photoperiod, hormone signaling, and carbohydrate metabolism were found to regulate stem-to-rhizome transition. Nine small RNA libraries were parallelly sequenced, and seven significantly differentially expressed miRNAs (DEMs) were identified, including four known and three novel miRNAs. The seven DEMs targeted 123 mRNAs, and six pairs of miRNA-target showed significantly opposite expression trends. The GpmiR166b-GpECH2 module involved in stem-to-rhizome transition probably promotes cell expansion by IBA-to-IAA conversion, and the GpmiR166e-GpSGT-like module probably protects IAA from degradation, thereby promoting rhizome formation. GpmiR156a was found to be involved in stem-to-rhizome transition by inhibiting the expression of GpSPL13A/GpSPL6, which are believed to negatively regulate vegetative phase transition. GpmiR156a and a novel miRNA Co.47071 co-repressed the expression of growth inhibitor GpRAV-like during stem-to-rhizome transition. These miRNAs and their targets were first reported to be involved in the formation of rhizomes. In this study, the expression patterns of DEGs, DEMs and their targets were further validated by quantitative real-time PCR, supporting the reliability of sequencing data. CONCLUSIONS Our study revealed a comprehensive molecular network regulating the transition of aerial stem to rhizome in G. pentaphyllum. These results broaden our understanding of developmental phase transitions in plants.
Collapse
Affiliation(s)
- Qi Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing, 100083, China
| | - Shibiao Liu
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, China
| | - Xiaoning Han
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing, 100083, China
| | - Jingyi Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing, 100083, China
| | - Wenhong Deng
- Analytical and Testing Center, Beijing Forestry University, Beijing, 100083, China
| | - Xiaodong Wang
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Huihong Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing, 100083, China.
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing, 100083, China
| |
Collapse
|
9
|
Marakli S. In silico determination of transposon-derived miRNAs and targets in Aegilops species. J Biomol Struct Dyn 2019; 38:3098-3109. [PMID: 31402758 DOI: 10.1080/07391102.2019.1654409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Transposable elements (TEs) are found almost in all living organism, shaping organisms' genomes. miRNAs are noncoding RNA types which are especially important in gene expression regulations. Many previously determined plant miRNAs are identical/homologous to transposons (TE-MIR). The aim of this study was computational characterization of novel TE-related miRNAs and their targets in Aegilops genome by using stringent criteria. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed by BLAST2GO. Seventeen novel TE-related miRNAs in Aegilops genome were identified for the first time. GO analyses indicated that 40 targets played different roles in biological processes, cellular components and molecular functions. Moreover, these genes were involved in 10 metabolic pathways such as purine metabolism, nitrogen metabolism, oxidative phosphorylation, etc. as a result of KEGG analyses. Identification of miRNAs and their targets are significant to understand miRNA-TEs relationships and even how TEs affect plant growth and development. Obtaining results of this study are expected to provide possible new insight into Aegilops and its related species, wheat, with respect to miRNAs evolution and domestication.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sevgi Marakli
- Department of Medical Services and Techniques, Amasya University, Sabuncuoglu Serefeddin Health Services Vocational School, Amasya, Turkey.,Amasya University, Central Research Laboratory, Amasya, Turkey
| |
Collapse
|