1
|
Malik P, Kumar J, Sharma S, Meher PK, Balyan HS, Gupta PK, Sharma S. GWAS for main effects and epistatic interactions for grain morphology traits in wheat. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:651-668. [PMID: 35465203 PMCID: PMC8986918 DOI: 10.1007/s12298-022-01164-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 06/05/2023]
Abstract
In the present study in wheat, GWAS was conducted for identification of marker trait associations (MTAs) for the following six grain morphology traits: (1) grain cross-sectional area (GCSA), (2) grain perimeter (GP), (3) grain length (GL), (4) grain width (GWid), (5) grain length-width ratio (GLWR) and (6) grain form-density (GFD). The data were recorded on a subset of spring wheat reference set (SWRS) comprising 225 diverse genotypes, which were genotyped using 10,904 SNPs and phenotyped for two consecutive years (2017-2018, 2018-2019). GWAS was conducted using five different models including two single-locus models (CMLM, SUPER), one multi-locus model (FarmCPU), one multi-trait model (mvLMM) and a model for Q x Q epistatic interactions. False discovery rate (FDR) [P value -log10(p) ≥ 5] and Bonferroni correction [P value -log10(p) ≥ 6] (corrected p value < 0.05) were applied to eliminate false positives due to multiple testing. This exercise gave 88 main effect and 29 epistatic MTAs after FDR and 13 main effect and 6 epistatic MTAs after Bonferroni corrections. MTAs obtained after Bonferroni corrections were further utilized for identification of 55 candidate genes (CGs). In silico expression analysis of CGs in different tissues at different parts of the seed at different developmental stages was also carried out. MTAs and CGs identified during the present study are useful addition to available resources for MAS to supplement wheat breeding programmes after due validation and also for future strategic basic research. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01164-w.
Collapse
Affiliation(s)
- Parveen Malik
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, U.P 250 004 India
| | - Jitendra Kumar
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, U.P 250 004 India
- Department of Biotechnology, National Agri-Food Biotechnology Institute (NABI), Govt. of India, Sector 81 (Knowledge City), S.A.S. Nagar, Mohali, Punjab 140306 India
| | - Shiveta Sharma
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, U.P 250 004 India
| | - Prabina Kumar Meher
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Harindra Singh Balyan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, U.P 250 004 India
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, U.P 250 004 India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, U.P 250 004 India
| |
Collapse
|
2
|
Malik P, Kumar J, Singh S, Sharma S, Meher PK, Sharma MK, Roy JK, Sharma PK, Balyan HS, Gupta PK, Sharma S. Single-trait, multi-locus and multi-trait GWAS using four different models for yield traits in bread wheat. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:46. [PMID: 37309385 PMCID: PMC10236106 DOI: 10.1007/s11032-021-01240-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/30/2021] [Indexed: 06/14/2023]
Abstract
A genome-wide association study (GWAS) for 10 yield and yield component traits was conducted using an association panel comprising 225 diverse spring wheat genotypes. The panel was genotyped using 10,904 SNPs and evaluated for three years (2016-2019), which constituted three environments (E1, E2 and E3). Heritability for different traits ranged from 29.21 to 97.69%. Marker-trait associations (MTAs) were identified for each trait using data from each environment separately and also using BLUP values. Four different models were used, which included three single trait models (CMLM, FarmCPU, SUPER) and one multi-trait model (mvLMM). Hundreds of MTAs were obtained using each model, but after Bonferroni correction, only 6 MTAs for 3 traits were available using CMLM, and 21 MTAs for 4 traits were available using FarmCPU; none of the 525 MTAs obtained using SUPER could qualify after Bonferroni correction. Using BLUP, 20 MTAs were available, five of which also figured among MTAs identified for individual environments. Using mvLMM model, after Bonferroni correction, 38 multi-trait MTAs, for 15 different trait combinations were available. Epistatic interactions involving 28 pairs of MTAs were also available for seven of the 10 traits; no epistatic interactions were available for GNPS, PH, and BYPP. As many as 164 putative candidate genes (CGs) were identified using all the 50 MTAs (CMLM, 3; FarmCPU, 9; mvLMM, 6, epistasis, 21 and BLUP, 11 MTAs), which ranged from 20 (CMLM) to 66 (epistasis) CGs. In-silico expression analysis of CGs was also conducted in different tissues at different developmental stages. The information generated through the present study proved useful for developing a better understanding of the genetics of each of the 10 traits; the study also provided novel markers for marker-assisted selection (MAS) to be utilized for the development of wheat cultivars with improved agronomic traits. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01240-1.
Collapse
Affiliation(s)
- Parveen Malik
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut 250004, India
| | - Jitendra Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut 250004, India
- National Agri-Food Biotechnology Institute (NABI), Sector 81, Sahibzada Ajit Singh Nagar, 140306 Punjab India
| | - Sahadev Singh
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut 250004, India
| | - Shiveta Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut 250004, India
| | - Prabina Kumar Meher
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| | - Mukesh Kumar Sharma
- Department of Mathematics, Chaudhary Charan Singh University, Meerut 250004, India
| | - Joy Kumar Roy
- National Agri-Food Biotechnology Institute (NABI), Sector 81, Sahibzada Ajit Singh Nagar, 140306 Punjab India
| | - Pradeep Kumar Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut 250004, India
| | - Harindra Singh Balyan
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut 250004, India
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut 250004, India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut 250004, India
| |
Collapse
|
3
|
Effect of non-normality and low count variants on cross-phenotype association tests in GWAS. Eur J Hum Genet 2019; 28:300-312. [PMID: 31582815 DOI: 10.1038/s41431-019-0514-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 09/01/2019] [Accepted: 09/05/2019] [Indexed: 01/21/2023] Open
Abstract
Many complex human diseases, such as type 2 diabetes, are characterized by multiple underlying traits/phenotypes that have substantially shared genetic architecture. Multivariate analysis of correlated traits has the potential to increase the power of detecting underlying common genetic loci. Several cross-phenotype association methods have been proposed-some require individual-level data on traits and genotypes, while the others require only summary-level data. In this article, we explore whether non-normality of multivariate trait distribution affects the inference from some of the existing multi-trait methods and how that effect is dependent on the allele count of the genetic variant being tested. We find that most of these tests are susceptible to biases that lead to spurious association signals. Even after controlling for confounders that may contribute to non-normality and then applying inverse normal transformation on the residuals of each trait, these tests may have inflated type I errors for variants with low minor allele counts (MACs). A likelihood ratio test of association based on the ordinal regression of individual-level genotype conditional on the traits seems to be the least biased and can maintain type I error when the MAC is reasonably large (e.g., MAC > 30). Application of these methods to publicly available summary statistics of eight amino acid traits on European samples seem to exhibit systematic inflation (especially for variants with low MAC), which is consistent with our findings from simulation experiments.
Collapse
|
4
|
Wang X, Boekstegers F, Brinster R. Methods and results from the genome-wide association group at GAW20. BMC Genet 2018; 19:79. [PMID: 30255814 PMCID: PMC6157187 DOI: 10.1186/s12863-018-0649-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND This paper summarizes the contributions from the Genome-wide Association Study group (GWAS group) of the GAW20. The GWAS group contributions focused on topics such as association tests, phenotype imputation, and application of empirical kinships. The goals of the GWAS group contributions were varied. A real or a simulated data set based on the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study was employed by different methods. Different outcomes and covariates were considered, and quality control procedures varied throughout the contributions. RESULTS The consideration of heritability and family structure played a major role in some contributions. The inclusion of family information and adaptive weights based on data were found to improve power in genome-wide association studies. It was proven that gene-level approaches are more powerful than single-marker analysis. Other contributions focused on the comparison between pedigree-based kinship and empirical kinship matrices, and investigated similar results in heritability estimation, association mapping, and genomic prediction. A new approach for linkage mapping of triglyceride levels was able to identify a novel linkage signal. CONCLUSIONS This summary paper reports on promising statistical approaches and findings of the members of the GWAS group applied on real and simulated data which encompass the current topics of epigenetic and pharmacogenomics.
Collapse
Affiliation(s)
- Xuexia Wang
- University of North Texas, GAB 459, 1155 Union Circle #311430, Denton, TX 76203 USA
| | - Felix Boekstegers
- Institute of Medical Biometry and Informatics, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany
| | - Regina Brinster
- Institute of Medical Biometry and Informatics, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany
| |
Collapse
|