1
|
Williamson K, Lee KJ, Beamish EL, Carter A, Gumbs JA, Cooper G, O'Heneghan-Yates NS, Menezes LA, Cheung G, Brown D, Pettitt R, Geraghty B, Bosworth LA, Comerford EJ, Clegg PD, Canty-Laird EG. Active synthesis of type I collagen homotrimer in Dupuytren's fibrosis is unaffected by anti-TNF-α treatment. JCI Insight 2025; 10:e175188. [PMID: 40337865 DOI: 10.1172/jci.insight.175188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/14/2025] [Indexed: 05/09/2025] Open
Abstract
Dupuytren's disease is a common fibroproliferative disease of the palmar fascia of the hand, with advanced cases treated surgically. Anti-TNF injection has undergone phase 2 trials and may be effective in slowing early-stage disease progression. Here we sought to determine how new synthesis of type I collagen in Dupuytren's differs from normal palmar fascia samples and to analyze the role of TNF in aberrant collagen synthesis. Model nonfibrotic but fibrous connective tissues were used to analyze active type I collagen protein synthesis in development, aging, and degenerative disease, where it was restricted to early development and ruptured tissue. Dupuytren's tissue was shown to actively synthesize type I collagen, including abnormal type I collagen homotrimer. TNF-α reduced COL1A2 gene expression only in the presence of serum in 2D cell culture and had opposing effects on collagen protein production in the presence or absence of serum. TNF-α had only limited effects in 3D tendon-like constructs. Anti-TNF did not reduce type I collagen synthesis in 3D tendon-like constructs or prevent type I collagen homotrimer synthesis in Dupuytren's tissue. Hence, modulation of the TNF-α pathway in Dupuytren's disease is unlikely to prevent the pathological collagen accumulation that is characteristic of fibrosis.
Collapse
Affiliation(s)
- Kate Williamson
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, Liverpool, United Kingdom
| | - Katie J Lee
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, Liverpool, United Kingdom
| | - Emma L Beamish
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, Liverpool, United Kingdom
| | - Alan Carter
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, Liverpool, United Kingdom
| | - Jade A Gumbs
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, Liverpool, United Kingdom
- The Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), William Henry Duncan Building, Liverpool, United Kingdom
| | - Gabriella Cooper
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, Liverpool, United Kingdom
| | - Niamh S O'Heneghan-Yates
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, Liverpool, United Kingdom
| | - Lisa A Menezes
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, Liverpool, United Kingdom
| | - Graham Cheung
- Department of Trauma and Orthopaedics, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Daniel Brown
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, Liverpool, United Kingdom
- Department of Trauma and Orthopaedics, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Rob Pettitt
- Institute of Infection, Veterinary and Ecological Sciences, Leahurst Campus, University of Liverpool, Neston, United Kingdom
| | - Brendan Geraghty
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, Liverpool, United Kingdom
| | - Lucy A Bosworth
- Department of Eye and Vision Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, Liverpool, United Kingdom
| | - Eithne J Comerford
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, Liverpool, United Kingdom
- The Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), William Henry Duncan Building, Liverpool, United Kingdom
- Institute of Infection, Veterinary and Ecological Sciences, Leahurst Campus, University of Liverpool, Neston, United Kingdom
| | - Peter D Clegg
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, Liverpool, United Kingdom
- The Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), William Henry Duncan Building, Liverpool, United Kingdom
| | - Elizabeth G Canty-Laird
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, Liverpool, United Kingdom
- The Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), William Henry Duncan Building, Liverpool, United Kingdom
| |
Collapse
|
2
|
Cates WT, Denbeigh JM, Salvagno RT, Kakar S, van Wijnen AJ, Eaton C. Inflammatory Markers Involved in the Pathogenesis of Dupuytren's Contracture. Crit Rev Eukaryot Gene Expr 2024; 34:1-35. [PMID: 38912961 DOI: 10.1615/critreveukaryotgeneexpr.2024052889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Dupuytren's disease is a common fibroproliferative disease that can result in debilitating hand deformities. Partial correction and return of deformity are common with surgical or clinical treatments at present. While current treatments are limited to local procedures for relatively late effects of the disease, the pathophysiology of this connective tissue disorder is associated with both local and systemic processes (e.g., fibrosis, inflammation). Hence, a better understanding of the systemic circulation of Dupuytren related cytokines and growth factors may provide important insights into disease progression. In addition, systemic biomarker analysis could yield new concepts for treatments of Dupuytren that attenuate circulatory factors (e.g., anti-inflammatory agents, neutralizing antibodies). Progress in the development of any disease modifying biologic treatment for Dupuytren has been hampered by the lack of clinically useful biomarkers. The characterization of nonsurgical Dupuytren biomarkers will permit disease staging from diagnostic and prognostic perspectives, as well as allows evaluation of biologic responses to treatment. Identification of such markers may transcend their use in Dupuytren treatment, because fibrotic biological processes fundamental to Dupuytren are relevant to fibrosis in many other connective tissues and organs with collagen-based tissue compartments. There is a wide range of potential Dupuytren biomarker categories that could be informative, including disease determinants linked to genetics, collagen metabolism, as well as immunity and inflammation (e.g., cytokines, chemokines). This narrative review provides a broad overview of previous studies and emphasizes the importance of inflammatory mediators as candidate circulating biomarkers for monitoring Dupuytren's disease.
Collapse
Affiliation(s)
- William T Cates
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Janet M Denbeigh
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Sanjeev Kakar
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
| | | |
Collapse
|
3
|
Dudakovic A, Jerez S, Deosthale PJ, Denbeigh JM, Paradise CR, Gluscevic M, Zan P, Begun DL, Camilleri ET, Pichurin O, Khani F, Thaler R, Lian JB, Stein GS, Westendorf JJ, Plotkin LI, van Wijnen AJ. MicroRNA-101a enhances trabecular bone accrual in male mice. Sci Rep 2022; 12:13361. [PMID: 35922466 PMCID: PMC9349183 DOI: 10.1038/s41598-022-17579-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/27/2022] [Indexed: 11/09/2022] Open
Abstract
High-throughput microRNA sequencing was performed during differentiation of MC3T3-E1 osteoblasts to develop working hypotheses for specific microRNAs that control osteogenesis. The expression data show that miR-101a, which targets the mRNAs for the epigenetic enzyme Ezh2 and many other proteins, is highly upregulated during osteoblast differentiation and robustly expressed in mouse calvaria. Transient elevation of miR-101a suppresses Ezh2 levels, reduces tri-methylation of lysine 27 in histone 3 (H3K27me3; a heterochromatic mark catalyzed by Ezh2), and accelerates mineralization of MC3T3-E1 osteoblasts. We also examined skeletal phenotypes of an inducible miR-101a transgene under direct control of doxycycline administration. Experimental controls and mir-101a over-expressing mice were exposed to doxycycline in utero and postnatally (up to 8 weeks of age) to maximize penetrance of skeletal phenotypes. Male mice that over-express miR-101a have increased total body weight and longer femora. MicroCT analysis indicate that these mice have increased trabecular bone volume fraction, trabecular number and trabecular thickness with reduced trabecular spacing as compared to controls. Histomorphometric analysis demonstrates a significant reduction in osteoid volume to bone volume and osteoid surface to bone surface. Remarkably, while female mice also exhibit a significant increase in bone length, no significant changes were noted by microCT (trabecular bone parameters) and histomorphometry (osteoid parameters). Hence, miR-101a upregulation during osteoblast maturation and the concomitant reduction in Ezh2 mediated H3K27me3 levels may contribute to the enhanced trabecular bone parameters in male mice. However, the sex-specific effect of miR-101a indicates that more intricate epigenetic mechanisms mediate physiological control of bone formation and homeostasis.
Collapse
Affiliation(s)
- Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| | - Sofia Jerez
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Padmini J Deosthale
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Janet M Denbeigh
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Christopher R Paradise
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Martina Gluscevic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Pengfei Zan
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Orthopedic Surgery, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
- Department of Orthopedic Surgery, School of Medicine, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Dana L Begun
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Oksana Pichurin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Farzaneh Khani
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Jane B Lian
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Gary S Stein
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Lilian I Plotkin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L Roudebush VA Medical Center, Indianapolis, IN, USA.
| | | |
Collapse
|
4
|
Jerez S, Araya H, Hevia D, Irarrázaval CE, Thaler R, van Wijnen AJ, Galindo M. Extracellular vesicles from osteosarcoma cell lines contain miRNAs associated with cell adhesion and apoptosis. Gene 2019; 710:246-257. [PMID: 31176732 DOI: 10.1016/j.gene.2019.06.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023]
Abstract
Osteosarcoma is the most common primary bone tumor during childhood and adolescence. Several reports have presented data on serum biomarkers for osteosarcoma, but few reports have analyzed circulating microRNAs (miRNAs). In this study, we used next generation miRNA sequencing to examine miRNAs isolated from microvesicle-depleted extracellular vesicles (EVs) derived from six different human osteosarcoma or osteoblastic cell lines with different degrees of metastatic potential (i.e., SAOS2, MG63, HOS, 143B, U2OS and hFOB1.19). EVs from each cell line contain on average ~300 miRNAs, and ~70 of these miRNAs are present at very high levels (i.e., >1000 reads per million). The most prominent miRNAs are miR-21-5p, miR-143-3p, miR-148a-3p and 181a-5p, which are enriched between 3 and 100 fold and relatively abundant in EVs derived from metastatic SAOS2 cells compared to non-metastatic MG63 cells. Gene ontology analysis of predicted targets reveals that miRNAs present in EVs may regulate the metastatic potential of osteosarcoma cell lines by potentially inhibiting a network of genes (e.g., MAPK1, NRAS, FRS2, PRCKE, BCL2 and QKI) involved in apoptosis and/or cell adhesion. Our data indicate that osteosarcoma cell lines may selectively package miRNAs as molecular cargo of EVs that could function as paracrine agents to modulate the tumor micro-environment.
Collapse
Affiliation(s)
- Sofía Jerez
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Héctor Araya
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Daniel Hevia
- Laboratorio de Fisiología Integrativa y Molecular, Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de Los Andes, Chile
| | - Carlos E Irarrázaval
- Laboratorio de Fisiología Integrativa y Molecular, Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de Los Andes, Chile
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America.
| | - Mario Galindo
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
5
|
Samsonraj RM, Paradise CR, Dudakovic A, Sen B, Nair AA, Dietz AB, Deyle DR, Cool SM, Rubin J, van Wijnen AJ. Validation of Osteogenic Properties of Cytochalasin D by High-Resolution RNA-Sequencing in Mesenchymal Stem Cells Derived from Bone Marrow and Adipose Tissues. Stem Cells Dev 2018; 27:1136-1145. [PMID: 29882479 DOI: 10.1089/scd.2018.0037] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Differentiation of mesenchymal stromal/stem cells (MSCs) involves a series of molecular signals and gene transcription events required for attaining cell lineage commitment. Modulation of the actin cytoskeleton using cytochalasin D (CytoD) drives osteogenesis at early timepoints in bone marrow-derived MSCs and also initiates a robust osteogenic differentiation program in adipose tissue-derived MSCs. To understand the molecular basis for these pronounced effects on osteogenic differentiation, we investigated global changes in gene expression in CytoD-treated murine and human MSCs by high-resolution RNA-sequencing (RNA-seq) analysis. A three-way bioinformatic comparison between human adipose tissue-derived MSCs (hAMSCs), human bone marrow-derived MSCs (hBMSCs), and mouse bone marrow-derived MSCs (mBMSCs) revealed significant upregulation of genes linked to extracellular matrix organization, cell adhesion and bone metabolism. As anticipated, the activation of these differentiation-related genes is accompanied by a downregulation of nuclear and cell cycle-related genes presumably reflecting cytostatic effects of CytoD. We also identified eight novel CytoD activated genes-VGLL4, ARHGAP24, KLHL24, RCBTB2, BDH2, SCARF2, ACAD10, HEPH-which are commonly upregulated across the two species and tissue sources of our MSC samples. We selected the Hippo pathway-related VGLL4 gene, which encodes the transcriptional co-factor Vestigial-like 4, for further study because this pathway is linked to osteogenesis. VGLL4 small interfering RNA depletion reduces mineralization of hAMSCs during CytoD-induced osteogenic differentiation. Together, our RNA-seq analyses suggest that while the stimulatory effects of CytoD on osteogenesis are pleiotropic and depend on the biological state of the cell type, a small group of genes including VGLL4 may contribute to MSC commitment toward the bone lineage.
Collapse
Affiliation(s)
| | - Christopher R Paradise
- 2 Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences , Mayo Clinic, Rochester, Minnesota.,3 Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota
| | - Amel Dudakovic
- 1 Department of Orthopedic Surgery, Mayo Clinic , Rochester, Minnesota
| | - Buer Sen
- 4 Department of Medicine, University of North Carolina , Chapel Hill, North Carolina
| | - Asha A Nair
- 5 Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic , Rochester, Minnesota
| | - Allan B Dietz
- 6 Laboratory Medicine and Pathology, Mayo Clinic , Rochester, Minnesota
| | - David R Deyle
- 7 Department of Medical Genetics, Mayo Clinic , Rochester, Minnesota
| | - Simon M Cool
- 8 Glycotherapeutics Group, Institute of Medical Biology , Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Janet Rubin
- 3 Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota
| | - Andre J van Wijnen
- 1 Department of Orthopedic Surgery, Mayo Clinic , Rochester, Minnesota.,3 Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
6
|
Karkampouna S, Kreulen M, Obdeijn MC, Kloen P, Dorjée AL, Rivellese F, Chojnowski A, Clark I, Kruithof-de Julio M. Connective Tissue Degeneration: Mechanisms of Palmar Fascia Degeneration (Dupuytren's Disease). CURRENT MOLECULAR BIOLOGY REPORTS 2016; 2:133-140. [PMID: 27617187 PMCID: PMC4996878 DOI: 10.1007/s40610-016-0045-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dupuytren's disease is a connective tissue disorder of the hand causing excessive palmar fascial fibrosis with associated finger contracture and disability. The aetiology of the disease is heterogeneous, with both genetic and environmental components. The connective tissue is abnormally infiltrated by myofibroblasts that deposit collagen and other extracellular matrix proteins. We describe the clinical profile of Dupuytren's disease along with current therapeutic schemes. Recent findings on molecular and cellular parameters that are dysregulated in Dupuytren's disease, which may contribute to the onset of the disease, and the role of resident inflammation promoting fibrosis, are highlighted. We review recent literature focusing on non-myofibroblast cell types (stem cell-like cells), their pro-inflammatory and pro-fibrotic role that may account for abnormal wound healing response.
Collapse
Affiliation(s)
- S. Karkampouna
- Department of Urology, Leiden University Medical Center, Albinusdreef 2, Leiden, ZA 2333 The Netherlands
- Urology Research Laboratory, Department of Urology and Department of Clinical Research, University of Bern, Murtenstrasse 35, Bern, 3008 Switzerland
| | - M. Kreulen
- Department of Plastic Surgery, Rode Kruis Ziekenhuis, Vondellaan 13, Beverwijk, 1942 LE The Netherlands
| | - M. C. Obdeijn
- Department of Plastic Reconstructive and Hand Surgery, Academic Medical Center, Meibergdreef 9, Amsterdam, 1100 DD The Netherlands
| | - P. Kloen
- Department of Orthopedic Surgery, Academic Medical Center, Meibergdreef 9, Amsterdam, 1100 DD The Netherlands
| | - A. L. Dorjée
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA The Netherlands
| | - F. Rivellese
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA The Netherlands
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - A. Chojnowski
- Institute of Orthopaedics, Norfolk and Norwich University Hospital, Norwich, UK
| | - I. Clark
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Marianna Kruithof-de Julio
- Department of Urology, Leiden University Medical Center, Albinusdreef 2, Leiden, ZA 2333 The Netherlands
- Urology Research Laboratory, Department of Urology and Department of Clinical Research, University of Bern, Murtenstrasse 35, Bern, 3008 Switzerland
| |
Collapse
|