1
|
Huang S, Huang Y, Li S, He Y. Chromosome 17 translocation affects sperm morphology: Two case studies and literature review. Andrologia 2022; 54:e14620. [PMID: 36270636 DOI: 10.1111/and.14620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
Abstract
We present two cases of infertile males with teratozoospermia stemming from chromosome 17 translocation. The patients present karyotypes that have not been previously reported. Genes located on breakpoints (17p11.2, 9q31, and 11p15) were analysed to find the probable mechanism affecting sperm morphology. Our results suggest that ALKBH5, TOP3A, and LLGL1 interactions may be an underlying cause of abnormal sperm head morphology. Translocation of chromosome 17 occurred in conjunction with chromosome 9 and chromosome 11 translocation in the two cases, resulting in oligozoospermia and asthenozoospermia, respectively. These abnormal phenotypes may involve meiosis- and motility-related genes such as LDHC, DNHD1, UBQLN3, and NUP98. Translocation is thus a risk factor for sperm morphological abnormalities and motility deficiency. The interaction network of 22 genes on breakpoints suggests that they contribute to spermatogenesis as a group. In conclusion, this study highlighted the importance of investigating genes linked to sperm morphology, together with chromosome 17 translocation and reproductive risks. For patients interested in screening before a future pregnancy, we recommend preimplantation genetic diagnosis to reduce the risk of karyotypically unbalanced foetuses and birth defects.
Collapse
Affiliation(s)
- Shan Huang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yingting Huang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shan Li
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yu He
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
2
|
Shi Y, Li X, Ju D, Li Y, Zhang X, Zhang Y. Abnormal chromosomes identification using chromosomal microarray. J OBSTET GYNAECOL 2022; 42:2025-2032. [PMID: 35659171 DOI: 10.1080/01443615.2022.2074786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this study, we presented a case series to highlight the chromosomal microarray (CMA) in identifying chromosomal abnormalities which is undetectable by conventional karyotyping or known abnormal chromosomes without clear diagnosis. Extensive studies showed that CMA was gradually accepted as a prenatal invasive testing during pregnancy. The aim of this study was to evaluate the diagnostic effect of CMA for foetuses with abnormal chromosomes unrecognised by conventional karyotyping. Pregnant women who need prenatal diagnosis with all indications were enrolled in this study. For aberrant cytogenetic findings that cannot be defined by routine karyotyping, single nucleotide polymorphism array (SNP-array) was used. Six cases with abnormal karyotype were included in the study. With higher resolution of translocation breakpoints, CMA could detect smaller chromosomal imbalances that were undetectable by karyotyping. This study highlights the value of CMA for the detection of submicroscopic abnormalities in foetuses that cannot be detected by conventional karyotyping. Impact StatementWhat is already known on this subject? Chromosomal microarray (CMA) offers additional diagnostic benefits by revealing submicroscopic imbalances or copy number variations (CNVs) that are too small to be identified on a standard G-banded chromosome preparation.What do the results of this study add? We added a case series to highlight the CMA in identifying chromosomal abnormalities not detectable by conventional karyotyping or known abnormal chromosomes without clear diagnosis.What are the implications of these findings for clinical practice and/or further research? This study highlights the value of CMA in the case of associated foetuses with submicroscopic abnormalities that cannot detect by conventional karyotyping.
Collapse
Affiliation(s)
- Yunfang Shi
- Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaozhou Li
- Tianjin Medical University General Hospital, Tianjin, China
| | - Duan Ju
- Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Li
- Tianjin Medical University General Hospital, Tianjin, China
| | - Xiuling Zhang
- Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Zhang
- Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
3
|
Pasińska M, Łazarczyk E, Repczyńska A, Sobczyńska-Tomaszewska A, Zimowski J, Runge A, Haus O. Clinical Importance of aCGH in Genetic Counselling of Children with Psychomotor Retardation. Appl Clin Genet 2022; 15:27-38. [PMID: 35603035 PMCID: PMC9116409 DOI: 10.2147/tacg.s357136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction The X and Y chromosomes are responsible for the determination and differentiation of the gonads, and their numerical and structural abnormalities may cause the abnormal development of secondary sex characteristics. The presence of abnormalities concerning X chromosome can also contribute to many genetically heterogeneous diseases associated with cognitive impairment and intellectual disability. Purpose This study shows the effect of aberrations of the maternal X chromosome on the abnormal development of the child. Patients and Methods Ten women aged 26 to 40 years were consulted in genetic counselling clinic and subsequently subjected to cytogenetic and molecular tests due to abnormal psychomotor development of their children, in whom structural aberrations of the X chromosome had been detected. Results Two women were diagnosed with changes in karyotype: 46,X,der(X)t(X;Y)(p22.3;q11.2) in one and 46,X,inv(X)(p21.2q13). Five women were diagnosed with microduplications in the short arm of the X chromosome; dupXp22.31 in one, and in four women dupXp22.33. The remaining three women were diagnosed with duplication in the long arm of the X chromosome; dupXq25 in one and dupXq26.3 in two women. Conclusion Genetic analysis of the X chromosome, based on cytogenetic and molecular methods of the highest available resolution, is extremely important in women with reproductive failure. These methods allow establishing accurately the breakpoints and rearrangements in chromosomes, and assessment of the copy number variation (CNV) can explain phenotypic variability with apparently similar aberrations. A more precise characterization of the alterations is necessary for the correct genetic diagnosis, as well as determination of the carrier status and genetic risk in family members.
Collapse
Affiliation(s)
- Magdalena Pasińska
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Ewelina Łazarczyk
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Anna Repczyńska
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
| | | | - Janusz Zimowski
- Department of Genetics, Institute of Psychiatry and Neurology, Warszawa, Poland
| | - Agata Runge
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Olga Haus
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
4
|
Markova ZG, Minzhenkova ME, Bessonova LA, Shilova NV. A new case of 17p13.3p13.1 microduplication resulted from unbalanced translocation: clinical and molecular cytogenetic characterization. Mol Cytogenet 2021; 14:41. [PMID: 34465353 PMCID: PMC8408977 DOI: 10.1186/s13039-021-00562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/29/2021] [Indexed: 11/30/2022] Open
Abstract
Copy number gain 17 p13.3p13.1 was detected by chromosomal microarray (CMA) in a girl with developmental/speech delay and facial dysmorphism. FISH studies made it possible to establish that the identified genomic imbalance is the unbalanced t(9;17) translocation of maternal origin. Clinical features of the patient are also discussed. The advisability of using the combination of CMA and FISH analysis is shown. Copy number gains detected by clinical CMA should be confirmed using FISH analysis in order to determine the physical location of the duplicated segment. Parental follow-up studies is an important step to determine the origin of genomic imbalance. This approach not only allows a most comprehensive characterization of an identified chromosomal/genomic imbalance but also provision of an adequate medical and genetic counseling for a family taking into account a balanced chromosomal rearrangement.
Collapse
Affiliation(s)
- Zhanna G Markova
- Research Centre for Medical Genetics, Moskvorechye St., 1, Moscow, Russia, 115522.
| | - Marina E Minzhenkova
- Research Centre for Medical Genetics, Moskvorechye St., 1, Moscow, Russia, 115522
| | - Lyudmila A Bessonova
- Research Centre for Medical Genetics, Moskvorechye St., 1, Moscow, Russia, 115522
| | - Nadezda V Shilova
- Research Centre for Medical Genetics, Moskvorechye St., 1, Moscow, Russia, 115522
| |
Collapse
|
5
|
Yuan S, Cheng D, Luo K, Li X, Hu L, Hu H, Wu X, Xie P, Lu C, Lu G, Lin G, Gong F, Tan YQ. Reproductive risks and preimplantation genetic testing intervention for X-autosome translocation carriers. Reprod Biomed Online 2021; 43:73-80. [PMID: 33931368 DOI: 10.1016/j.rbmo.2021.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 11/26/2022]
Abstract
RESEARCH QUESTION What is the genetic cause of multiple congenital disabilities in a girl with a maternal balanced X-autosome translocation [t(X-A)]? Is preimplantation genetic testing (PGT), to distinguish non-carrier from euploid/balanced embryos and prioritize transfer, an effective and applicable strategy for couples with t(X-A)? DESIGN Karyotype analysis, whole-exome sequencing and X inactivation analysis were performed for a girl with congenital cardiac anomalies, language impairment and mild neurodevelopmental delay. PGT based on next-generation sequencing after microdissecting junction region (MicroSeq) to distinguish non-carrier and carrier embryos was used in three couples with a female t(X-A) carrier (cases 1-3). RESULTS The girl carried a maternal balanced translocation 46,X,t(X;1)(q28;p31.1). Whole-exome sequencing revealed no monogenic mutation related to her phenotype, but she carried a rare skewed inactivation of the translocated X chromosome that spread to the adjacent interstitial 1p segment, contrary to her mother. All translocation breakpoints in cases 1-3 were successfully identified and each couple underwent one PGT cycle. Thirty oocytes were retrieved, and 13 blastocysts were eligible for biopsy, of which six embryos had a balanced translocation and only four were non-carriers. Three cryopreserved embryo transfers with non-carrier status embryos resulted in the birth of two healthy children (one girl and one boy), who were subsequently confirmed to have normal karyotypes. CONCLUSIONS This study reported a girl with multiple congenital disabilities associated with a maternal balanced t(X-A) and verified that the distinction between non-carrier and carrier embryos is an effective and applicable strategy to avoid transferring genetic and reproductive risks to the offspring of t(X-A) carriers.
Collapse
Affiliation(s)
- Shimin Yuan
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha Hunan, China; Clinical Research Center For Reproduction and Genetics in Hunan Province, Changsha Hunan, China
| | - Dehua Cheng
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha Hunan, China; Clinical Research Center For Reproduction and Genetics in Hunan Province, Changsha Hunan, China
| | - Keli Luo
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha Hunan, China; Clinical Research Center For Reproduction and Genetics in Hunan Province, Changsha Hunan, China
| | - Xiurong Li
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha Hunan, China; Clinical Research Center For Reproduction and Genetics in Hunan Province, Changsha Hunan, China
| | - Liang Hu
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha Hunan, China; Clinical Research Center For Reproduction and Genetics in Hunan Province, Changsha Hunan, China; Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha Hunan, China; National Engineering and Research Center of Human Stem Cells, Changsha Hunan, China; HC Key Laboratory of Human Stem Cell and Reproductive Engineering (Central South University), Changsha Hunan, China
| | - Hao Hu
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha Hunan, China; Clinical Research Center For Reproduction and Genetics in Hunan Province, Changsha Hunan, China
| | - Xianhong Wu
- National Engineering and Research Center of Human Stem Cells, Changsha Hunan, China
| | - Pingyuan Xie
- National Engineering and Research Center of Human Stem Cells, Changsha Hunan, China
| | - Changfu Lu
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha Hunan, China; Clinical Research Center For Reproduction and Genetics in Hunan Province, Changsha Hunan, China; Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha Hunan, China; National Engineering and Research Center of Human Stem Cells, Changsha Hunan, China; HC Key Laboratory of Human Stem Cell and Reproductive Engineering (Central South University), Changsha Hunan, China
| | - Guangxiu Lu
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha Hunan, China; Clinical Research Center For Reproduction and Genetics in Hunan Province, Changsha Hunan, China; Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha Hunan, China; National Engineering and Research Center of Human Stem Cells, Changsha Hunan, China; HC Key Laboratory of Human Stem Cell and Reproductive Engineering (Central South University), Changsha Hunan, China
| | - Ge Lin
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha Hunan, China; Clinical Research Center For Reproduction and Genetics in Hunan Province, Changsha Hunan, China; Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha Hunan, China; National Engineering and Research Center of Human Stem Cells, Changsha Hunan, China; HC Key Laboratory of Human Stem Cell and Reproductive Engineering (Central South University), Changsha Hunan, China
| | - Fei Gong
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha Hunan, China; Clinical Research Center For Reproduction and Genetics in Hunan Province, Changsha Hunan, China; Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha Hunan, China; National Engineering and Research Center of Human Stem Cells, Changsha Hunan, China; HC Key Laboratory of Human Stem Cell and Reproductive Engineering (Central South University), Changsha Hunan, China.
| | - Yue-Qiu Tan
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha Hunan, China; Clinical Research Center For Reproduction and Genetics in Hunan Province, Changsha Hunan, China; Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha Hunan, China; HC Key Laboratory of Human Stem Cell and Reproductive Engineering (Central South University), Changsha Hunan, China.
| |
Collapse
|