2
|
Drouet DE, Liu S, Crawford DC. Assessment of multi-population polygenic risk scores for lipid traits in African Americans. PeerJ 2023; 11:e14910. [PMID: 37214096 PMCID: PMC10198155 DOI: 10.7717/peerj.14910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/25/2023] [Indexed: 05/24/2023] Open
Abstract
Polygenic risk scores (PRS) based on genome-wide discoveries are promising predictors or classifiers of disease development, severity, and/or progression for common clinical outcomes. A major limitation of most risk scores is the paucity of genome-wide discoveries in diverse populations, prompting an emphasis to generate these needed data for trans-population and population-specific PRS construction. Given diverse genome-wide discoveries are just now being completed, there has been little opportunity for PRS to be evaluated in diverse populations independent from the discovery efforts. To fill this gap, we leverage here summary data from a recent genome-wide discovery study of lipid traits (HDL-C, LDL-C, triglycerides, and total cholesterol) conducted in diverse populations represented by African Americans, Hispanics, Asians, Native Hawaiians, Native Americans, and others by the Population Architecture using Genomics and Epidemiology (PAGE) Study. We constructed lipid trait PRS using PAGE Study published genetic variants and weights in an independent African American adult patient population linked to de-identified electronic health records and genotypes from the Illumina Metabochip (n = 3,254). Using multi-population lipid trait PRS, we assessed levels of association for their respective lipid traits, clinical outcomes (cardiovascular disease and type 2 diabetes), and common clinical labs. While none of the multi-population PRS were strongly associated with the tested trait or outcome, PRSLDL-Cwas nominally associated with cardiovascular disease. These data demonstrate the complexity in applying PRS to real-world clinical data even when data from multiple populations are available.
Collapse
Affiliation(s)
- Domenica E. Drouet
- Department of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Shiying Liu
- Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States of America
| | - Dana C. Crawford
- Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States of America
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, United States of America
- Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States of America
| |
Collapse
|
3
|
Rout M, Lerner M, Blackett PR, Peyton MD, Stavrakis S, Sidorov E, Sanghera DK. Ethnic differences in ApoC-III concentration and the risk of cardiovascular disease: No evidence for the cardioprotective role of rare/loss of function APOC3 variants in non-Europeans. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2022; 13:100128. [PMID: 35528316 PMCID: PMC9075110 DOI: 10.1016/j.ahjo.2022.100128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Hypertriglyceridemia is as an independent risk factor for cardiovascular disease (CVD). Apolipoprotein C-III (ApoC-III) is known to regulate triglyceride (TG) metabolism. However, the causal association between ApoC-III and CVD development is unclear. The objectives were to examine the impact of ApoC-III concentration on TG and lipoproteins and investigate the role of known rare loss-of-function APOC3 variants for modulating ApoC-III, TG concentrations and CVD risk in different ethnic groups. METHODS Plasma ApoC-III levels were measured in a multiethnic sample of 518 individuals comprising 271 Asian Indians (Sikhs), 87 Caucasians, 80 African Americans, and 80 Hispanics. RESULTS ApoC-III levels showed a robust association with TG in Asian Indians (r = 0.5, p = 1.1 × 10-23), Caucasians (r = 0.4, p = 7.2 × 10-4), and Hispanics (r = 0.9, p = 2.7x × 10-28). African Americans had lowest ApoC-III and TG concentrations and highest (44%) prevalence of coronary artery disease (CAD). ApoC-III levels correlated with fasting blood glucose (r = 0.25, p = 6.1 × 10-5) in Asian Indians and central adiposity in Hispanics (waist: r = 0.22, p = 0.05; waist-hip ratio: r = 0.24, p = 0.04). The carriers of rare variants IVS1-2G-A (rs373975305); A43T (rs147210663) and IVS3 + 1G-T (rs140621530) showed high TG but not low ApoC-III levels in Asian Indians and Caucasians. CONCLUSION These results highlight the challenges of generalizing antisense ApoC-III inhibition for treating atherosclerotic disease in dyslipidemia that may benefit only specific sub-populations. The observed ethnic differences in ApoC-III concentrations and CAD risk factors, emphasize in-depth genetic and metabolomics evaluations on diverse ancestries.
Collapse
Affiliation(s)
- Madhusmita Rout
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Megan Lerner
- Department of Surgery, Oklahoma University of Health Sciences Center, Oklahoma City, OK, USA
| | - Piers R. Blackett
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Marvin D. Peyton
- Department of Surgery, Oklahoma University of Health Sciences Center, Oklahoma City, OK, USA
| | - Stavros Stavrakis
- Department of Cardiology, Oklahoma University of Health Sciences Center, Oklahoma City, OK, USA
| | - Evgeny Sidorov
- Department of Neurology, University of Oklahoma Health Sciences Center, 920 S.L Young Blvd #2040, 73104 Oklahoma City, OK, USA
| | - Dharambir K. Sanghera
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
4
|
Goyal S, Tanigawa Y, Zhang W, Chai JF, Almeida M, Sim X, Lerner M, Chainakul J, Ramiu JG, Seraphin C, Apple B, Vaughan A, Muniu J, Peralta J, Lehman DM, Ralhan S, Wander GS, Singh JR, Mehra NK, Sidorov E, Peyton MD, Blackett PR, Curran JE, Tai ES, van Dam R, Cheng CY, Duggirala R, Blangero J, Chambers JC, Sabanayagam C, Kooner JS, Rivas MA, Aston CE, Sanghera DK. APOC3 genetic variation, serum triglycerides, and risk of coronary artery disease in Asian Indians, Europeans, and other ethnic groups. Lipids Health Dis 2021; 20:113. [PMID: 34548093 PMCID: PMC8456544 DOI: 10.1186/s12944-021-01531-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hypertriglyceridemia has emerged as a critical coronary artery disease (CAD) risk factor. Rare loss-of-function (LoF) variants in apolipoprotein C-III have been reported to reduce triglycerides (TG) and are cardioprotective in American Indians and Europeans. However, there is a lack of data in other Europeans and non-Europeans. Also, whether genetically increased plasma TG due to ApoC-III is causally associated with increased CAD risk is still unclear and inconsistent. The objectives of this study were to verify the cardioprotective role of earlier reported six LoF variants of APOC3 in South Asians and other multi-ethnic cohorts and to evaluate the causal association of TG raising common variants for increasing CAD risk. METHODS We performed gene-centric and Mendelian randomization analyses and evaluated the role of genetic variation encompassing APOC3 for affecting circulating TG and the risk for developing CAD. RESULTS One rare LoF variant (rs138326449) with a 37% reduction in TG was associated with lowered risk for CAD in Europeans (p = 0.007), but we could not confirm this association in Asian Indians (p = 0.641). Our data could not validate the cardioprotective role of other five LoF variants analysed. A common variant rs5128 in the APOC3 was strongly associated with elevated TG levels showing a p-value 2.8 × 10- 424. Measures of plasma ApoC-III in a small subset of Sikhs revealed a 37% increase in ApoC-III concentrations among homozygous mutant carriers than the wild-type carriers of rs5128. A genetically instrumented per 1SD increment of plasma TG level of 15 mg/dL would cause a mild increase (3%) in the risk for CAD (p = 0.042). CONCLUSIONS Our results highlight the challenges of inclusion of rare variant information in clinical risk assessment and the generalizability of implementation of ApoC-III inhibition for treating atherosclerotic disease. More studies would be needed to confirm whether genetically raised TG and ApoC-III concentrations would increase CAD risk.
Collapse
Affiliation(s)
- Shiwali Goyal
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Rm 317 BMSB, Oklahoma City, OK, 73104, USA
| | - Yosuke Tanigawa
- Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, California, USA
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, Imperial College London, London, W2 1PG, UK
- Department of Cardiology, Ealing Hospital, Middlesex, UB1 3HW, UK
| | - Jin-Fang Chai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore , 117549, Singapore
| | - Marcio Almeida
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore , 117549, Singapore
| | - Megan Lerner
- Department of Surgery, Oklahoma University of Health Sciences Center, Oklahoma City, OK, USA
| | - Juliane Chainakul
- Department of Neurology, University of Oklahoma Health Sciences Center, 920 S. L Young Blvd #2040, Oklahoma City, OK, 73104, USA
| | - Jonathan Garcia Ramiu
- Department of Neurology, University of Oklahoma Health Sciences Center, 920 S. L Young Blvd #2040, Oklahoma City, OK, 73104, USA
| | - Chanel Seraphin
- Department of Neurology, University of Oklahoma Health Sciences Center, 920 S. L Young Blvd #2040, Oklahoma City, OK, 73104, USA
| | - Blair Apple
- Department of Neurology, University of Oklahoma Health Sciences Center, 920 S. L Young Blvd #2040, Oklahoma City, OK, 73104, USA
| | - April Vaughan
- Department of Neurology, University of Oklahoma Health Sciences Center, 920 S. L Young Blvd #2040, Oklahoma City, OK, 73104, USA
| | - James Muniu
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Rm 317 BMSB, Oklahoma City, OK, 73104, USA
| | - Juan Peralta
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Donna M Lehman
- Departments of Medicine and Epidemiology and Biostatistics, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Sarju Ralhan
- Hero DMC Heart Institute, Ludhiana, Punjab, India
| | | | - Jai Rup Singh
- Central University of Punjab, Bathinda, Punjab, India
| | - Narinder K Mehra
- All India Institute of Medical Sciences and Research, New Delhi, India
| | - Evgeny Sidorov
- Department of Neurology, University of Oklahoma Health Sciences Center, 920 S. L Young Blvd #2040, Oklahoma City, OK, 73104, USA
| | - Marvin D Peyton
- Department of Surgery, Oklahoma University of Health Sciences Center, Oklahoma City, OK, USA
| | - Piers R Blackett
- Department of Pediatrics, Section of Endocrinology, Oklahoma University of Health Sciences Center, Oklahoma City, OK, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore , 117549, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University Health System, Singapore , 119228, Singapore
- Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Rob van Dam
- Department of Cardiology, Ealing Hospital, Middlesex, UB1 3HW, UK
- Department of Medicine, Yong Loo Lin School of Medicine, National University Health System, Singapore , 119228, Singapore
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ching-Yu Cheng
- Duke-NUS Medical School, Singapore, 169857, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 168751, Singapore
- National University of Singapore, Singapore, 119077, Singapore
| | - Ravindranath Duggirala
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - John C Chambers
- Department of Epidemiology and Biostatistics, Imperial College London, London, W2 1PG, UK
- Department of Cardiology, Ealing Hospital, Middlesex, UB1 3HW, UK
- Lee Kong Chan School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
- Imperial College Healthcare NHS Trust, Imperial College London, London, W12 0HS, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, W2 1PG, UK
| | - Charumathi Sabanayagam
- Duke-NUS Medical School, Singapore, 169857, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 168751, Singapore
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital, Middlesex, UB1 3HW, UK
- Imperial College Healthcare NHS Trust, Imperial College London, London, W12 0HS, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, W2 1PG, UK
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| | - Manuel A Rivas
- Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, California, USA
| | - Christopher E Aston
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Rm 317 BMSB, Oklahoma City, OK, 73104, USA
| | - Dharambir K Sanghera
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Rm 317 BMSB, Oklahoma City, OK, 73104, USA.
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
5
|
Read RW, Schlauch KA, Lombardi VC, Cirulli ET, Washington NL, Lu JT, Grzymski JJ. Genome-Wide Identification of Rare and Common Variants Driving Triglyceride Levels in a Nevada Population. Front Genet 2021; 12:639418. [PMID: 33763119 PMCID: PMC7982958 DOI: 10.3389/fgene.2021.639418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/12/2021] [Indexed: 01/08/2023] Open
Abstract
Clinical conditions correlated with elevated triglyceride levels are well-known: coronary heart disease, hypertension, and diabetes. Underlying genetic and phenotypic mechanisms are not fully understood, partially due to lack of coordinated genotypic-phenotypic data. Here we use a subset of the Healthy Nevada Project, a population of 9,183 sequenced participants with longitudinal electronic health records to examine consequences of altered triglyceride levels. Specifically, Healthy Nevada Project participants sequenced by the Helix Exome+ platform were cross-referenced to their electronic medical records to identify: (1) rare and common single-variant genome-wide associations; (2) gene-based associations using a Sequence Kernel Association Test; (3) phenome-wide associations with triglyceride levels; and (4) pleiotropic variants linked to triglyceride levels. The study identified 549 significant single-variant associations (p < 8.75 × 10-9), many in chromosome 11's triglyceride hotspot: ZPR1, BUD13, APOC3, APOA5. A well-known protective loss-of-function variant in APOC3 (R19X) was associated with a 51% decrease in triglyceride levels in the cohort. Sixteen gene-based triglyceride associations were identified; six of these genes surprisingly did not include a single variant with significant associations. Results at the variant and gene level were validated with the UK Biobank. The combination of a single-variant genome-wide association, a gene-based association method, and phenome wide-association studies identified rare and common variants, genes, and phenotypes associated with elevated triglyceride levels, some of which may have been overlooked with standard approaches.
Collapse
Affiliation(s)
- Robert W. Read
- Center for Genomic Medicine, Desert Research Institute, Reno, NV, United States
| | - Karen A. Schlauch
- Center for Genomic Medicine, Desert Research Institute, Reno, NV, United States
| | - Vincent C. Lombardi
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno, Reno, NV, United States
| | | | | | - James T. Lu
- Helix Opco, LLC., San Mateo, CA, United States
| | - Joseph J. Grzymski
- Center for Genomic Medicine, Desert Research Institute, Reno, NV, United States
- Renown Health, Reno, NV, United States
| |
Collapse
|