1
|
Sharma P, Maklashina E, Voehler M, Balintova S, Dvorakova S, Kraus M, Hadrava Vanova K, Nahacka Z, Zobalova R, Boukalova S, Cunatova K, Mracek T, Ghayee HK, Pacak K, Rohlena J, Neuzil J, Cecchini G, Iverson TM. Disordered-to-ordered transitions in assembly factors allow the complex II catalytic subunit to switch binding partners. Nat Commun 2024; 15:473. [PMID: 38212624 PMCID: PMC10784507 DOI: 10.1038/s41467-023-44563-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/19/2023] [Indexed: 01/13/2024] Open
Abstract
Complex II (CII) activity controls phenomena that require crosstalk between metabolism and signaling, including neurodegeneration, cancer metabolism, immune activation, and ischemia-reperfusion injury. CII activity can be regulated at the level of assembly, a process that leverages metastable assembly intermediates. The nature of these intermediates and how CII subunits transfer between metastable complexes remains unclear. In this work, we identify metastable species containing the SDHA subunit and its assembly factors, and we assign a preferred temporal sequence of appearance of these species during CII assembly. Structures of two species show that the assembly factors undergo disordered-to-ordered transitions without the appearance of significant secondary structure. The findings identify that intrinsically disordered regions are critical in regulating CII assembly, an observation that has implications for the control of assembly in other biomolecular complexes.
Collapse
Affiliation(s)
- Pankaj Sharma
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Elena Maklashina
- Molecular Biology Division, San Francisco VA Health Care System, San Francisco, CA, 94121, USA
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, 94158, USA
| | - Markus Voehler
- Department of Chemistry Vanderbilt University, Nashville, TN, 37232, USA
- Center for Structural Biology Vanderbilt University, Nashville, TN, 37232, USA
| | - Sona Balintova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague-West, Czech Republic
- Faculty of Science, Charles University, 128 00, Prague 2, Czech Republic
| | - Sarka Dvorakova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague-West, Czech Republic
| | - Michal Kraus
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague-West, Czech Republic
| | - Katerina Hadrava Vanova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague-West, Czech Republic
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Zuzana Nahacka
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague-West, Czech Republic
| | - Renata Zobalova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague-West, Czech Republic
| | - Stepana Boukalova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague-West, Czech Republic
| | - Kristyna Cunatova
- Institute of Physiology, Czech Academy of Sciences, Prague 4, 142 20, Prague, Czech Republic
| | - Tomas Mracek
- Institute of Physiology, Czech Academy of Sciences, Prague 4, 142 20, Prague, Czech Republic
| | - Hans K Ghayee
- Department of Medicine, Division of Endocrinology & Metabolism, University of Florida College of Medicine and Malcom Randall, VA Medical Center, Gainesville, FL, 32608, USA
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Jakub Rohlena
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague-West, Czech Republic
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague-West, Czech Republic.
- Faculty of Science, Charles University, 128 00, Prague 2, Czech Republic.
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD, 4222, Australia.
- 1st Faculty of Medicine, Charles University, 128 00, Prague 2, Czech Republic.
| | - Gary Cecchini
- Molecular Biology Division, San Francisco VA Health Care System, San Francisco, CA, 94121, USA.
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, 94158, USA.
| | - T M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
- Center for Structural Biology Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
2
|
Akkuratova N, Faure L, Kameneva P, Kastriti ME, Adameyko I. Developmental heterogeneity of embryonic neuroendocrine chromaffin cells and their maturation dynamics. Front Endocrinol (Lausanne) 2022; 13:1020000. [PMID: 36237181 PMCID: PMC9553123 DOI: 10.3389/fendo.2022.1020000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
During embryonic development, nerve-associated Schwann cell precursors (SCPs) give rise to chromaffin cells of the adrenal gland via the "bridge" transient stage, according to recent functional experiments and single cell data from humans and mice. However, currently existing data do not resolve the finest heterogeneity of developing chromaffin populations. Here we took advantage of deep SmartSeq2 transcriptomic sequencing to expand our collection of individual cells from the developing murine sympatho-adrenal anlage and uncover the microheterogeneity of embryonic chromaffin cells and their corresponding developmental paths. We discovered that SCPs on the splachnic nerve show a high degree of microheterogeneity corresponding to early biases towards either Schwann or chromaffin terminal fates. Furthermore, we found that a post-"bridge" population of developing chromaffin cells gives rise to persisting oxygen-sensing chromaffin cells and the two terminal populations (adrenergic and noradrenergic) via diverging differentiation paths. Taken together, we provide a thorough identification of novel markers of adrenergic and noradrenergic populations in developing adrenal glands and report novel differentiation paths leading to them.
Collapse
Affiliation(s)
- Natalia Akkuratova
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Louis Faure
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Polina Kameneva
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Anashkina AA, Leberfarb EY, Orlov YL. Recent Trends in Cancer Genomics and Bioinformatics Tools Development. Int J Mol Sci 2021; 22:ijms222212146. [PMID: 34830028 PMCID: PMC8618360 DOI: 10.3390/ijms222212146] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023] Open
Affiliation(s)
- Anastasia A. Anashkina
- The Digital Health Institute, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia;
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Y. Leberfarb
- Department of Medicinal Chemistry, Novosibirsk State Medical University, 630091 Novosibirsk, Russia;
| | - Yuriy L. Orlov
- The Digital Health Institute, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia;
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Life Sciences Department, Novosibirsk State University, 630090 Novosibirsk, Russia
- Agrarian and Technological Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
- Correspondence: or
| |
Collapse
|
4
|
Ahmed Y, Arif A, Manzoor Bhatti A, Ali Nasir S, Nofal S, Hamza A, Mughal UJ. Vagal Paraganglioma: A Rare Finding in a 31-Year-Old Male. Cureus 2021; 13:e18423. [PMID: 34733595 PMCID: PMC8557702 DOI: 10.7759/cureus.18423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 11/10/2022] Open
Abstract
Vagal paraganglioma is a rare finding that develops from paraganglionic tissue found around the vagus nerve; it has a prevalence of 0.012% of all tumors. It is the third most common paraganglioma of the head and neck but still accounts for less than 5% of these tumors, and it has a well-established female prevalence. It is a difficult tumor to identify early based on its symptoms alone and only a thorough investigation can help solidify its diagnosis. In this report, we discuss a presentation of this phenomenon that is not only unique in its manifestation but also a very difficult diagnosis due to its deceptive presentation and multiple extensions. These masses need a good surgical regime to be removed properly and postoperative complications are very frequent in most of these cases.
Collapse
Affiliation(s)
- Yashfeen Ahmed
- Internal Medicine, Combined Military Hospital Lahore, CMH Lahore Medical College, Lahore, PAK
| | - Anum Arif
- Vascular Surgery, Combined Military Hospital Lahore, CMH Lahore Medical College, Lahore, PAK
| | - Ahsin Manzoor Bhatti
- Vascular Surgery, Combined Military Hospital Lahore, CMH Lahore Medical College, Lahore, PAK
| | - Shahbaz Ali Nasir
- Internal Medicine, Combined Military Hospital Lahore, CMH Lahore Medical College, Lahore, PAK
| | - Sabih Nofal
- Vascular surgery, Combined Military Hospital Rawalpindi, Rawalpindi, PAK
| | - Ali Hamza
- Internal Medicine, Combined Military Hospital Lahore, CMH Lahore Medical College, Lahore, PAK
| | - Usman Jamil Mughal
- Vascular Surgery, Combined Military Hospital Lahore, CMH Lahore Medical College, Lahore, PAK
| |
Collapse
|
5
|
Zanfardino P, Doccini S, Santorelli FM, Petruzzella V. Tackling Dysfunction of Mitochondrial Bioenergetics in the Brain. Int J Mol Sci 2021; 22:8325. [PMID: 34361091 PMCID: PMC8348117 DOI: 10.3390/ijms22158325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Oxidative phosphorylation (OxPhos) is the basic function of mitochondria, although the landscape of mitochondrial functions is continuously growing to include more aspects of cellular homeostasis. Thanks to the application of -omics technologies to the study of the OxPhos system, novel features emerge from the cataloging of novel proteins as mitochondrial thus adding details to the mitochondrial proteome and defining novel metabolic cellular interrelations, especially in the human brain. We focussed on the diversity of bioenergetics demand and different aspects of mitochondrial structure, functions, and dysfunction in the brain. Definition such as 'mitoexome', 'mitoproteome' and 'mitointeractome' have entered the field of 'mitochondrial medicine'. In this context, we reviewed several genetic defects that hamper the last step of aerobic metabolism, mostly involving the nervous tissue as one of the most prominent energy-dependent tissues and, as consequence, as a primary target of mitochondrial dysfunction. The dual genetic origin of the OxPhos complexes is one of the reasons for the complexity of the genotype-phenotype correlation when facing human diseases associated with mitochondrial defects. Such complexity clinically manifests with extremely heterogeneous symptoms, ranging from organ-specific to multisystemic dysfunction with different clinical courses. Finally, we briefly discuss the future directions of the multi-omics study of human brain disorders.
Collapse
Affiliation(s)
- Paola Zanfardino
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Stefano Doccini
- IRCCS Fondazione Stella Maris, Calambrone, 56128 Pisa, Italy;
| | | | - Vittoria Petruzzella
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy;
| |
Collapse
|
6
|
Orlov YL, Voropaeva EN, Chen M, Baranova AV. Medical genomics at the Systems Biology and Bioinformatics (SBB-2019) school. BMC Med Genomics 2020; 13:127. [PMID: 32948185 PMCID: PMC7500028 DOI: 10.1186/s12920-020-00786-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Yuriy L. Orlov
- The Digital Health Institute, I.M.Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
- Research Institute of Internal and Preventive Medicine - Branch of the Institute of Cytology and Genetics SB RAS, 630089 Novosibirsk, Russia
| | - Elena N. Voropaeva
- Research Institute of Internal and Preventive Medicine - Branch of the Institute of Cytology and Genetics SB RAS, 630089 Novosibirsk, Russia
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, First Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, 310058 China
| | - Ancha V. Baranova
- George Mason University, Fairfax, VA 22030 USA
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| |
Collapse
|