1
|
Steinhäuser S, Silva P, Lenk L, Beder T, Hartmann A, Hänzelmann S, Fransecky L, Neumann M, Bastian L, Lipinski S, Richter K, Bultmann M, Hübner E, Xia S, Röllig C, Vogiatzi F, Schewe DM, Yumiceba V, Schultz K, Spielmann M, Baldus CD. Isocitrate dehydrogenase 1 mutation drives leukemogenesis by PDGFRA activation due to insulator disruption in acute myeloid leukemia (AML). Leukemia 2023; 37:134-142. [PMID: 36411356 PMCID: PMC9883162 DOI: 10.1038/s41375-022-01751-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/22/2022]
Abstract
Acute myeloid leukemia (AML) is characterized by complex molecular alterations and driver mutations. Elderly patients show increased frequencies of IDH mutations with high chemoresistance and relapse rates despite recent therapeutic advances. Besides being associated with global promoter hypermethylation, IDH1 mutation facilitated changes in 3D DNA-conformation by CTCF-anchor methylation and upregulated oncogene expression in glioma, correlating with poor prognosis. Here, we investigated the role of IDH1 p.R132H mutation in altering 3D DNA-architecture and subsequent oncogene activation in AML. Using public RNA-Seq data, we identified upregulation of tyrosine kinase PDGFRA in IDH1-mutant patients, correlating with poor prognosis. DNA methylation analysis identified CpG hypermethylation within a CTCF-anchor upstream of PDGFRA in IDH1-mutant patients. Increased PDGFRA expression, PDGFRA-CTCF methylation and decreased CTCF binding were confirmed in AML CRISPR cells with heterozygous IDH1 p.R132H mutation and upon exogenous 2-HG treatment. IDH1-mutant cells showed higher sensitivity to tyrosine kinase inhibitor dasatinib, which was supported by reduced blast count in a patient with refractory IDH1-mutant AML after dasatinib treatment. Our data illustrate that IDH1 p.R132H mutation leads to CTCF hypermethylation, disrupting DNA-looping and insulation of PDGFRA, resulting in PDGFRA upregulation in IDH1-mutant AML. Treatment with dasatinib may offer a novel treatment strategy for IDH1-mutant AML.
Collapse
Affiliation(s)
- Sophie Steinhäuser
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Patricia Silva
- Department of Hematology and Oncology, Charité University Hospital, Berlin, Germany
| | - Lennart Lenk
- Department of Pediatrics I, ALL-BFM Study Group, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thomas Beder
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Alina Hartmann
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Sonja Hänzelmann
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lars Fransecky
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Martin Neumann
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lorenz Bastian
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Simone Lipinski
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
- University Cancer Center Schleswig-Holstein (UCCSH), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Kathrin Richter
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Miriam Bultmann
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Emely Hübner
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Shuli Xia
- Kennedy Krieger Institute, Baltimore, MD, USA
- School of Medicine, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Christoph Röllig
- Department of Internal Medicine I, University Hospital Carl-Gustav-Carus, Dresden, Germany
| | - Fotini Vogiatzi
- Department of Pediatrics I, ALL-BFM Study Group, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Veronica Yumiceba
- Institute for Human Genetics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Kristin Schultz
- Institute for Human Genetics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Malte Spielmann
- Institute for Human Genetics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Claudia Dorothea Baldus
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany.
- University Cancer Center Schleswig-Holstein (UCCSH), University Hospital Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
2
|
Yuan D, Guo T, Zhu D, Ge H, Zhao Y, Huang A, Wang X, Cao X, He C, Qian H, Yu H. Exosomal lncRNA ATB Derived from Ovarian Cancer Cells Promotes Angiogenesis via Regulating miR-204-3p/TGFβR2 Axis. Cancer Manag Res 2022; 14:327-337. [PMID: 35115831 PMCID: PMC8801365 DOI: 10.2147/cmar.s330368] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/03/2021] [Indexed: 12/21/2022] Open
Abstract
Background Ovarian cancer is a life-threatening disease with a high mortality rate in women. Our previous work presented that long non-coding RNA (lncRNA) activated by transforming growth factor beta (TGF-β) (lncRNA ATB) played a role of oncogene in ovarian cancer. However, whether exosomal lncRNA ATB from ovarian cancer cells could regulate the tumorigenesis of ovarian cancer remains unclear. Methods RT-qPCR assay was performed to evaluate the level of lncRNA ATB in cancer cells (SKOV3 and A2780). In addition, ovarian cancer cells-secreted exosomes were collected with ultracentrifugation. CCK8 assay was performed to detect the viability of ovarian cells and HUVECs. Meanwhile, Western blot was performed to detect the expression of mechanism related protein and tube formation assay was used to observe the angiogenesis of HUVECs. Finally, xenograft mice model was used to verify the role of ovarian cancer cell-derived exosomes in vivo. Results Ovarian cancer cells-derived exosomes promoted the viability, angiogenesis and migration of HUVECs; however, knockdown of lncRNA ATB in HUVECs reversed these phenomena. In addition, exosomal lncRNA ATB promoted the tumorigenesis of ovarian cancer via regulating miR-204-3p/TGFβR2 axis. Furthermore, ovarian cancer cells-secreted exosomal lncRNA ATB increased tumor growth in vivo. Conclusion Exosomal lncRNA ATB derived from ovarian cancer cells could improve tumor microenvironment via regulating miR-204-3p/TGFβR2 axis. Thus, this study might provide new knowledge for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Donglan Yuan
- Department of Obstetrics and Gynecology, Taizhou People’s Hospital Affiliated to YangZhou University, Taizhou, Jiangsu, 225300, People’s Republic of China
| | - Ting Guo
- Center for Molecular Medicine, Taizhou People’s Hospital Affiliated to YangZhou University, Taizhou, Jiangsu, 225300, People’s Republic of China
| | - DanDan Zhu
- Department of Obstetrics and Gynecology, Taizhou People’s Hospital Affiliated to YangZhou University, Taizhou, Jiangsu, 225300, People’s Republic of China
| | - Hongshan Ge
- Department of Obstetrics and Gynecology, Taizhou People’s Hospital Affiliated to YangZhou University, Taizhou, Jiangsu, 225300, People’s Republic of China
| | - Yinling Zhao
- Department of Obstetrics and Gynecology, Taizhou People’s Hospital Affiliated to YangZhou University, Taizhou, Jiangsu, 225300, People’s Republic of China
| | - Aihua Huang
- Department of Obstetrics and Gynecology, Taizhou People’s Hospital Affiliated to YangZhou University, Taizhou, Jiangsu, 225300, People’s Republic of China
| | - Xiaosu Wang
- Department of Obstetrics and Gynecology, Taizhou People’s Hospital Affiliated to YangZhou University, Taizhou, Jiangsu, 225300, People’s Republic of China
| | - Xiuhong Cao
- Department of Operation, Taizhou People’s Hospital Affiliated to YangZhou University, Taizhou, Jiangsu, 225300, People’s Republic of China
| | - CuiQin He
- Department of Obstetrics and Gynecology, Taizhou People’s Hospital Affiliated to YangZhou University, Taizhou, Jiangsu, 225300, People’s Republic of China
| | - Hua Qian
- Department of Obstetrics and Gynecology, Taizhou People’s Hospital Affiliated to YangZhou University, Taizhou, Jiangsu, 225300, People’s Republic of China
- Correspondence: Hua Qian Department of Obstetrics and Gynecology, Taizhou People’s Hospital Affiliated to YangZhou University, 399 Hailing Road, Hailing District, Taizhou, Jiangsu, 225300, People’s Republic of China Email
| | - Hong Yu
- Department of Pathology, Taizhou People’s Hospital Affiliated to YangZhou University, Taizhou, Jiangsu, 225300, People’s Republic of China
- Hong Yu Department of Pathology, Taizhou People’s Hospital Affiliated to YangZhou University, 399 Hailing Road, Hailing District, Taizhou, Jiangsu, 225300, People’s Republic of China Email
| |
Collapse
|
3
|
Li F, Michelson AP, Foraker R, Zhan M, Payne PRO. Computational analysis to repurpose drugs for COVID-19 based on transcriptional response of host cells to SARS-CoV-2. BMC Med Inform Decis Mak 2021; 21:15. [PMID: 33413329 PMCID: PMC7789899 DOI: 10.1186/s12911-020-01373-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/16/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Coronavirus Disease 2019 (COVID-19) pandemic has infected over 10 million people globally with a relatively high mortality rate. There are many therapeutics undergoing clinical trials, but there is no effective vaccine or therapy for treatment thus far. After affected by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), molecular signaling pathways of host cells play critical roles during the life cycle of SARS-CoV-2. Thus, it is significant to identify the involved molecular signaling pathways within the host cells. Drugs targeting these molecular signaling pathways could be potentially effective for COVID-19 treatment. METHODS In this study, we developed a novel integrative analysis approach to identify the related molecular signaling pathways within host cells, and repurposed drugs as potentially effective treatments for COVID-19, based on the transcriptional response of host cells. RESULTS We identified activated signaling pathways associated with the infection caused SARS-CoV-2 in human lung epithelial cells through integrative analysis. Then, the activated gene ontologies (GOs) and super GOs were identified. Signaling pathways and GOs such as MAPK, JNK, STAT, ERK, JAK-STAT, IRF7-NFkB signaling, and MYD88/CXCR6 immune signaling were particularly activated. Based on the identified signaling pathways and GOs, a set of potentially effective drugs were repurposed by integrating the drug-target and reverse gene expression data resources. In addition to many drugs being evaluated in clinical trials, the dexamethasone was top-ranked in the prediction, which was the first reported drug to be able to significantly reduce the death rate of COVID-19 patients receiving respiratory support. CONCLUSIONS The integrative genomics data analysis and results can be helpful to understand the associated molecular signaling pathways within host cells, and facilitate the discovery of effective drugs for COVID-19 treatment.
Collapse
Affiliation(s)
- Fuhai Li
- Institute for Informatics (I2), Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| | - Andrew P Michelson
- Institute for Informatics (I2), Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Pulmonary and Critical Care Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Randi Foraker
- Institute for Informatics (I2), Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Ming Zhan
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD, USA
| | - Philip R O Payne
- Institute for Informatics (I2), Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
4
|
Zhang C, Mathé E, Ning X, Zhao Z, Wang K, Li L, Guo Y. The International Conference on Intelligent Biology and Medicine 2019 (ICIBM 2019): computational methods and applications in medical genomics. BMC Med Genomics 2020; 13:47. [PMID: 32241271 PMCID: PMC7119270 DOI: 10.1186/s12920-020-0678-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In this editorial, we briefly summarized the International Conference on Intelligent Biology and Medicine 2019 (ICIBM 2019) that was held on June 9-11, 2019 at Columbus, Ohio, USA. We further introduced the 19 research articles included in this supplement issue, covering four major areas, namely computational method development, genomics analysis, network-based analysis and biomarker prediction. The selected papers perform cutting edge computational research applied to a broad range of human diseases such as cancer, neural degenerative and chronic inflammatory disease. They also proposed solutions for fundamental medical genomics problems range from basic data processing and quality control to functional interpretation, biomarker and drug prediction, and database releasing.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Medical & Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN 46202 USA
| | - Ewy Mathé
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210 USA
| | - Xia Ning
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210 USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Lang Li
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210 USA
| | - Yan Guo
- Department of internal medicine, comprehensive cancer center, University of New Mexico, Albuquerque, NM 87131 USA
| |
Collapse
|