1
|
Mahurkar‐Joshi S, Thompson M, Villarruel E, Lewis JD, Lin LD, Farid M, Nayeb‐Hashemi H, Storage T, Weiss GA, Limketkai BN, Sauk JS, Mayer EA, Chang L. Genome-Wide DNA Methylation Identifies Potential Disease-Specific Biomarkers and Pathophysiologic Mechanisms in Irritable Bowel Syndrome, Inflammatory Bowel Disease, and Celiac Disease. Neurogastroenterol Motil 2025; 37:e14980. [PMID: 39673136 PMCID: PMC11748828 DOI: 10.1111/nmo.14980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND AND AIMS Irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and celiac disease (CeD) present with similar gastrointestinal (GI) symptoms. DNA methylation-based biomarkers have not been investigated as diagnostic biomarkers to classify these disorders. We aimed to study DNA methylation profiles of IBS, IBD, CeD, and healthy controls (HC), develop machine learning-based classifiers, and identify associated gene ontology (GO) terms. METHODS Genome-wide DNA methylation of peripheral blood mononuclear cells from 315 patients with IBS, IBD, CeD, and HC was measured using Illumina's 450K or EPIC arrays. A methylation dataset on 304 IBD and HC samples was used for external validation. Differential methylation was measured using general linear models. Classifiers were developed using penalized generalized linear models using double cross-validation controlling for confounders. Functional enrichment was assessed using GO. RESULTS Three hundred and fifteen participants (148 IBS, 47 IBD, 34 CeD, and 86 HC) had DNA methylation data. IBS-IBD and IBD-CeD showed the highest number of differentially methylated CpG sites followed by IBD-HC, CeD-HC, and IBS-HC. IBS-associated genes were enriched in cell adhesion and neuronal pathways, while IBD- and CeD-associated markers were enriched in inflammation and MHC class II pathways, respectively (p < 0.05). Classification performances assessed using area under the receiver operating characteristic curves (AUC) for IBS-IBD, IBS-CeD, and IBD-CeD were 0.80 (95% CI = 0.7-0.87, p = 6.75E-10), 0.78 (95% CI = 0.68-0.86, p = 4.57E-10), and 0.73 (95% CI = 0.62-0.83, p = 0.03), respectively. The performance of IBD-HC was successfully validated using external data (AUC = 0.74 [95% CI = 68-0.80, p < 0.001]). CONCLUSIONS Blood-based DNA methylation biomarkers can potentially distinguish chronic GI disorders that present with similar symptoms. GO suggested functional significance of the classifiers in disease-specific pathology.
Collapse
Affiliation(s)
- Swapna Mahurkar‐Joshi
- G. Oppenheimer Center for the Neurobiology of Stress and ResilienceLos AngelesCaliforniaUSA
- Vatche and Tamar Manoukian Division of Digestive DiseasesLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Mike Thompson
- Systems BiologyCentre for Genomic RegulationBarcelonaSpain
| | | | - James D. Lewis
- Division of Gastroenterology and HepatologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Lisa D. Lin
- Vatche and Tamar Manoukian Division of Digestive DiseasesLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Mary Farid
- Vatche and Tamar Manoukian Division of Digestive DiseasesLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Hamed Nayeb‐Hashemi
- Vatche and Tamar Manoukian Division of Digestive DiseasesLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Tina Storage
- Vatche and Tamar Manoukian Division of Digestive DiseasesLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Guy A. Weiss
- Vatche and Tamar Manoukian Division of Digestive DiseasesLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
- UCLA Celiac Disease ProgramLos AngelesCaliforniaUSA
| | - Berkeley N. Limketkai
- Vatche and Tamar Manoukian Division of Digestive DiseasesLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Jenny S. Sauk
- Vatche and Tamar Manoukian Division of Digestive DiseasesLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Emeran A. Mayer
- G. Oppenheimer Center for the Neurobiology of Stress and ResilienceLos AngelesCaliforniaUSA
- Vatche and Tamar Manoukian Division of Digestive DiseasesLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Lin Chang
- G. Oppenheimer Center for the Neurobiology of Stress and ResilienceLos AngelesCaliforniaUSA
- Vatche and Tamar Manoukian Division of Digestive DiseasesLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| |
Collapse
|
2
|
Tu G, Zhao C, Cai ZL, Huang XM, Tong SY, Wang N, Qian J. Development and validation of a nomogram diagnostic model for coronary slow flow patients: A cross-sectional study. Medicine (Baltimore) 2024; 103:e40044. [PMID: 39496058 PMCID: PMC11537578 DOI: 10.1097/md.0000000000040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/23/2024] [Indexed: 11/06/2024] Open
Abstract
In this study, risk factors for coronary slow flow (CSF) patients were examined, and a clinical prediction model was created. This study involved 573 patients who underwent coronary angiography at our hospital because of chest pain from January 2020 to April 2022. They were divided into CSF group (249 cases) and noncoronary slow flow (NCF) group (324 cases) according to the coronary blood flow results. According to a 7:3 ratio, the patients were categorized into a training group consisting of 402 cases and a validation group consisting of 171 cases. The outcome was assessed by employing multiple logistic regression analysis to examine the factors that influenced it. The model's recognizability was assessed by calculating the consistency index and plotting the receiver operating characteristic curve. Its consistency was assessed by calibration curve, decision curve, and Hosmer-Lemeshow testing goodness-of-fit. The multivariate model included factors such as male, BMI, smoking, diabetes, ursolic acid, and high-density lipoprotein cholesterol. The model validation showed that the consistency index was 0.714, and the external validation set had a consistency index of 0.741. The areas under the curve for the training and external validation sets were respectively 0.730 (95% CI: 0.681-0.779) and 0.770 (95%CI: 0.699-0.841). Nomogram calibration curves indicated intense calibration, and the results of the Hosmer-Lemeshow goodness-of-fit test indicated that χ² = 1.118, P = .572. The nomogram combining various risk factors can be used for individualized predictions of CSF patients and then facilitate prompt and specific treatment.
Collapse
Affiliation(s)
- Guang Tu
- Second Department of Interior, Lichuan County People’s Hospital of Jiangxi Province, Fuzhou, China
| | - Chen Zhao
- Second Department of Interior, Lichuan County People’s Hospital of Jiangxi Province, Fuzhou, China
| | - Zhong-Lan Cai
- Second Department of Interior, Lichuan County People’s Hospital of Jiangxi Province, Fuzhou, China
| | - Xiao-Mi Huang
- Department of Cardiovascular Medicine, Suizhou Hospital, Hubei Medicine University, Suizhou, China
| | - Sui-Yang Tong
- Department of Cardiovascular Medicine, Suizhou Hospital, Hubei Medicine University, Suizhou, China
| | - Neng Wang
- Department of Cardiovascular Medicine, Suizhou Hospital, Hubei Medicine University, Suizhou, China
| | - Jin Qian
- Department of Cardiovascular Medicine, Suizhou Hospital, Hubei Medicine University, Suizhou, China
| |
Collapse
|
3
|
Tomusiak A, Floro A, Tiwari R, Riley R, Matsui H, Andrews N, Kasler HG, Verdin E. Development of an epigenetic clock resistant to changes in immune cell composition. Commun Biol 2024; 7:934. [PMID: 39095531 PMCID: PMC11297166 DOI: 10.1038/s42003-024-06609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 07/14/2024] [Indexed: 08/04/2024] Open
Abstract
Epigenetic clocks are age predictors that use machine-learning models trained on DNA CpG methylation values to predict chronological or biological age. Increases in predicted epigenetic age relative to chronological age (epigenetic age acceleration) are connected to aging-associated pathologies, and changes in epigenetic age are linked to canonical aging hallmarks. However, epigenetic clocks rely on training data from bulk tissues whose cellular composition changes with age. Here, we found that human naive CD8+ T cells, which decrease in frequency during aging, exhibit an epigenetic age 15-20 years younger than effector memory CD8+ T cells from the same individual. Importantly, homogenous naive T cells isolated from individuals of different ages show a progressive increase in epigenetic age, indicating that current epigenetic clocks measure two independent variables, aging and immune cell composition. To isolate the age-associated cell intrinsic changes, we created an epigenetic clock, the IntrinClock, that did not change among 10 immune cell types tested. IntrinClock shows a robust predicted epigenetic age increase in a model of replicative senescence in vitro and age reversal during OSKM-mediated reprogramming.
Collapse
Affiliation(s)
- Alan Tomusiak
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
- Department of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, 90089, CA, USA
| | - Ariel Floro
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
- Department of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, 90089, CA, USA
| | - Ritesh Tiwari
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
| | - Rebeccah Riley
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
| | - Hiroyuki Matsui
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
| | - Nicolas Andrews
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
| | - Herbert G Kasler
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA.
| |
Collapse
|
4
|
Ivanova M, Bottiglieri L, Sajjadi E, Venetis K, Fusco N. Malignancies in Patients with Celiac Disease: Diagnostic Challenges and Molecular Advances. Genes (Basel) 2023; 14:376. [PMID: 36833303 PMCID: PMC9956047 DOI: 10.3390/genes14020376] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Celiac disease (CD) is a multiorgan autoimmune disorder of the chronic intestinal disease group characterized by duodenal inflammation in genetically predisposed individuals, precipitated by gluten ingestion. The pathogenesis of celiac disease is now widely studied, overcoming the limits of the purely autoimmune concept and explaining its hereditability. The genomic profiling of this condition has led to the discovery of numerous genes involved in interleukin signaling and immune-related pathways. The spectrum of disease manifestations is not limited to the gastrointestinal tract, and a significant number of studies have considered the possible association between CD and neoplasms. Patients with CD are found to be at increased risk of developing malignancies, with a particular predisposition of certain types of intestinal cancer, lymphomas, and oropharyngeal cancers. This can be partially explained by common cancer hallmarks present in these patients. The study of gut microbiota, microRNAs, and DNA methylation is evolving to find the any possible missing links between CD and cancer incidence in these patients. However, the literature is extremely mixed and, therefore, our understanding of the biological interplay between CD and cancer remains limited, with significant implications in terms of clinical management and screening protocols. In this review article, we seek to provide a comprehensive overview of the genomics, epigenomics, and transcriptomics data on CD and its relation to the most frequent types of neoplasms that may occur in these patients.
Collapse
Affiliation(s)
- Mariia Ivanova
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Luca Bottiglieri
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Elham Sajjadi
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Konstantinos Venetis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| |
Collapse
|
5
|
Song M, Bai H, Zhang P, Zhou X, Ying B. Promising applications of human-derived saliva biomarker testing in clinical diagnostics. Int J Oral Sci 2023; 15:2. [PMID: 36596771 PMCID: PMC9810734 DOI: 10.1038/s41368-022-00209-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/23/2022] [Accepted: 11/03/2022] [Indexed: 01/05/2023] Open
Abstract
Saliva testing is a vital method for clinical applications, for its noninvasive features, richness in substances, and the huge amount. Due to its direct anatomical connection with oral, digestive, and endocrine systems, clinical usage of saliva testing for these diseases is promising. Furthermore, for other diseases that seeming to have no correlations with saliva, such as neurodegenerative diseases and psychological diseases, researchers also reckon saliva informative. Tremendous papers are being produced in this field. Updated summaries of recent literature give newcomers a shortcut to have a grasp of this topic. Here, we focused on recent research about saliva biomarkers that are derived from humans, not from other organisms. The review mostly addresses the proceedings from 2016 to 2022, to shed light on the promising usage of saliva testing in clinical diagnostics. We recap the recent advances following the category of different types of biomarkers, such as intracellular DNA, RNA, proteins and intercellular exosomes, cell-free DNA, to give a comprehensive impression of saliva biomarker testing.
Collapse
Affiliation(s)
- Mengyuan Song
- grid.13291.380000 0001 0807 1581Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Bai
- grid.13291.380000 0001 0807 1581Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Zhang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & Human Saliva Laboratory & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & Human Saliva Laboratory & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Nemteanu R, Ciortescu I, Hincu CE, Clim A, Gheorghe L, Trifan A, Plesa A. Replacing the Burden of the Gluten Free Diet: Then, Now, and the Future. Int J Mol Sci 2022; 23:15108. [PMID: 36499446 PMCID: PMC9741045 DOI: 10.3390/ijms232315108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
Without a doubt, a majority of diseases are food-pattern-related. However, one disease stands out as an increasingly more common autoimmune-mediated enteropathy triggered by the ingestion of gluten. Celiac disease (CD) is an old disease, with changing clinical patterns, affecting any age, including infancy and adolescence, and becoming more frequent among the elderly. The gluten-free diet (GFD) has been the sole provider of clinical, serological, and histological improvement for patients with CD for more than seven decades. Nowadays, complete avoidance of dietary gluten is rarely possible because of the wide availability of wheat and other processed foods that contain even more gluten, to the detriment of gluten-free products. Undeniably, there is a definite need for replacing the burdensome GFD. An add-on therapy that could control the dietary transgressions and inadvertent gluten consumption that can possibly lead to overt CD should be considered while on GFD. Nevertheless, future drugs should be able to provide patients some freedom to self-manage CD and increase food independence, while actively reducing exposure and mucosal damage and alleviating GI symptoms. Numerous clinical trials assessing different molecules have already been performed with favorable outcomes, and hopefully they will soon be available for patient use.
Collapse
Affiliation(s)
- Roxana Nemteanu
- Medical I Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “Sfantul. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Irina Ciortescu
- Medical I Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “Sfantul. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Corina Elena Hincu
- Department of Radiology, “Sfantul Spiridon” University Hospital, 700111 Iasi, Romania
| | - Andreea Clim
- Medical I Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Liliana Gheorghe
- Medical I Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Department of Radiology, “Sfantul Spiridon” University Hospital, 700111 Iasi, Romania
| | - Anca Trifan
- Medical I Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “Sfantul. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Alina Plesa
- Medical I Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “Sfantul. Spiridon” University Hospital, 700111 Iasi, Romania
| |
Collapse
|
7
|
Gnodi E, Meneveri R, Barisani D. Celiac disease: From genetics to epigenetics. World J Gastroenterol 2022; 28:449-463. [PMID: 35125829 PMCID: PMC8790554 DOI: 10.3748/wjg.v28.i4.449] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/16/2021] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
Celiac disease (CeD) is a multifactorial autoimmune disorder spread worldwide. The exposure to gluten, a protein found in cereals like wheat, barley and rye, is the main environmental factor involved in its pathogenesis. Even if the genetic predisposition represented by HLA-DQ2 or HLA-DQ8 haplotypes is widely recognised as mandatory for CeD development, it is not enough to explain the total predisposition for the disease. Furthermore, the onset of CeD comprehend a wide spectrum of symptoms, that often leads to a delay in CeD diagnosis. To overcome this deficiency and help detecting people with increased risk for CeD, also clarifying CeD traits linked to disease familiarity, different studies have tried to make light on other predisposing elements. These were in many cases genetic variants shared with other autoimmune diseases. Since inherited traits can be regulated by epigenetic modifications, also induced by environmental factors, the most recent studies focused on the potential involvement of epigenetics in CeD. Epigenetic factors can in fact modulate gene expression with many mechanisms, generating more or less stable changes in gene expression without affecting the DNA sequence. Here we analyze the different epigenetic modifications in CeD, in particular DNA methylation, histone modifications, non-coding RNAs and RNA methylation. Special attention is dedicated to the additional predispositions to CeD, the involvement of epigenetics in developing CeD complications, the pathogenic pathways modulated by epigenetic factors such as microRNAs and the potential use of epigenetic profiling as biomarker to discriminate different classes of patients.
Collapse
Affiliation(s)
- Elisa Gnodi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy
| | - Raffaella Meneveri
- School of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy
| | - Donatella Barisani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy
| |
Collapse
|
8
|
Bangarusamy DK, Lakshmanan AP, Al-Zaidan S, Alabduljabbar S, Terranegra A. Nutri-epigenetics: the effect of maternal diet and early nutrition on the pathogenesis of autoimmune diseases. Minerva Pediatr (Torino) 2021; 73:98-110. [PMID: 33880901 DOI: 10.23736/s2724-5276.20.06166-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Autoimmune diseases comprise a wide group of diseases involving a self-response of the immune system against the host. The etiopathogenesis is very complex involving disease-specific factors but also environmental factors, among which the diet. Maternal diet during pregnancy as well as early nutrition recently attracted the interest of the scientists as contributing to the immune programming. In this paper, we reviewed the most recent literature on the effect of maternal diet and early nutrition in modulating the immune system in a selected subset of autoimmune diseases: type 1 diabetes, celiac disease, inflammatory bowel disease, juvenile idiopathic arthritis and rheumatoid arthritis. Particularly, we focused our narrative on the role of maternal and perinatal nutrition in the epigenetic mechanisms underlying the auto-immune response. Maternal diet during pregnancy as well as breastfeeding and early nutrition play a big role in many epigenetic mechanisms. Most of the nutrients consumed by the mother and the infant are known exerting epigenetic functions, such as folate, methionine, zinc, vitamins B12 and D, fibers, casein and gliadin, and they were linked to gene expression changes in the immune pathways. Despite the common role of maternal diet, breastfeeding and early nutrition in almost all the autoimmune diseases, each disease seems to have specific diet-driver epigenetic mechanisms that require further investigations. The research in this field is opening new routes to establishing a precision nutrition approach to the auto-immune diseases.
Collapse
Affiliation(s)
- Dhinoth K Bangarusamy
- Unit of Maternal and Child Health, Department of Research, Sidra Medicine, Doha, Qatar
| | - Arun P Lakshmanan
- Unit of Maternal and Child Health, Department of Research, Sidra Medicine, Doha, Qatar
| | - Sara Al-Zaidan
- Unit of Maternal and Child Health, Department of Research, Sidra Medicine, Doha, Qatar
| | - Shaikha Alabduljabbar
- Unit of Maternal and Child Health, Department of Research, Sidra Medicine, Doha, Qatar
| | - Annalisa Terranegra
- Unit of Maternal and Child Health, Department of Research, Sidra Medicine, Doha, Qatar -
| |
Collapse
|
9
|
García-Santisteban I, Romero-Garmendia I, Cilleros-Portet A, Bilbao JR, Fernandez-Jimenez N. Celiac disease susceptibility: The genome and beyond. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 358:1-45. [PMID: 33707051 DOI: 10.1016/bs.ircmb.2020.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Celiac Disease (CeD) is an immune-mediated complex disease that is triggered by the ingestion of gluten and develops in genetically susceptible individuals. It has been known for a long time that the Human Leucocyte Antigen (HLA) molecules DQ2 and DQ8 are necessary, although not sufficient, for the disease development, and therefore other susceptibility genes and (epi)genetic events must participate in CeD pathogenesis. The advances in Genomics during the last 15 years have made CeD one of the immune-related disorders with the best-characterized genetic component. In the present work, we will first review the main Genome-Wide Association Studies (GWAS) carried out in the disorder, and emphasize post-GWAS discoveries, including diverse integrative strategies, SNP prioritization approaches, and insights into the Microbiome through the host Genomics. Second, we will explore CeD-related Epigenetics and Epigenomics, mostly focusing on the emerging knowledge of the celiac methylome, and the vast but yet under-explored non-coding RNA (ncRNA) landscape. We conclude that much has been done in the field although there are still completely unvisited areas in the post-Genomics of CeD. Chromatin conformation and accessibility, and Epitranscriptomics are promising domains that need to be unveiled to complete the big picture of the celiac Genome.
Collapse
Affiliation(s)
- Iraia García-Santisteban
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Leioa, Spain
| | - Irati Romero-Garmendia
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Leioa, Spain
| | - Ariadna Cilleros-Portet
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Leioa, Spain
| | - Jose Ramon Bilbao
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Leioa, Spain; Spanish Biomedical Research Center in Diabetes and associated Metabolic Disorders, CIBERDEM, Madrid, Spain
| | - Nora Fernandez-Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Leioa, Spain.
| |
Collapse
|