1
|
Yuan Z, Yang M, Yuan Y. The Progress of Colorectal Polyposis Syndrome in Chinese Population. Clin Colon Rectal Surg 2023; 36:391-399. [PMID: 37795462 PMCID: PMC10547542 DOI: 10.1055/s-0043-1767708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The pathogenesis, clinical phenotype, treatment strategy, and family management of hereditary tumor syndromes are different from those of sporadic tumors. Nearly a quarter of patients with colorectal cancer show significant familial aggregation and genetic predisposition, and 5 to 10% are associated with definite genetic factors. According to the clinical phenotype, it can be divided into nonpolyposis syndrome and polyposis syndrome. Among the polyposis syndrome patients with definite clinical symptoms, there are still some patients with unknown etiology (especially attenuated familial adenomatous polyposis), which is a difficult problem in clinical diagnosis and treatment. Therefore, for this rare disease, it is urgent to carry out multicenter studies, complete the gene variation spectrum, explore new pathogenic factors, and accumulate clinical experience. This article mainly introduces the research progress and related work of colorectal polyposis syndrome in China.
Collapse
Affiliation(s)
- Zhijun Yuan
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mengyuan Yang
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang Provincial Clinical Research Center for CANCER, Cancer Center of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Yuan
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang Provincial Clinical Research Center for CANCER, Cancer Center of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Samborska M, Galli D, Achkar R, Thambyrajah S, Derwich K. Constitutional Mismatch Repair Deficiency Syndrome as a Cause of Numerous Malignancies in a Teenage Patient-A Case Report. J Pediatr Hematol Oncol 2023; 45:e917-e920. [PMID: 37526375 DOI: 10.1097/mph.0000000000002727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 06/15/2023] [Indexed: 08/02/2023]
Abstract
Constitutional mismatch repair deficiency syndrome is a genetic disorder resulting from a biallelic mutation in one of the following genes: MLH1, MSH2, MSH6, or PMS2. Individuals with constitutional mismatch repair deficiency are highly predisposed to develop both hematological and solid cancers in childhood, particularly lymphoma, brain tumors, and gastrointestinal neoplasms. We report a case of a boy diagnosed with B-cell acute lymphoblastic leukemia at the age of 3. In 2013, at the age of 6, head magnetic resonance imaging revealed hamartoma and astrocytoma lesions in the central nervous system. Two years after treatment completion, a diagnosis of precursor T-cell lymphoblastic lymphoma, accompanied by the vena cava syndrome, was established and treated accordingly. During treatment, a genetic test using Sanger sequencing was performed-a biallelic mutation in the MSH6 gene was detected. The study revealed that the mutation 17-bp c.2277-2293del. was inherited from the patient's mother. The second mutation, 5-bp c.1135_1139delAGAGA, developed inpatient de novo. At the age of 14, the diagnosis of isolated bone marrow relapse of acute lymphoblastic leukemia B-cell type was established. Due to the almost exceeded total dose of anthracyclines, the patient's treatment included blinatumomab, and subsequently, he was qualified for allogeneic hematopoietic cell transplantation. The patient remains in complete remission for 11 months after allogeneic hematopoietic stem cell transplantation under the care of the transplant center.
Collapse
Affiliation(s)
- Magdalena Samborska
- Department of Pediatric Oncology, Hematology and Transplantology, Institute of Pediatrics, Poznan University of Medical Sciencces, Poznan, Poland
| | | | | | | | | |
Collapse
|
3
|
Briggs M, Das A, Firth H, Levine A, Sánchez-Ramírez S, Negm L, Ercan AB, Chung J, Bianchi V, Jalloh I, Phyu P, Thorp N, Grundy RG, Hawkins C, Trotman J, Tarpey P, Tabori U, Allinson K, Murray MJ. Recurrent posterior fossa group A (PFA) ependymoma in a young child with constitutional mismatch repair deficiency (CMMRD). Neuropathol Appl Neurobiol 2023; 49:e12862. [PMID: 36341503 PMCID: PMC10099894 DOI: 10.1111/nan.12862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/04/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Mayen Briggs
- Department of Neuropathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Anirban Das
- The International Replication Repair Deficiency Consortium (IRRDC), Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Helen Firth
- Department of Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Adrian Levine
- The International Replication Repair Deficiency Consortium (IRRDC), Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Santiago Sánchez-Ramírez
- The International Replication Repair Deficiency Consortium (IRRDC), Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Logine Negm
- The International Replication Repair Deficiency Consortium (IRRDC), Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ayse B Ercan
- The International Replication Repair Deficiency Consortium (IRRDC), Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jill Chung
- The International Replication Repair Deficiency Consortium (IRRDC), Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Vanessa Bianchi
- The International Replication Repair Deficiency Consortium (IRRDC), Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ibrahim Jalloh
- Department of Neurosurgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Poe Phyu
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Nicky Thorp
- Department of Radiation Oncology, The Christie Proton Beam Therapy Centre, Manchester, UK
| | - Richard G Grundy
- Children's Brain Tumour Research Centre, Biodiscovery Unit, University of Nottingham, Nottingham, UK
| | - Cynthia Hawkins
- Division of Neuropathology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jamie Trotman
- East-Genomics Laboratory Hub (GLH) Genetics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Patrick Tarpey
- East-Genomics Laboratory Hub (GLH) Genetics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Uri Tabori
- The International Replication Repair Deficiency Consortium (IRRDC), Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Kieren Allinson
- Department of Neuropathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Matthew J Murray
- Department of Pathology, University of Cambridge, Cambridge, UK.,Department of Paediatric Haematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | |
Collapse
|
4
|
Pedroni M, Ponz de Leon M, Reggiani Bonetti L, Rossi G, Viel A, Urso EDL, Roncucci L. Biallelic PMS2 Mutations in a Family with Uncommon Clinical and Molecular Features. Genes (Basel) 2022; 13:1953. [PMID: 36360190 PMCID: PMC9690098 DOI: 10.3390/genes13111953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 11/29/2022] Open
Abstract
We describe a patient with constitutional mismatch repair-deficiency (CMMR-D) in whom the syndrome started at age 10 with the development of multiple adenomas in the large bowel. In the successive 25 years, four malignancies developed in different organs (rectum, ileum, duodenum, and lymphoid tissue). The patient had biallelic constitutional pathogenic variants in the PMS2 gene. We speculate that besides the PMS2 genotype, alterations of other genes might have contributed to the development of the complex phenotype. In the nuclear family, both parents carried different PMS2 germline mutations. They appeared in good clinical condition and did not develop polyps or cancer. The index case had a brother who died at age three of lymphoblastic leukemia, and a sister who was affected by sarcoidosis. Tumor tissue showed diffuse DNA microsatellite instability. A complete absence of immunoreactivity was observed for the PMS2 protein both in the tumors and normal tissues. Next-generation sequencing and multiple ligation-dependent probe amplification analyses revealed biallelic PMS2 germline pathogenic variants in the proband (genotype c.[137G>T];[(2174+1_2175-1)_(*160_?)del]), and one of the two variants was present in both parents-c.137G>T in the father and c.(2174+1-2175-1)_(*160_?)del in the mother-as well as c.137G>T in the sister. Moreover, Class 3 variants of MSH2 (c.1787A>G), APC (c.1589T>C), and CHEK2 (c.331G>T) genes were also detected in the proband. In conclusion, the recognition of CMMR-D may sometimes be difficult; however, the possible role of constitutional alterations of other genes in the development of the full-blown phenotype should be investigated in more detail.
Collapse
Affiliation(s)
- Monica Pedroni
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Via Del Pozzo 71, 41125 Modena, Italy
| | - Maurizio Ponz de Leon
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Via Del Pozzo 71, 41125 Modena, Italy
| | - Luca Reggiani Bonetti
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Via Del Pozzo 71, 41125 Modena, Italy
| | - Giuseppina Rossi
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Via Del Pozzo 71, 41125 Modena, Italy
| | - Alessandra Viel
- Division of Functional Onco-Genomics and Genetics, Centro di Riferimento Oncologico di Aviano, IRCCS, Via Gallini 2, 33081 Aviano, Italy
| | - Emanuele Damiano Luca Urso
- Surgery 3, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Via Giustiniani 1, 25128 Padua, Italy
| | - Luca Roncucci
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Via Del Pozzo 71, 41125 Modena, Italy
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Recognition of skin findings associated with tumor predisposition syndromes can prompt early evaluation and surveillance and improve management. Additionally, knowing when to test and when to defer performing genetic testing can streamline management. This article reviews tumor predisposition syndromes with recently characterized skin findings and disorders for which early recognition and counseling can impact the course of disease. RECENT FINDINGS Café au lait macules (CALMs) are important in many tumor predisposition syndromes, and 'atypical' CALMs are associated with constitutional mismatch repair deficiency and Fanconi anemia. Melanoma predisposition syndromes caused by pathogenic variants in POT1 and BAP1 are more recently described, and both are associated with Spitzoid tumors. Somatic pathogenic variants can cause segmental nevoid basal cell carcinoma syndrome and a mosaic form of Peutz-Jeghers syndrome. Patients with PTEN hamartoma syndrome have increased risk for melanoma but this might not occur until adulthood. SUMMARY The cutaneous manifestations of tumor predisposition syndromes can aid diagnosis. Early photoprotection is key to modifying a main risk factor for skin cancer in many of these syndromes. Implementing surveillance guidelines facilitates early detection of tumors.
Collapse
|