1
|
Huang SY, Chung MT, Kung CW, Chen SY, Chen YW, Pan T, Cheng PY, Shen HH, Lee YM. Alpha-Lipoic Acid Induces Adipose Tissue Browning through AMP-Activated Protein Kinase Signaling in Vivo and in Vitro. J Obes Metab Syndr 2024; 33:177-188. [PMID: 38699871 PMCID: PMC11224925 DOI: 10.7570/jomes23048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/03/2023] [Accepted: 12/19/2023] [Indexed: 05/05/2024] Open
Abstract
Background AMP-activated protein kinase (AMPK) is a key enzyme for cellular energy homeostasis and improves metabolic disorders. Brown and beige adipose tissues exert thermogenesis capacities to dissipate energy in the form of heat. Here, we investigated the beneficial effects of the antioxidant alpha-lipoic acid (ALA) in menopausal obesity and the underlying mechanisms. Methods Female Wistar rats (8 weeks old) were subjected to bilateral ovariectomy (Ovx) and divided into four groups: Sham (n=8), Ovx (n=11), Ovx+ALA2 (n=10), and Ovx+ALA3 (n=6) (ALA 200 and 300 mg/kg/day, respectively; gavage) for 8 weeks. 3T3-L1 cells were used for in vitro study. Results Rats receiving ALA2 and ALA3 treatment showed significantly lower levels of body weight and white adipose tissue (WAT) mass than those of the Ovx group. ALA improved plasma lipid profiles including triglycerides, total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. Hematoxylin & eosin staining of inguinal WAT showed that ALA treatment reduced Ovx-induced adipocyte size and enhanced uncoupling protein 1 (UCP1) expression. Moreover, plasma levels of irisin were markedly increased in ALA-treated Ovx rats. Protein expression of brown fat-specific markers including UCP1, PRDM16, and CIDEA was downregulated by Ovx but markedly increased by ALA. Phosphorylation of AMPK, its downstream acetyl-CoA carboxylase, and its upstream LKB1 were all significantly increased by ALA treatment. In 3T3-L1 cells, administration of ALA (100 and 250 μM) reduced lipid accumulation and enhanced oxygen consumption and UCP1 protein expression, while inhibition of AMPK by dorsomorphin (5 μM) significantly reversed these effects. Conclusion ALA improves estrogen deficiency-induced obesity via browning of WAT through AMPK signaling.
Collapse
Affiliation(s)
- Shieh-Yang Huang
- Department of Pharmacy, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Ming-Ting Chung
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Ching-Wen Kung
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Shu-Ying Chen
- Department of Nursing, Hung Kuang University, Taichung, Taiwan
| | - Yi-Wen Chen
- Department of Pharmacology and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Tong Pan
- Department of Pharmacology and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Pao-Yun Cheng
- Department of Physiology & Biophysics, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Hsueh Shen
- Department of Pharmacology and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Yen-Mei Lee
- Department of Pharmacology and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
2
|
An F, Song J, Chang W, Zhang J, Gao P, Wang Y, Xiao Z, Yan C. Research Progress on the Mechanism of the SFRP-Mediated Wnt Signalling Pathway Involved in Bone Metabolism in Osteoporosis. Mol Biotechnol 2024; 66:975-990. [PMID: 38194214 DOI: 10.1007/s12033-023-01018-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024]
Abstract
Osteoporosis (OP) is a metabolic bone disease linked to an elevated fracture risk, primarily stemming from disruptions in bone metabolism. Present clinical treatments for OP merely alleviate symptoms. Hence, there exists a pressing need to identify novel targets for the clinical treatment of OP. Research indicates that the Wnt signalling pathway is modulated by serum-secreted frizzled-related protein 5 (SFRP5), potentially serving as a pivotal regulator in bone metabolism disorders. Moreover, studies confirm elevated SFRP5 expression in OP, with SFRP5 overexpression leading to the downregulation of Wnt and β-catenin proteins in the Wnt signalling pathway, as well as the expression of osteogenesis-related marker molecules such as RUNX2, ALP, and OPN. Conversely, the opposite has been reported when SFRP5 is knocked out, suggesting that SFRP5 may be a key factor involved in the regulation of bone metabolism via the Wnt signalling axis. However, the molecular mechanisms underlying the action of SFRP5-induced OP have yet to be comprehensively elucidated. This review focusses on the molecular structure and function of SFRP5 and the potential molecular mechanisms of the SFRP5-mediated Wnt signalling pathway involved in bone metabolism in OP, providing reasonable evidence for the targeted therapy of SFRP5 for the prevention and treatment of OP.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Jiayi Song
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Weirong Chang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Jie Zhang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Yujie Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Zhipan Xiao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
3
|
Nedyalkova M, Robeva R, Romanova J, Yovcheva K, Lattuada M, Simeonov V. In silico screening of potential agonists of a glucagon-like peptide-1 receptor among female sex hormone derivatives. J Biomol Struct Dyn 2024:1-12. [PMID: 38587907 DOI: 10.1080/07391102.2024.2330714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/09/2024] [Indexed: 04/10/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) is an intestinal hormone that exerts its pleiotropic effects through a specific GLP-1 receptor (GLP-1R). The hormone-receptor complex might regulate glucose-dependent insulin secretion, and energy homeostasis; moreover, it could decrease inflammation and provide cardio- and neuroprotection. Additionally, the beneficial influence of GLP-1 on obesity in women might lead to improvement of their ovarian function. The links between metabolism and reproduction are tightly connected, and it is not surprising that different estrogen derivatives, estrogen-receptor modulator (SERM) and progestins used for gonadal and oncological disorders might influence carbohydrate and lipid metabolism. However, their possible influence on the GLP-1R has not been studied. The docking scores and top-ranked poses of raloxifene were much higher than those observed for other investigated SERMs and estradiol per se. Among different studied progestins, drospirenone showed slightly higher affinity to GLP-1R. Herein, the same data set of the drugs is evaluated by molecular dynamics (MD) simulations and compared with the obtained docking result. Notably, it is demonstrated that the used docking protocol and the applied MD calculations ranked the same ligand (raloxifene) as the best one. In the present study, raloxifene might exert an allosteric influence on GLP-1R signaling, which might contribute to potential beneficial effects on metabolism and weight regulation. However, further experimental and clinical studies are needed to reveal if the GLP-1R modulation has a real biological impact.
Collapse
Affiliation(s)
- Miroslava Nedyalkova
- Department of Chemistry, Fribourg University, Fribourg, Switzerland
- Department of Inorganic Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia 'St. Kl. Ohridski', Sofia, Bulgaria
- Swiss National Center for Competence in Research (NCCR) Bio-inspired Materials, University of Fribourg, Fribourg, Switzerland
| | - Ralitsa Robeva
- Department of Endocrinology, Faculty of Medicine, Medical University-Sofia, Sofia, Bulgaria
| | - Julia Romanova
- Department of Inorganic Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia 'St. Kl. Ohridski', Sofia, Bulgaria
| | - Kirila Yovcheva
- Department of Inorganic Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia 'St. Kl. Ohridski', Sofia, Bulgaria
| | - Marco Lattuada
- Department of Chemistry, Fribourg University, Fribourg, Switzerland
| | - Vasil Simeonov
- Department of Inorganic Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia 'St. Kl. Ohridski', Sofia, Bulgaria
| |
Collapse
|
4
|
Roch PJ, Noisser L, Böker KO, Hoffmann DB, Schilling AF, Sehmisch S, Komrakova M. Advantage of ostarine over raloxifene and their combined treatments for muscle of estrogen-deficient rats. J Endocrinol Invest 2024; 47:709-720. [PMID: 37672168 PMCID: PMC10904410 DOI: 10.1007/s40618-023-02188-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
Abstract
PURPOSE Selective androgen (ostarine, OST) and estrogen (raloxifene, RAL) receptor modulators with improved tissue selectivity have been developed as alternatives to hormone replacement therapy. We investigated the combined effects of OST and RAL on muscle tissue in an estrogen-deficient rat model of postmenopausal conditions. METHODS Three-month-old Sprague Dawley rats were divided into groups: (1) untreated non-ovariectomized rats (Non-OVX), (2) untreated ovariectomized rats (OVX), (3) OVX rats treated with OST, (4) OVX rats treated with RAL, (5) OVX rats treated with OST and RAL. Both compounds were administered in the diet. The average dose received was 0.6 ± 0.1 mg for OST and 11.1 ± 1.2 mg for RAL per kg body weight/day. After thirteen weeks, rat activity, muscle weight, structure, gene expression, and serum markers were analyzed. RESULTS OST increased muscle weight, capillary ratio, insulin-like growth factor 1 (Igf-1) expression, serum phosphorus, uterine weight. RAL decreased muscle weight, capillary ratio, food intake, serum calcium and increased Igf-1 and Myostatin expression, serum follicle stimulating hormone (FSH). OST + RAL increased muscle nucleus ratio, uterine weight, serum phosphorus, FSH and luteinizing hormone and decreased body and muscle weight, serum calcium. Neither treatment changed muscle fiber size. OVX increased body and muscle weight, decreased uterine weight, serum calcium and magnesium. CONCLUSION OST had beneficial effects on muscle in OVX rats. Side effects of OST on the uterus and serum electrolytes should be considered before using it for therapeutic purposes. RAL and RAL + OST had less effect on muscle and showed endocrinological side effects on pituitary-gonadal axis.
Collapse
Affiliation(s)
- P J Roch
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| | - L Noisser
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - K O Böker
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - D B Hoffmann
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - A F Schilling
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - S Sehmisch
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- Department of Trauma Surgery, Hannover Medical School, University of Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - M Komrakova
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| |
Collapse
|
5
|
Wang W, Cheng X, Yao J, Xue H, Li C, Wang X, Zhang Y, Chen S, Zhang Y. What Do Higher Alanine Aminotransferase Levels Mean in Premature Ovarian Insufficiency? Reprod Sci 2024; 31:469-479. [PMID: 37723330 DOI: 10.1007/s43032-023-01303-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 07/10/2023] [Indexed: 09/20/2023]
Abstract
The objective of this study was to investigate the relationship between alanine aminotransferase and related biochemical parameters and potential risk factors in women with premature ovarian insufficiency (POI). This is a retrospective cohort study with 126 POI patients (including subclinical POI, n= 27) and 130 healthy controls who visited our clinic between April 2021 to November 2022. Associations were investigated by multiple linear regression, Person correlation analysis, the Kruskal-Wallis test, Mann-Whitney U test, and the independent t-test. When compared to controls, analysis of POI patients showed that body mass index (BMI), uric acid (UA) and urea, alanine aminotransferase (ALT), aspartate aminotransferase (AST), monocyte/lymphocyte ratio, monocyte count (MONO), neutrophil count (NEUT), follicle-stimulating hormone (FSH), luteinizing hormone, and neutrophil/lymphocyte ratio (NLR) were significantly higher, while estradiol (E2), the lymphocyte count and the AST/ALT ratio were lower (P < 0.05). According to linear correlation, it was clear that BMI, FSH, white blood cell count (WBC), NEUT, MONO, UA, AST, and NLR were positively associated with ALT (r = 0.215, 0.388, 0.195, 0.187, 0.184, 0.605, 0.819, and 0.189, respectively, all P < 0.05) while E2 was negatively associated with ALT (r = -0.278, P < 0.05). In addition, multiple linear regression revealed a significant, independent, and positive correlation between AST, FSH, and ALT (B =1.403 and 0.069, respectively, P < 0.05). Analysis revealed that the levels of ALT were significantly higher in POI patients. In addition, BMI, FSH, UA, AST, MONO, NLR, NEUT, and WBC were positively associated with ALT in POI patients. E2 was negatively associated with ALT. Multiple linear regression revealed an independent and positive correlation between AST, FSH, and ALT. In addition, there was also a risk of liver function damage in women with POI and subclinical POI. If patients were diagnosed with POI, early examination and corresponding intervention will be required to effectively prevent the further development of liver disease.
Collapse
Affiliation(s)
- Weina Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, No. 20 Xi-Si Road, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, China
| | - Xi Cheng
- Medical School of Nantong University, Nantong, China
| | - Jinhan Yao
- Medical School of Nantong University, Nantong, China
| | - Hanchun Xue
- Medical School of Nantong University, Nantong, China
| | - Chenglu Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, No. 20 Xi-Si Road, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, China
| | - Xia Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, No. 20 Xi-Si Road, Nantong, 226001, Jiangsu, China
| | - You Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, No. 20 Xi-Si Road, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, China
| | - Siyi Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, No. 20 Xi-Si Road, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, China
| | - Yuquan Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, No. 20 Xi-Si Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
6
|
Cao M, Li X, Trinh DA, Yoshimachi S, Goto K, Sakata N, Ishida M, Ohtsuka H, Unno M, Wang Y, Shirakawa R, Horiuchi H. Ral GTPase promotes metastasis of pancreatic ductal adenocarcinoma via elevation of TGF-β1 production. J Biol Chem 2023; 299:104754. [PMID: 37116704 DOI: 10.1016/j.jbc.2023.104754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 03/28/2023] [Accepted: 04/10/2023] [Indexed: 04/30/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), caused by activating mutations in K-Ras, is an aggressive malignancy due to its early invasion and metastasis. Ral GTPases are activated downstream of Ras and play a crucial role in the development and progression of PDAC. However, the underlying mechanisms remain unclear. In this study, we investigated the mechanism of Ral-induced invasion and metastasis of PDAC cells using RalGAPβ-deficient PDAC cells with highly activated Ral GTPases. Array analysis and enzyme-linked immunosorbent assays revealed increased expression and secretion of TGF-β1 in RalGAPβ-deficient PDAC cells compared to control cells. Blockade of TGF-β1 signaling suppressed RalGAPβ deficiency-enhanced migration and invasion in vitro and metastasis in vivo to levels similar to controls. Phosphorylation of c-Jun N-terminal kinase (JNK), a repressor of TGF-β1 expression, was decreased by RalGAPβ deficiency. These results indicate that Ral contributes to invasion and metastasis of PDAC cells by elevating autocrine TGF-β1 signaling at least in part by decreasing JNK activity.
Collapse
Affiliation(s)
- Mingxin Cao
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan; Department of Oral Cancer Therapeutics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan; State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China; School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Xinming Li
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, China
| | - Duc-Anh Trinh
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Shingo Yoshimachi
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan; Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Kota Goto
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Natsumi Sakata
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Masaharu Ishida
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Hideo Ohtsuka
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Michiaki Unno
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Yuxia Wang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, China
| | - Ryutaro Shirakawa
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan.
| | - Hisanori Horiuchi
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan; Department of Oral Cancer Therapeutics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
7
|
Hu Y, Xu J, Gao R, Xu Y, Huangfu B, Asakiya C, Huang X, Zhang F, Huang K, He X, Luo Y. Diallyl Trisulfide Prevents Adipogenesis and Lipogenesis by Regulating the Transcriptional Activation Function of KLF15 on PPARγ to Ameliorate Obesity. Mol Nutr Food Res 2022; 66:e2200173. [PMID: 35983694 DOI: 10.1002/mnfr.202200173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/19/2022] [Indexed: 11/11/2022]
Abstract
SCOPE Diallyl trisulfide (DATS) is a bioactive compound in garlic. The anti-obesity effect of garlic oil has been reported, but the role and mechanism of DATS in preventing obesity remain to be explored. METHODS AND RESULTS We performed studies with high-fat-diet-induced obese mice and 3T3-L1 adipocytes. The results showed that DATS significantly reduced lipid accumulation and repaired disordered metabolism in vivo by restraining adipogenesis and lipogenesis, and promoting lipolysis and fatty acid oxidation in white adipose tissue. In cells, DATS played different roles at different stages of adipocyte differentiation. Notably, DATS reduced lipid accumulation mainly by inhibiting adipogenesis and lipogenesis at the late stage. KLF15 was knocked down in 3T3-L1 cells, which eliminated the inhibitory effect of DATS on adipogenesis and lipogenesis. The dual-luciferase reporter and ChIP assays indicated that DATS could inhibit the transcriptional activation function of KLF15 on PPARγ by inhibiting the binding of KLF15 to PPARγ promoter. The function comparison of structural analogs and the intervention of dithiothreitol showed that disulfide bond was crucial for DATS to work. CONCLUSION DATS prevents obesity by regulating the transcriptional activation function of KLF15 on PPARγ. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yanzhou Hu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Jia Xu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Ruxin Gao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Ye Xu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Bingxin Huangfu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Charles Asakiya
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Xianghui Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Feng Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, P. R. China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, P. R. China
| | - Yunbo Luo
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, P. R. China
| |
Collapse
|
8
|
Roch PJ, Wolgast V, Gebhardt MM, Böker KO, Hoffmann DB, Saul D, Schilling AF, Sehmisch S, Komrakova M. Combination of selective androgen and estrogen receptor modulators in orchiectomized rats. J Endocrinol Invest 2022; 45:1555-1568. [PMID: 35429299 PMCID: PMC9270269 DOI: 10.1007/s40618-022-01794-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/22/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE Selective androgen and estrogen receptor modulators, ostarine (OST) and raloxifen (RAL), reportedly improve muscle tissue and offer therapeutic approaches to muscle maintenance in the elderly. The present study evaluated the effects of OST and RAL and their combination on musculoskeletal tissue in orchiectomized rats. METHODS Eight-month-old Sprague Dawley rats were analyzed. Experiment I: (1) Untreated non-orchiectomized rats (Non-ORX), (2) untreated orchiectomized rats (ORX), (3) ORX rats treated with OST during weeks 0-18 (OST-P), (4) ORX rats treated with OST during weeks 12-18 (OST-T). Experiment II: 1) Non-ORX, (2) ORX, 3) OST-P, (4) ORX rats treated with RAL, during weeks 0-18 (RAL-P), 5) ORX rats treated with OST + RAL, weeks 0-18 (OST + RAL-P). The average daily doses of OST and RAL were 0.4 and 7 mg/kg body weight (BW). Weight, fiber size, and capillarization of muscles, gene expression, serum markers and the lumbar vertebral body were analyzed. RESULTS OST-P exerted favorable effects on muscle weight, expression of myostatin and insulin growth factor-1, but increased prostate weight. OST-T partially improved muscle parameters, showing less effect on the prostate. RAL-P did not show anabolic effects on muscles but improved body constitution by reducing abdominal area, food intake, and BW. OST + RAL-P had an anabolic impact on muscle, reduced androgenic effect on the prostate, and normalized food intake. OST and RAL improved osteoporotic bone. CONCLUSIONS The OST + RAL treatment appeared to be a promising option in the treatment of androgen-deficient conditions and showed fewer side effects than the respective single treatments.
Collapse
Affiliation(s)
- P. J. Roch
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - V. Wolgast
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - M.-M. Gebhardt
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - K. O. Böker
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - D. B. Hoffmann
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - D. Saul
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- Kogod Center On Aging and Division of Endocrinology, Mayo Clinic, Rochester, MN 55905 USA
| | - A. F. Schilling
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - S. Sehmisch
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- Department of Trauma Surgery, Hannover Medical School, University of Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - M. Komrakova
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| |
Collapse
|
9
|
Rao VV, Wechsler ME, Cravens E, Wojda SJ, Caldwell AS, Kirkpatrick BE, Donahue SW, Anseth KS. Granular PEG hydrogels mediate osteoporotic MSC clustering via N-cadherin influencing the pro-resorptive bias of their secretory profile. Acta Biomater 2022; 145:77-87. [PMID: 35460910 PMCID: PMC9133190 DOI: 10.1016/j.actbio.2022.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 12/13/2022]
Abstract
Postmenopausal osteoporosis results from a pro-resorptive bone environment, which decreases bone mineral density causing increased fracture risk. Bone marrow derived mesenchymal stem/stromal cells (MSCs) secrete factors involved in bone homeostasis, but osteoporosis mediated changes to their secretions remain understudied. Herein, we examined the secretome of MSCs isolated from ovariectomized rats (OVX rMSCs), a model of post-menopausal osteoporosis, as a function of cell-cell interactions. Specifically, we controlled clustering of OVX and SHAM rMSCs by assembling them in granular hydrogels synthesized from poly(ethylene glycol) microgels with average diameters of ∼10, 100, and 200 µm. We directed both the sizes of rMSC clusters (single cells to ∼30 cells/cluster) and the percentages of cells within clusters (∼20-90%) by controlling the scaffold pore dimensions. Large clusters of OVX rMSCs had a pro-resorptive secretory profile, with increased concentrations of Activin A, CXCL1, CX3CL1, MCP-1, TIMP-1, and TNF-ɑ, compared to SHAM rMSCs. As this pro-resorptive bias was only observed in large cell clusters, we characterized the expression of several cadherins, mediators of cell-cell contacts. N-cadherin expression was elevated (∼4-fold) in OVX relative to SHAM rMSCs, in both cell clusters and single cells. Finally, TIMP-1 and MCP-1 secretion was only decreased in large cell clusters of OVX rMSCs when N-cadherin interactions were blocked, highlighting the dependence of OVX rMSC secretion of pro-resorptive cytokines on N-cadherin mediated cell-cell contacts. Further elucidation of the N-cadherin mediated osteoporotic MSC secretome may have implications for developing therapies for postmenopausal osteoporosis. STATEMENT OF SIGNIFICANCE: Postmenopausal osteoporosis is a prevalent bone disorder that affects tens of millions of women worldwide. This disease is characterized by severe bone loss resulting from a pro-resorptive bone marrow environment, where the rates of bone resorption outpace the rates of bone deposition. The paracrine factors secreted by bone marrow MSCs can influence cell types responsible for bone homeostasis, but the osteoporosis-mediated changes to MSC secretory properties remains understudied. In this study, we used PEG-based porous granular scaffolds to study the influence of cell clustering on the secretory properties of osteoporotic MSCs. We observed increased secretion of several pro-resorptive factors by osteoporotic MSCs in large clusters. Further, we explored the dependence of this altered secretion profile on N-cadherin mediated cell-cell contacts.
Collapse
Affiliation(s)
- Varsha V Rao
- Department of Chemical and Biological Engineering, University of Colorado - Boulder, 3415 Colorado Avenue, Boulder, CO 80303, United States; BioFrontiers Institute, University of Colorado - Boulder, 3415 Colorado Avenue, Boulder, CO 80303, United States
| | - Marissa E Wechsler
- Department of Biomedical Engineering and Chemical Engineering, University of Texas San Antonio, One UTSA Circle, San Antonio, TX 78249, United States
| | - Emily Cravens
- Department of Biomedical Engineering, University of Massachusetts Amherst, 240 Thatcher Road, Amherst, MA 01003, United States
| | - Samantha J Wojda
- Department of Biomedical Engineering, University of Massachusetts Amherst, 240 Thatcher Road, Amherst, MA 01003, United States
| | - Alexander S Caldwell
- Department of Chemical and Biological Engineering, University of Colorado - Boulder, 3415 Colorado Avenue, Boulder, CO 80303, United States; BioFrontiers Institute, University of Colorado - Boulder, 3415 Colorado Avenue, Boulder, CO 80303, United States
| | - Bruce E Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado - Boulder, 3415 Colorado Avenue, Boulder, CO 80303, United States; BioFrontiers Institute, University of Colorado - Boulder, 3415 Colorado Avenue, Boulder, CO 80303, United States; Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, 13001 East 17th Aurora, CO 80045, United States
| | - Seth W Donahue
- Department of Biomedical Engineering, University of Massachusetts Amherst, 240 Thatcher Road, Amherst, MA 01003, United States
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado - Boulder, 3415 Colorado Avenue, Boulder, CO 80303, United States; BioFrontiers Institute, University of Colorado - Boulder, 3415 Colorado Avenue, Boulder, CO 80303, United States.
| |
Collapse
|
10
|
G protein-coupled estrogen receptor 1 mediates proliferation and adipogenic differentiation of goat adipose-derived stem cells through ERK1/2-NF-κB signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2022; 54:494-503. [PMID: 35607957 PMCID: PMC9828292 DOI: 10.3724/abbs.2022031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Adipose tissue formation and moderate fat deposition are important for the production performance and eating quality of livestock meats. The self-renewal and adipogenic differentiation of adipose-derived stem cells are responsible for the formation and development of adipose tissue. In addition, estrogen targeting G protein-coupled estrogen receptor 1 (GPER1) has been reported to modulate cell proliferation and differentiation during tissue and organ development. However, the potential correlation among estrogen, GPER1, proliferation, and adipogenic differentiation in goat adipose-derived stem cells (gADSCs) is still unclear. Herein, we demonstrated that 17β-estradiol enhances the proliferative ability of gADSCs, indicated by the increased cell number and cell viability, accompanied by up-regulated expressions of cyclin D1 and PCNA. Meanwhile, the adipogenic differentiation is promoted by 17β-estradiol, supported by higher ccumulation of intracellular lipids and increased expressions of PPARγ, ACC, and FABP4. Notably, these activities are all obviously reduced by administration with GPER1 antagonist G15, but GPER1 agonist G1 enhances cell proliferation and adipogenic differentiation. Moreover, GPER1 silencing diminishes cell proliferation and adipogenic differentiation. In parallel, 17β-estradiol elevates the protein level of nuclear p-p65. Furthermore, the phosphorylation of p65 is enhanced by G1 but inhibited by G15 and GPER1 silencing. In addition, the phosphorylation of p65 is mediated by ERK1/2, suggesting that estrogen targeting GPER1 regulates cell proliferation and adipogenic differentiation of gADSCs through the ERK1/2-NF-κB signaling pathway. This study may provide a strong theoretical basis for improving meat quality, flavor, and cold resistance of livestock.
Collapse
|
11
|
Chen T, Ma F, Peng Y, Sun R, Xi Q, Sun J, Zhang J, Zhang Y, Li M. Plant miR167e-5p promotes 3T3-L1 adipocyte adipogenesis by targeting β-catenin. In Vitro Cell Dev Biol Anim 2022; 58:471-479. [PMID: 35829897 PMCID: PMC9277600 DOI: 10.1007/s11626-022-00702-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/17/2022] [Indexed: 01/09/2023]
Abstract
Adipogenesis is important in the development of fat deposition. Evidence showed that plant microRNAs (miRNAs) could be absorbed by the digestive tract and exert regulatory effects on animals' physiological processes. However, the regulation of plant miRNA on host lipogenesis remains unknown. This study explored the potential function of plant miRNA, miR167e-5p, in adipogenesis in vitro. The presentation of plant miR167e-5p improved lipid accumulation in 3T3-L1 cells. Bioinformatics prediction and luciferase reporter assay indicated that miR167e-5p targeted β-catenin. MiR167e-5p could not only negatively affect the expression of β-catenin but also showed a positive effect on several fat synthesis-related genes, peroxisome proliferator-activated receptor gamma (Pparγ), CCAAT/enhancer-binding protein α (Cebpα), fatty acid-binding protein 4 (Ap2), lipolysis genes, adipose triglyceride lipase (Atgl), and hormone-sensitive lipase (Hsl) messenger RNA levels. Meanwhile, lipid accumulation and the expression of the β-catenin and other five fat synthesis-related genes were recovered to their original pattern by adding the miR167e-5p inhibitor in 3T3-L1 cells. The immunoblot confirmed the same expression pattern in protein levels in β-catenin, PPAR-γ, FAS, and HSL. This research demonstrates that plant miR167e-5p can potentially affect adipogenesis through the regulation of β-catenin, suggesting that plant miRNAs could be a new class of bioactive ingredients in adipogenesis.
Collapse
Affiliation(s)
- Ting Chen
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutritional Control, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642 China
| | - Fei Ma
- College of Biological Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314000 China
| | - Yongjia Peng
- College of Biological Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314000 China
| | - Ruiping Sun
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Science, Haikou, 571100 China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutritional Control, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642 China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutritional Control, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642 China
| | - Jin Zhang
- College of Biological Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314000 China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutritional Control, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642 China
| | - Meng Li
- College of Biological Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314000 China
| |
Collapse
|
12
|
Kang F, Zou Q, Huang J. The effects of raloxifene on endothelial function and Inflammation in Postmenopausal women: A Meta-analysis of randomized controlled trials. Exp Gerontol 2021; 159:111682. [PMID: 34973344 DOI: 10.1016/j.exger.2021.111682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND AIM Raloxifene treatment has been reported to be associated with cardiovascular benefits if prescribed to women during the postmenopausal period. However, a final conclusion regarding this hypothesis has not yet been achieved. We conducted a systematic review and meta-analysis to evaluate the effect of raloxifene on the endothelial function and inflammation in postmenopausal women. METHODS We systematically searched the following 4 databases from inception to 23 January 2021 without any language restrictions: Web of Science, PubMed/Medline, Embase and Scopus. The eligible randomized controlled trials (RCTs) reporting the effects of raloxifene on the flow-mediated dilatation (FMD), C-reactive protein (CRP), carotid intima-media thickness (CIMT), intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1) and E-selectin levels, were included in the final meta-analysis. RESULTS A total of 16 RCTs were included in the final analysis. Raloxifene administration had no significant effect on ICAM-1 and E-selectin levels. However, we observed a decrease of the CIMT (WMD: -0.071 mm, 95% CI: -0.09 to -0.04, P = 0.000), CRP (WMD: -0.342 mg/L, 95% CI: -0.591, -0.094, p = 0.007), and VCAM-1 (WMD: -197.90 mg/L, 95% CI: -269.58 to -126.23, P = 0.000) levels in the intervention versus control groups following the prescription of this pharmacological agent. Moreover, raloxifene treatment resulted in a significant elevation of the FMD (WMD: 1.64%, 95% CI: 0.46 to 2.81, P = 0.006), particularly if the intervention was equal to or exceeded 12 weeks. CONCLUSION Raloxifene might emerge as a potential therapeutic option in the management of endothelial dysfunction and inflammation in postmenopausal women.
Collapse
Affiliation(s)
- Fuli Kang
- Department of Gynecology, The Second Hospital of Dalian Medical University, Liaoning, Dalian 116021, China
| | - Qi Zou
- Third Department of Gynecology, Dalian Municipal Women And Children's Medical Center (Group), Liaoning, Dalian 116021, China
| | - Jiazhen Huang
- Department of Gynecology, The Second Hospital of Dalian Medical University, Liaoning, Dalian 116021, China.
| |
Collapse
|
13
|
Liu X, Wang Z, Song X, Chang X, Zu E, Ma X, Sukegawa M, Liu D, Wang DO. Crocetin Alleviates Ovariectomy-Induced Metabolic Dysfunction through Regulating Estrogen Receptor β. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14824-14839. [PMID: 34851635 DOI: 10.1021/acs.jafc.1c04570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metabolic dysfunction (MD) is a major health problem threatening the life quality of menopausal women. Saffron has been widely used in herb prescriptions for treating menopausal syndrome. However, the pharmacological effects and mechanisms of saffron are poorly understood. Here, we investigated the effect of crocin, the major ingredient of saffron and its active metabolite in blood, crocetin, on MD and lipid metabolism in ovariectomized (OVX) mice and 3T3-L1 adipocytes. The present study showed that intragastric treatment of crocin prevented weight gain, fat accumulation, and insulin resistance in OVX mice by increasing energy expenditure and fat oxidation. Mechanistically, crocin influenced adipose tissue homeostasis by regulating adipogenic and lipolytic factors, which was strongly associated with the restoration of the downregulated ERβ function in white adipose tissue (WAT). In vitro, crocetin facilitated lipid metabolism in an ERβ-dependent manner. Our results demonstrated the beneficial effects of crocetin/crocin-mediated intervention against metabolic dysfunction, revealing a prospective therapeutic application in menopausal women.
Collapse
Affiliation(s)
- Xiaoling Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ziqi Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xintong Song
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinyu Chang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Er Zu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaowei Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Momoe Sukegawa
- Center for Biosystems Dynamics Research, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Graduate School of Biostudies, Kyoto University, Yoshida hon-machi, Kyoto 606-8501, Japan
| | - Dongchun Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dan Ohtan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Center for Biosystems Dynamics Research, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Graduate School of Biostudies, Kyoto University, Yoshida hon-machi, Kyoto 606-8501, Japan
| |
Collapse
|
14
|
Fang JY, Huang TH, Chen WJ, Aljuffali IA, Hsu CY. Rhubarb hydroxyanthraquinones act as antiobesity agents to inhibit adipogenesis and enhance lipolysis. Biomed Pharmacother 2021; 146:112497. [PMID: 34891117 DOI: 10.1016/j.biopha.2021.112497] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 12/21/2022] Open
Abstract
Rhubarb as an herbal medicine has been shown to exhibit antiadipogenic activity. This study evaluated and compared the lipid-lowering activity of five rhubarb hydroxyanthraquinones (HAQs), including chrysophanol, aloe emodin, emodin, physcion, and rhein, aiming to identify candidate compounds for obesity treatment. Examination of the antiobesity effects of HAQs in 3T3-L1 adipocytes and high-fat diet (HFD)-induced obese rats showed that these anthraquinone compounds inhibited lipid accumulation in 3T3-L1 cells before and after differentiation. Emodin and rhein showed greater inhibition than the other compounds; dosage at 50 μM reduced intracellular triglyceride (TG) by about 30% in the differentiated adipocytes. Both compounds also revealed lipolytic effects to increase glycerol release from adipocytes. Adipokine overexpression induced by differentiation was downregulated by emodin and rhein through mitogen-activated protein kinase (MAPK) signaling. Despite their structural similarity, emodin and rhein exhibited different mechanisms on adipogenesis and lipid metabolism. Rhein restrained lipid deposition by controlling adipogenic transcriptional factors and lipolytic lipases during differentiation. The lipid-lowering effects of emodin did not use these pathways but reduced levels of lipogenic enzymes. HFD consumption in rats significantly increased body weight, visceral fat mass and adipocyte size, which were attenuated by intraperitoneal delivery of emodin or rhein. Rhein showed greater amelioration of obesity than emodin, decreasing plasma cholesterol by 29% and 14%, respectively. HAQs also suppressed cytokine upregulation in the liver and adipose tissues of obese rats. Rhein is a potential antiobesity agent through its ability to regulate obesity-associated adipogenesis, lipolysis and inflammation.
Collapse
Affiliation(s)
- Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| | - Tse-Hung Huang
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan; School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan; School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Wei-Jhang Chen
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Ibrahim A Aljuffali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, SaudiArabia
| | - Ching-Yun Hsu
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
15
|
Yousefzadeh N, Jeddi S, Shokri M, Afzali H, Norouzirad R, Kashfi K, Ghasemi A. Long Term Sodium Nitrate Administration Positively Impacts Metabolic and Obesity Indices in Ovariectomized Rats. Arch Med Res 2021; 53:147-156. [PMID: 34696904 DOI: 10.1016/j.arcmed.2021.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/07/2021] [Accepted: 09/30/2021] [Indexed: 11/02/2022]
Abstract
BACKGROUND In postmenopausal women, nitric oxide (NO) deficiency is associated with obesity and type 2 diabetes (T2D). This study aims at determining the long-term effects of low-dose nitrate administration on metabolic and obesity indices in ovariectomized (OVX) rats. METHODS OVX rat model was induced using the two dorsolateral skin incision method. Two months after ovariectomy, rats were divided into three groups (n = 10/group): Control, OVX, and OVX+nitrate, and the latter received sodium nitrate at a dose of 100 mg/L in their drinking water for nine months. Fasting serum glucose and lipid profile were measured every month. A glucose tolerance test was performed at months 1, 3, and 9 (the end of the study). Obesity indices were calculated, and histological analyses were performed on the gonadal adipose tissues at month 9. RESULTS OVX rats had impaired fasting glucose, glucose intolerance, and dyslipidemia with higher obesity indices at month 9. Nitrate improved glucose and lipid metabolism in OVX rats and decreased body weight (6.9%), body mass index (12.5%), Lee index (5.4%), adiposity index (23.9%), abdominal circumference (10.5%), and thoracic circumference (17.1%). Also, nitrate decreased adipocyte area by 49% and increased adipocyte density by 193% in gonadal adipose tissue. CONCLUSION Long-term low-dose nitrate administration improves glucose and lipid metabolism in OVX rats in association with decreasing OVX-induced adiposity, increasing adipocyte density, and decreasing adipocyte area. These findings provide support for a potential therapeutic role of nitrate in postmenopausal women with some features of metabolic syndrome.
Collapse
Affiliation(s)
- Nasibeh Yousefzadeh
- Endocrine Physiology Research Center, Research institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Shokri
- Endocrine Physiology Research Center, Research institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamideh Afzali
- Endocrine Physiology Research Center, Research institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Norouzirad
- School of Allied Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, NY, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Wang T, Zhang T, Tang Y, Wang H, Wei Q, Lu Y, Yao J, Qu Y, Cao X. Oxysterol-binding protein-like 2 contributes to the developmental progression of preadipocytes by binding to β-catenin. Cell Death Discov 2021; 7:109. [PMID: 34001864 PMCID: PMC8129138 DOI: 10.1038/s41420-021-00503-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Oxysterol-binding protein-like 2 (OSBPL2), also known as oxysterol-binding protein-related protein (ORP) 2, is a member of lipid transfer protein well-known for its role in regulating cholesterol homeostasis. A recent study reported that OSBPL2/ORP2 localizes to lipid droplets (LDs) and is associated with energy metabolism and obesity. However, the function of OSBPL2/ORP2 in adipocyte differentiation is poorly understood. Here, we report that OSBPL2/ORP2 contributes to the developmental progression of preadipocytes. We found that OSBPL2/ORP2 binds to β-catenin, a key effector in the Wnt signaling pathway that inhibits adipogenesis. This complex plays a role in regulating the protein level of β-catenin only in preadipocytes, not in mature adipocytes. Our data further indicated that OSBPL2/ORP2 mediates the transport of β-catenin into the nucleus and thus regulates target genes related to adipocyte differentiation. Deletion of OSBPL2/ORP2 markedly reduces β-catenin both in the cytoplasm and in the nucleus, promotes preadipocytes maturation, and ultimately leads to obesity-related characteristics. Altogether, we provide novel insight into the function of OSBPL2/ORP2 in the developmental progression of preadipocytes and suggest OSBPL2/ORP2 may be a potential therapeutic target for the treatment of obesity-related diseases.
Collapse
Affiliation(s)
- Tianming Wang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Tianyu Zhang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Youzhi Tang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Hongshun Wang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Qinjun Wei
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Yajie Lu
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Jun Yao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Yuan Qu
- Jiangsu Cancer Hospital, Nanjing Medical University, Nanjing, China
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China. .,Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
17
|
Ren J, Wu NN, Wang S, Sowers JR, Zhang Y. Obesity cardiomyopathy: evidence, mechanisms, and therapeutic implications. Physiol Rev 2021; 101:1745-1807. [PMID: 33949876 PMCID: PMC8422427 DOI: 10.1152/physrev.00030.2020] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The prevalence of heart failure is on the rise and imposes a major health threat, in part, due to the rapidly increased prevalence of overweight and obesity. To this point, epidemiological, clinical, and experimental evidence supports the existence of a unique disease entity termed “obesity cardiomyopathy,” which develops independent of hypertension, coronary heart disease, and other heart diseases. Our contemporary review evaluates the evidence for this pathological condition, examines putative responsible mechanisms, and discusses therapeutic options for this disorder. Clinical findings have consolidated the presence of left ventricular dysfunction in obesity. Experimental investigations have uncovered pathophysiological changes in myocardial structure and function in genetically predisposed and diet-induced obesity. Indeed, contemporary evidence consolidates a wide array of cellular and molecular mechanisms underlying the etiology of obesity cardiomyopathy including adipose tissue dysfunction, systemic inflammation, metabolic disturbances (insulin resistance, abnormal glucose transport, spillover of free fatty acids, lipotoxicity, and amino acid derangement), altered intracellular especially mitochondrial Ca2+ homeostasis, oxidative stress, autophagy/mitophagy defect, myocardial fibrosis, dampened coronary flow reserve, coronary microvascular disease (microangiopathy), and endothelial impairment. Given the important role of obesity in the increased risk of heart failure, especially that with preserved systolic function and the recent rises in COVID-19-associated cardiovascular mortality, this review should provide compelling evidence for the presence of obesity cardiomyopathy, independent of various comorbid conditions, underlying mechanisms, and offer new insights into potential therapeutic approaches (pharmacological and lifestyle modification) for the clinical management of obesity cardiomyopathy.
Collapse
Affiliation(s)
- Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China.,Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Ne N Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| | - Shuyi Wang
- School of Medicine, Shanghai University, Shanghai, China.,University of Wyoming College of Health Sciences, Laramie, Wyoming
| | - James R Sowers
- Dalton Cardiovascular Research Center, Diabetes and Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - Yingmei Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| |
Collapse
|
18
|
Fraungruber P, Kaltofen T, Heublein S, Kuhn C, Mayr D, Burges A, Mahner S, Rathert P, Jeschke U, Trillsch F. G Protein-Coupled Estrogen Receptor Correlates With Dkk2 Expression and Has Prognostic Impact in Ovarian Cancer Patients. Front Endocrinol (Lausanne) 2021; 12:564002. [PMID: 33679613 PMCID: PMC7933595 DOI: 10.3389/fendo.2021.564002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 01/05/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose Wnt pathway modulator Dickkopf 2 (Dkk2) and signaling of the G protein-coupled estrogen receptor (GPER) seem to have essential functions in numerous cancer types. For epithelial ovarian cancer (EOC), it has not been proven if either Dkk2 or the GPER on its own have an independent impact on overall survival (OS). So far, the correlation of both factors and their clinical significance has not systematically been investigated before. Methods Expression levels of Dkk2 were immunohistochemically analyzed in 156 patient samples from different histologic subtypes of EOC applying the immune-reactivity score (IRS). Expression analyses were correlated with clinical and pathological parameters to assess for prognostic relevance. Data analysis was performed using Spearman's correlations, Kruskal-Wallis-test and Kaplan-Meier estimates. Results Highest Dkk2 expression of all subtypes was observed in clear cell carcinoma. In addition, Dkk2 expression differed significantly (p<0.001) between low and high grade serous ovarian cancer. A significant correlation of Dkk2 with the cytoplasmic GPER expression was noted (p=0.001) but not for the nuclear estrogen receptor alpha (ERα) or beta (ERβ). Patients exhibiting both, high expression Dkk2 (IRS>4) and GPER (IRS>8), had a significantly better overall survival compared to patients with low expression (61 months vs. 33 months; p=0.024). Conclusion Dkk2 and GPER expression correlates in EOC and combined expression of both is associated with improved OS. These findings underline the clinical significance of both pathways and indicate a possible prognostic impact as well as a potential for treatment strategies addressing interactions between estrogen and Wnt signaling in ovarian cancer.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/diagnosis
- Adenocarcinoma, Clear Cell/genetics
- Adenocarcinoma, Clear Cell/metabolism
- Adenocarcinoma, Clear Cell/mortality
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Ovarian Epithelial/diagnosis
- Carcinoma, Ovarian Epithelial/genetics
- Carcinoma, Ovarian Epithelial/metabolism
- Carcinoma, Ovarian Epithelial/mortality
- Cohort Studies
- Cystadenocarcinoma, Serous/diagnosis
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/metabolism
- Cystadenocarcinoma, Serous/mortality
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Middle Aged
- Ovarian Neoplasms/diagnosis
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/mortality
- Prognosis
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Survival Analysis
Collapse
Affiliation(s)
- Patricia Fraungruber
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Till Kaltofen
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Sabine Heublein
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Doris Mayr
- Department of Pathology, LMU Munich, Munich, Germany
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Philipp Rathert
- Department of Biochemistry, University Stuttgart, Stuttgart, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Augsburg, Germany
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| |
Collapse
|
19
|
Gomes PS, Resende M, Fernandes MH. Doxycycline restores the impaired osteogenic commitment of diabetic-derived bone marrow mesenchymal stromal cells by increasing the canonical WNT signaling. Mol Cell Endocrinol 2020; 518:110975. [PMID: 32758627 DOI: 10.1016/j.mce.2020.110975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/21/2020] [Accepted: 07/31/2020] [Indexed: 01/09/2023]
Abstract
Diabetes mellitus comprehends a group of chronic metabolic disorders, associated with damage and dysfunction of distinct tissues, including bone. At the cellular level, an impaired osteoblastogenesis has been reported, affecting the viability, proliferation and functionality of osteoblasts and precursor populations, hampering the bone metabolic activity, remodeling and healing. Tetracyclines embrace a group of broad-spectrum antibacterial compounds with potential anabolic effects on the bone tissue, through antibacterial-independent mechanisms. Accordingly, this study aims to address the modulatory capability and associated molecular signaling of a low dosage doxycycline - a semi-synthetic tetracycline, in the functional activity of osteoblastic progenitor cells (bone marrow-derived mesenchymal stromal cells), established from a translational diabetic experimental model. Bone marrow-derived mesenchymal stromal cells were isolated from streptozotocin-induced diabetic Wistar rat with proven osteopenia. Cultures were characterized, in the presence of doxycycline (1 μg ml-1) for proliferation, metabolic activity, apoptosis, collagen synthesis and relevant gene expression with the osteogenic and adipogenic program. The activation of the Wnt/β-catenin pathway was further detailed. Doxycycline normalized the viability, proliferation and metabolic activity of the established cultures, further decreasing cell apoptosis, to levels similar to control. The addition of this drug to the culture environment further increased the osteogenic activation, upregulating the expression of osteogenic markers and collagen synthesis, at the same time that a decreased adipogenic priming was attained. These processes were found to me mediated, at least in part, by the restoration of the signaling through the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Pedro Sousa Gomes
- BoneLab - Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, U. Porto, R. Dr. Manuel Pereira da Silva, 4200-393, Porto, Portugal; LAQV/REQUIMTE, U. Porto, Porto, 4160-007, Portugal.
| | - Marta Resende
- Faculty of Dental Medicine, U. Porto, R. Dr. Manuel Pereira da Silva, 4200-393, Porto, Portugal
| | - Maria Helena Fernandes
- BoneLab - Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, U. Porto, R. Dr. Manuel Pereira da Silva, 4200-393, Porto, Portugal; LAQV/REQUIMTE, U. Porto, Porto, 4160-007, Portugal
| |
Collapse
|
20
|
Xie C, Jiang J, Liu J, Yuan G, Zhao Z. Ginkgolide B attenuates collagen-induced rheumatoid arthritis and regulates fibroblast-like synoviocytes-mediated apoptosis and inflammation. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1497. [PMID: 33313242 PMCID: PMC7729381 DOI: 10.21037/atm-20-6420] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Rheumatoid arthritis (RA) is a systemic disease characterized by chronic synovial infiltration and proliferation, cartilage destruction, and joint injury. Ginkgolide B (GB) is an extract of the leaves of Ginkgo biloba, and pharmacological studies have shown that it has anti-inflammatory and anti-apoptotic activities. The purpose of this study was to investigate the anti-RA properties of GB. Methods In vivo, we established a collagen II-induced arthritis (CIA) mouse model. Mice were divided into five groups (n=10): sham, CIA, GB (10 µM), GB (20 µM), and GB (40 µM). We measured arthritis score, synovial histopathological change, and peripheral blood cytokine levels. In vitro, we used lipopolysaccharide (LPS)-induced-fibroblast-like synoviocytes (RA-FLSs) as the study subject. Cell viability, apoptosis, and inflammatory cytokines levels were detected by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay, flow cytometry, and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), respectively. Finally, the protein expression of wingless-type family member 5A (Wnt5a), c-Jun N-terminal kinase (JNK), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 were detected by Western blot. Results Arthritis scores, synovial hyperplasia, and cartilage and bone destruction were significantly ameliorated by GB. Additionally, GB decreased the serum levels of interleukin (IL)-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor alpha (TNF-α), matrix metalloproteinase (MMP)-3 and MMP-13, and increased IL-10. In vitro, we found that GB remarkably inhibited RA-FLSs viability at 24 or 48 h in a concentration-dependent manner. The apoptotic ratio was reduced by GB, and it increased the expression of cleaved-Caspase-3 and Bax while decreasing Bcl-2 expression in RA-FLSs. Furthermore, GB attenuated the progression of inflammation by mediating inflammatory cytokine release and MMPs gene expression. Meanwhile, GB inactivated the expression levels of Wnt5a, phosphorylated (p)-JNK, and p-P65 in the synovial tissues and RA-FLSs. Conclusions This study was the first to demonstrate that the anti-RA effect of GB is related to reducing articular cartilage and bone destruction, inducing RA-FLSs apoptosis, and regulating inflammatory cytokine release and the Wnt5a/JNK/NF-κB axis. All the findings highlight that GB might provide a novel treatment approach for RA.
Collapse
Affiliation(s)
- Chuanmei Xie
- Department of Rheumatology, the Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jing Jiang
- Department of Gynecology and Obstetrics, the Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jianping Liu
- Department of Rheumatology, the Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Guohua Yuan
- Department of Rheumatology, the Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zhenyi Zhao
- Department of Rheumatology, the Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
21
|
He X, Ma H. Correlation Between Circulating Levels of Secreted Frizzled-Related Protein 5 and Type 2 Diabetic Patients and Subjects with Impaired-Glucose Regulation. Diabetes Metab Syndr Obes 2020; 13:1243-1250. [PMID: 32368117 PMCID: PMC7183773 DOI: 10.2147/dmso.s242657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/09/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Secreted frizzled-related protein 5 (SFRP5) is a recently identified adipokine; however, its functions during pathogenesis of T2DM and obesity remain unclear. This research attempted to investigate associations between circulating SFRP5 and obesity/T2DM. MATERIALS AND METHODS According to diagnosis, 107 patients were assigned as impaired-glucose regulation (IGR) and 111 patients newly-diagnosed as T2DM were assigned as the T2DM group. Meanwhile, 132 subjects with normal-glucose tolerance (NGT) were assigned as the NGT group. Differences in plasma SFRP5 levels among three groups were compared. Correlation between SFRP5 levels and different metabolic markers was analyzed. Multiple-linear stepwise regression analyses were performed to determine independent factors for SFRP5. Patients in the T2DM group were administrated with metformin for 12 weeks. Meanwhile, changes in plasma SFRP5 levels were also analyzed. RESULTS Plasma SFRP5 level of the IGR group was significantly lower compared to the NGT group (219.1±39.7 pg/mL vs 236.7±72.6 pg/mL, P<0.05), however, that of the T2DM group was significantly lower compared to the IGR group (203.5±42.1 pg/mL vs 219.1±39.7 pg/mL, P<0.01). Level of plasma SFRP5 was negatively correlated with fasting plasma glucose, BMI, waist circumference (WC), normalized WC (waist-to-height ratio) (WHtR), 2h plasma glucose, fasting insulin, glycosylated hemoglobin (HbA1c), fasting C-peptide, HOMA-IR, and hs-CRP (P<0.01). Among the above factors, HbA1c and fasting insulin levels (FIns) were two independent factors. Plasma SFRP5 levels were increased after 12-week metformin treatment (201.0±34.8 pg/mL vs 213.1±34.4 pg/mL, P<0.05), while insulin resistance was alleviated (ln(HOMA-IR): 1.35±0.55 vs 1.07±0.49, P<0.01). CONCLUSION Metformin reduced circulating levels of secreted frizzled-related protein 5 and improved pathophysiological parameters of T2DM.
Collapse
Affiliation(s)
- Xiaoyan He
- Special Medical Department, Beijing Jiangong Hospital, Beijing100054, People’s Republic of China
- Correspondence: Xiaoyan He Special Medical Department, Beijing Jiangong Hospital, Beijing100054, People’s Republic of China Email
| | - Huijuan Ma
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang050051, People’s Republic of China
| |
Collapse
|