1
|
Krymchenko R, Coşar Kutluoğlu G, van Hout N, Manikowski D, Doberenz C, van Kuppevelt TH, Daamen WF. Elastogenesis in Focus: Navigating Elastic Fibers Synthesis for Advanced Dermal Biomaterial Formulation. Adv Healthc Mater 2024; 13:e2400484. [PMID: 38989717 DOI: 10.1002/adhm.202400484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/31/2024] [Indexed: 07/12/2024]
Abstract
Elastin, a fibrous extracellular matrix (ECM) protein, is the main component of elastic fibers that are involved in tissues' elasticity and resilience, enabling them to undergo reversible extensibility and to endure repetitive mechanical stress. After wounding, it is challenging to regenerate elastic fibers and biomaterials developed thus far have struggled to induce its biosynthesis. This review provides a comprehensive summary of elastic fibers synthesis at the cellular level and its implications for biomaterial formulation, with a particular focus on dermal substitutes. The review delves into the intricate process of elastogenesis by cells and investigates potential triggers for elastogenesis encompassing elastin-related compounds, ECM components, and other molecules for their potential role in inducing elastin formation. Understanding of the elastogenic processes is essential for developing biomaterials that trigger not only the synthesis of the elastin protein, but also the formation of a functional and branched elastic fiber network.
Collapse
Affiliation(s)
- Roman Krymchenko
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud university medical center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Gizem Coşar Kutluoğlu
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud university medical center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
- MedSkin Solutions Dr. Suwelack AG, 48727, Billerbeck, Germany
| | - Noor van Hout
- Department of Dermatology, Radboud university medical center, Nijmegen, 6525 GA, The Netherlands
| | | | | | - Toin H van Kuppevelt
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud university medical center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Willeke F Daamen
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud university medical center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| |
Collapse
|
2
|
Gu W, Zeng Q, Wang X, Jasem H, Ma L. Acute Lung Injury and the NLRP3 Inflammasome. J Inflamm Res 2024; 17:3801-3813. [PMID: 38887753 PMCID: PMC11182363 DOI: 10.2147/jir.s464838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Acute lung injury (ALI) manifests through harm to the capillary endothelium and alveolar epithelial cells, arising from a multitude of factors, leading to scattered interstitial alterations, pulmonary edema, and subsequent acute hypoxic respiratory insufficiency. Acute lung injury (ALI), along with its more serious counterpart, acute respiratory distress syndrome (ARDS), carry a fatality rate that hovers around 30-40%. Its principal pathological characteristic lies in the unchecked inflammatory reaction. Currently, the main strategies for treating ALI are alleviation of inflammation and prevention of respiratory failure. Concerning the etiology of ALI, NLRP3 Inflammasome is essential to the body's innate immune response. The composition of this inflammasome complex includes NLRP3, the pyroptosis mediator ASC, and pro-caspase-1. Recent research has reported that the inflammatory response centered on NLRP3 inflammasomes plays a key part in inflammation in ALI, and may hence be a prospective candidate for therapeutic intervention. In the review, we present an overview of the ailment characteristics of acute lung injury along with the constitution and operation of the NLRP3 inflammasome within this framework. We also explore therapeutic strategies targeting the NLRP3 inflammasome to combat acute lung injury.
Collapse
Affiliation(s)
- Wanjun Gu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Qi Zeng
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Xin Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Huthaifa Jasem
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Ling Ma
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
3
|
Wang Y, Yang W, Liu L, Liu L, Chen J, Duan L, Li Y, Li S. Vitamin K2 (MK-7) attenuates LPS-induced acute lung injury via inhibiting inflammation, apoptosis, and ferroptosis. PLoS One 2023; 18:e0294763. [PMID: 38011192 PMCID: PMC10681318 DOI: 10.1371/journal.pone.0294763] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
Acute lung injury (ALI) is a life-threatening disease that has received considerable critical attention in the field of intensive care. This study aimed to explore the role and mechanism of vitamin K2 (VK2) in ALI. Intraperitoneal injection of 7 mg/kg LPS was used to induce ALI in mice, and VK2 injection was intragastrically administered with the dose of 0.2 and 15 mg/kg. We found that VK2 improved the pulmonary pathology, reduced myeloperoxidase (MPO) activity and levels of TNF-α and IL-6, and boosted the level of IL-10 of mice with ALI. Moreover, VK2 played a significant part in apoptosis by downregulating and upregulating Caspase-3 and Bcl-2 expressions, respectively. As for further mechanism exploration, we found that VK2 inhibited P38 MAPK signaling. Our results also showed that VK2 inhibited ferroptosis, which manifested by reducing malondialdehyde (MDA) and iron levels, increasing glutathione (GSH) level, and upregulated and downregulated glutathione peroxidase 4 (GPX4) and heme oxygenase-1 (HO-1) expressions, respectively. In addition, VK2 also inhibited elastin degradation by reducing levels of uncarboxylated matrix Gla protein (uc-MGP) and desmosine (DES). Overall, VK2 robustly alleviated ALI by inhibiting LPS-induced inflammation, apoptosis, ferroptosis, and elastin degradation, making it a potential novel therapeutic candidate for ALI.
Collapse
Affiliation(s)
- Yulian Wang
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Weidong Yang
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Lulu Liu
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Lihong Liu
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | | | - Lili Duan
- Sungen Bioscience Co., Ltd., Guangdong, China
| | - Yuyuan Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Shuzhuang Li
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Lin B, Jin Z, Chen X, Zhao L, Weng C, Chen B, Tang Y, Lin L. Necrostatin‑1 protects mice from acute lung injury by suppressing necroptosis and reactive oxygen species. Mol Med Rep 2020; 21:2171-2181. [PMID: 32323764 PMCID: PMC7115190 DOI: 10.3892/mmr.2020.11010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022] Open
Abstract
Acute lung injury (ALI) is characterized by tissue damage and inflammatory cytokine secretion; however, the therapeutic options available to treat ALI remain limited. Necrostatin-1 (Nec-1) has the ability to attenuate cell necroptosis in various inflammatory diseases. The present study evaluated the protective effects of Nec-1 on a mouse model of lipopolysaccharide-induced ALI. Histological alterations in the lungs were evaluated through hematoxylin and eosin staining, and the expression levels of cytokines in the bronchoalveolar lavage fluid and lung tissues were determined by ELISA. In addition, accumulated production of reactive oxygen species was determined by staining with DCFH-DA probes, western blotting and immunofluorescence. The results revealed that treatment with the necroptosis inhibitor, Nec-1, exerted significant protective effects on ALI-induced inflammation and necroptosis. The key proteins involved in necroptosis were markedly reduced, including receptor-interacting serine/threonine-protein kinase (RIP)1 and RIP3. Notably, antioxidant proteins were upregulated by Nec-1, which may attenuate oxidative stress. Furthermore, treatment with Nec-1 markedly suppressed necroptosis in the pulmonary alveoli RLE-6TN cell line. Taken together, these data revealed a novel association between ALI and necroptosis, and suggested that necroptosis inhibitors may be used as effective anti-inflammatory drugs to treat ALI.
Collapse
Affiliation(s)
- Bi Lin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ziyuan Jin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiang Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Li Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Chengwei Weng
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Baihui Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yaning Tang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lina Lin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
5
|
El-Metwaly S, El-Senduny FF, El-Demerdash RS, Abdel-Aziz AF. Mesenchymal stem cells alleviate hydrochloric acid-induced lung injury through suppression of inflammation, oxidative stress and apoptosis in comparison to moxifloxacin and sildenafil. Heliyon 2019; 5:e02710. [PMID: 31872097 PMCID: PMC6909079 DOI: 10.1016/j.heliyon.2019.e02710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/21/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022] Open
Abstract
Introduction Acute lung injury (ALI) is a severe life-threatening disease causing uncontrolled pulmonary inflammation and oxidative damage. There are still no effective therapies for this disease. The aim of this study was to evaluate the protective role of mesenchymal stem cells, moxifloxacin, sildenafil or a combination of moxifloxacin and sildenafil against hydrochloric Acid (HCl) - induced ALI. Methods HCl or saline was injected intra-tracheally and after 2 h, moxifloxacin, sildenafil, moxifloxacin + sildenafil or mesenchymal stem cells were injected. After 7 days, rats were sacrificed for evaluation of the blood chemistry and inflammation via determination of the level of oxidative stress markers, apoptosis and the histopathological alterations by H&E. Results In HCl-injected rats, there were a significant increase in total white blood cells (WBCs), lymphocytes, malondialdehyde (MDA) and caspase-3 gene expression. Also, there were a significant decrease in superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and Hemeoxygenase-1 (HO-1) gene expression in lung tissue. On the other hand, treatment of lung injured rats with mesenchymal stem cell, moxifloxacin, sildenafil or a combination of moxifloxacin and sildenafil showed a significant decrease in WBCs and lymphocytes and ameliorated the histopathological changes. MDA level in lung tissue was only significantly lowered in rats treated with moxifloxacin alone or in combination with sildenafil or MSCs. GSH was just increased in rats treated with moxifloxacin, sildenafil or with MSCs. Antioxidant parameters and gene expression of HO-1 and caspase-3 were significantly modulated in rats treated with MSCs. Conclusion MSCs ameliorated the toxic effects of HCl through their ability to decrease inflammation, oxidative stress, and apoptosis in acute lung injury.
Collapse
Affiliation(s)
- Shimaa El-Metwaly
- Chemistry Department, Faculty of Science, Mansoura University, Egypt
| | | | | | - A F Abdel-Aziz
- Chemistry Department, Faculty of Science, Mansoura University, Egypt
| |
Collapse
|
6
|
Kim SY, Min C, Oh DJ, Choi HG. Bidirectional Association Between GERD and Asthma: Two Longitudinal Follow-Up Studies Using a National Sample Cohort. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 8:1005-1013.e9. [PMID: 31733335 DOI: 10.1016/j.jaip.2019.10.043] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND A relation between gastroesophageal reflux disease (GERD) and asthma has been suggested; however, causality has not been investigated. OBJECTIVE This study aimed to delineate the causal relation between GERD and asthma. METHODS Participants of the Korean National Health Insurance Service-National Sample Cohort 2002-2013 who were ≥20 years old were selected for this study. In study I, 116,502 patients with GERD were matched in a 1:2 ratio to 233,004 control I participants, and the hazard ratio (HR) of asthma in patients with GERD was analyzed. In study II, 104,146 patients with asthma were matched in a 1:1 ratio to 104,146 control II participants, and the HR for GERD in patients with asthma was analyzed. A stratified Cox-proportional hazards model was used. Subgroup analyses were performed according to age and sex. RESULTS In study I, 12.5% (14,595 of 116,502) of the GERD group and 7.8% (18,135 of 233,004) of the control I group presented asthma (P < .001). The GERD group demonstrated a 1.46-fold higher HR for asthma than the control I group (95% confidence interval [CI] = 1.42-1.49, P < .001). In study II, 16.9% (17,582 of 104,146) of the asthma group and 11.9% (12,393 of 104,146) of the control II group presented GERD (P < .001). The asthma group showed a 1.36-fold higher HR for GERD than the control II group (95% CI = 1.33-1.39, P < .001). All age and sex subgroups presented consistent results. CONCLUSION GERD and asthma had a bidirectional relation in the study population.
Collapse
Affiliation(s)
- So Young Kim
- Department of Otorhinolaryngology, Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Chanyang Min
- Hallym Data Science Laboratory, Hallym University College of Medicine, Anyang, Republic of Korea; Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Dong Jun Oh
- Department of Internal medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyo Geun Choi
- Hallym Data Science Laboratory, Hallym University College of Medicine, Anyang, Republic of Korea; Department of Otorhinolaryngology, Head and Neck Surgery, Hallym University College of Medicine, Anyang, Republic of Korea.
| |
Collapse
|