1
|
Fatima M, Khan KUR, Al-Joufi FA, Hussain M. Pharmacological evaluation of Salvadora persica in modulating Lipopolysaccharide and Cigarette smoke-induced acute lung injury; an in-vitro, in-vivo, and in-silico approach. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119689. [PMID: 40164366 DOI: 10.1016/j.jep.2025.119689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/02/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE ARDS (Acute Respiratory Distress Syndrome) and ALI (Acute Lung Injury) are severe pulmonary alterations manifested by amplified inflammatory and oxidative responses contributing to high mortality rates. ALI triggered by various provoking factors, including cigarette smoke (CS), or pathogens (Lipopolysaccharide or SARS-CoV-2), cause severe life-threatening morbidities. Salvadora persica has been used across various countries for cough and asthma, however; there is a paucity of data on its use in ALI. AIM OF THE STUDY This research explores signaling pathways and the potential of S-persica in treating ALI, emphasizing the feasibility of its compounds being advanced into therapeutic agents via pre-clinical trials and computational approaches. MATERIALS AND METHODS In-vitro, GC-MS, phytochemicals, antioxidants (Phosphomolybdenum, DPPH, ABTS+, and FRAP), and enzyme inhibition (AChE & BChE) assays were performed. 60 rats were divided into 12 groups (n = 5 each), and assigned to SP-mx (100, 200, and 300 mg/kg), Dexa (1 mg/kg), Control (NS), LPS-challenged and CS-exposed groups, to establish in-vivo models. After 24 h (LPS-challenged) and day 10th (CS-exposure), oxygen saturation, inflammatory cells, lung weight, histopathology, MDA, TOS, TAC, and mRNA expression of IL-1β, TNF-α, IL-6, NF-κβ, COX-2, IL-4 and IL-10 were evaluated. Further, in-silico studies were conducted via Docking, Swiss ADME, Molinspiration, and ProTox-III. RESULTS In both models, SP-mx reduced edema, inflammatory cells infiltration, histopathological alterations, oxidative stress, expression of pro-inflammatory cytokines, COX-2 and NF-κB, while elevating TAC and anti-inflammatory cytokines. Its high phenolic contents along with antioxidant and anticholinesterase activities, endorsed SP-mx remarkable ability to combat oxidative stress. In-silico studies confirmed its interactions with AChE, BChE, COX-2, TNF-α, IL-1β, and NF-κB, as well as its favorable ADMET, and drug-likeness properties. CONCLUSION These findings highlight that SP-mx is a potential therapeutic candidate for treating ALI by possibly modulating COX-2/NF-κB signaling pathways, warranting further research for clinical translation.
Collapse
Affiliation(s)
- Mobeen Fatima
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Kashif Ur Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Fakhria A Al-Joufi
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Aljouf, Saudi Arabia
| | - Musaddique Hussain
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| |
Collapse
|
2
|
Li X, Zhao Y, Zhou H, Hu Y, Chen Y, Guo D. Signaling Pathways (TNF-α-NF-κB, TLR2-TLR4 as well as ROS-MDA) and Cardiac Damages during Cardiac Surgeries (Coronary Stenting, Permanent Pacemaker Implantations, Radiofrequency Ablations). Curr Top Med Chem 2025; 25:196-208. [PMID: 39350416 DOI: 10.2174/0115680266314899240919081451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 04/05/2025]
Abstract
INTRODUCTION The mutual activations of multiple signaling pathways are the key factors in the development and progression of myocardial cell injuries. OBJECTIVES This research aimed to compare the different degrees of myocardial injury after coronary stenting, permanent pacemaker implantations, or cardiac radiofrequency ablation and to investigate the effects of the mutual activation of TNF-α/NF-κB, TLR2/TLR4, and ROS/MDA signaling pathways on myocardial injury in elderly patients after coronary stents or permanent pacemakers or radiofrequency ablation. METHODS We determined reactive oxygen species (ROS), malondialdehyde (MDA), toll-like receptor 2 (TLR2), toll-like receptor 4 (TLR4), nuclear factor kappa B (NF-κB), tumor necrosis factor- α (TNF-α) and high-sensitive cardiac troponin T (hs-cTnT) as markers of myocardial injury in patients. RESULTS The levels of ROS, MDA, TLR2, TLR4, NF-κB, TNF-α, and hs-cTnT were increased in patients with permanent pacemaker implantations when compared to patients with cardiac radiofrequency ablation (P < 0.01) at 6 months and were further increased in patients with coronary stenting compared to patients with cardiac radiofrequency ablation and permanent pacemaker implantations at 6 months, respectively (P < 0.01). This research confirmed that ROS, MDA, TLR2, TLR4, NF-κB, and TNF-α predicted myocardial injury severity. CONCLUSION Oxidative stress (ROS/MDA signaling pathway) may be linked to immune response (TLR2/TLR4 signaling pathway) and pro-inflammatory response (TNF-α/NF-κB signaling pathway) in myocardial injury, and ROS/MDA signaling may play a dominant role.
Collapse
Affiliation(s)
- Xia Li
- Xiamen Road Branch Hospital, The Second People's Hospital of Huai'an of Xuzhou Medical University, Huaian 223005, China
| | - Yongjuan Zhao
- Xiamen Road Branch Hospital, The Second People's Hospital of Huai'an of Xuzhou Medical University, Huaian 223005, China
| | - Hualan Zhou
- Department of Geriatrics, The Second People's Hospital of Huai'an of Xuzhou Medical University, Huaian 223002, China
| | - Youdong Hu
- Department of Geriatrics, The Second People's Hospital of Huai'an of Xuzhou Medical University, Huaian 223002, China
| | - Ying Chen
- Department of Geriatrics, The Second People's Hospital of Huai'an of Xuzhou Medical University, Huaian 223002, China
| | - Dianxuan Guo
- Xiamen Road Branch Hospital, The Second People's Hospital of Huai'an of Xuzhou Medical University, Huaian 223005, China
| |
Collapse
|
3
|
Zhou N, Groven RVM, Horst K, Mert Ü, Greven J, Mollnes TE, Huber-Lang M, van Griensven M, Hildebrand F, Balmayor ER. Pulmonary miRNA expression after polytrauma depends on the surgical invasiveness and displays an anti-inflammatory pattern by the combined inhibition of C5 and CD14. Front Immunol 2024; 15:1402571. [PMID: 39267761 PMCID: PMC11391096 DOI: 10.3389/fimmu.2024.1402571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
Background Respiratory failure can be a severe complication after polytrauma. Extensive systemic inflammation due to surgical interventions, as well as exacerbated post-traumatic immune responses influence the occurrence and progression of respiratory failure. This study investigated the effect of different surgical treatment modalities as well as combined inhibition of the complement component C5 and the toll-like receptor molecule CD14 (C5/CD14 inhibition) on the pulmonary microRNA (miRNA) signature after polytrauma, using a translational porcine polytrauma model. Methods After induction of general anesthesia, animals were subjected to polytrauma, consisting of blunt chest trauma, bilateral femur fractures, hemorrhagic shock, and liver laceration. One sham group (n=6) and three treatment groups were defined; Early Total Care (ETC, n=8), Damage Control Orthopedics (DCO, n=8), and ETC + C5/CD14 inhibition (n=4). Animals were medically and operatively stabilized, and treated in an ICU setting for 72 h. Lung tissue was sampled, miRNAs were isolated, transcribed, and pooled for qPCR array analyses, followed by validation in the individual animal population. Lastly, mRNA target prediction was performed followed by functional enrichment analyses. Results The miRNA arrays identified six significantly deregulated miRNAs in lung tissue. In the DCO group, miR-129, miR-192, miR-194, miR-382, and miR-503 were significantly upregulated compared to the ETC group. The miRNA expression profiles in the ETC + C5/CD14 inhibition group approximated those of the DCO group. Bioinformatic analysis revealed mRNA targets and signaling pathways related to alveolar edema, pulmonary fibrosis, inflammation response, and leukocytes recruitment. Collectively, the DCO group, as well as the ETC + C5/CD14 inhibition group, revealed more anti-inflammatory and regenerative miRNA expression profiles. Conclusion This study showed that reduced surgical invasiveness and combining ETC with C5/CD14 inhibition can contribute to the reduction of pulmonary complications.
Collapse
Affiliation(s)
- Nan Zhou
- Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Rald V. M. Groven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
- Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Klemens Horst
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Ümit Mert
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Johannes Greven
- Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Tom Eirik Mollnes
- Research Laboratory, Nordland Hospital Bodø, Bodø, Norway
- Department of Immunology, Oslo University Hospital, and University of Oslo, Oslo, Norway
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Martijn van Griensven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Frank Hildebrand
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Elizabeth R. Balmayor
- Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| |
Collapse
|
4
|
Lu L, Li J, Jiang X, Bai R. CXCR4/CXCL12 axis: "old" pathway as "novel" target for anti-inflammatory drug discovery. Med Res Rev 2024; 44:1189-1220. [PMID: 38178560 DOI: 10.1002/med.22011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/25/2023] [Accepted: 12/16/2023] [Indexed: 01/06/2024]
Abstract
Inflammation is the body's defense response to exogenous or endogenous stimuli, involving complex regulatory mechanisms. Discovering anti-inflammatory drugs with both effectiveness and long-term use safety is still the direction of researchers' efforts. The inflammatory pathway was initially identified to be involved in tumor metastasis and HIV infection. However, research in recent years has proved that the CXC chemokine receptor type 4 (CXCR4)/CXC motif chemokine ligand 12 (CXCL12) axis plays a critical role in the upstream of the inflammatory pathway due to its chemotaxis to inflammatory cells. Blocking the chemotaxis of inflammatory cells by CXCL12 at the inflammatory site may block and alleviate the inflammatory response. Therefore, developing CXCR4 antagonists has become a novel strategy for anti-inflammatory therapy. This review aimed to systematically summarize and analyze the mechanisms of action of the CXCR4/CXCL12 axis in more than 20 inflammatory diseases, highlighting its crucial role in inflammation. Additionally, the anti-inflammatory activities of CXCR4 antagonists were discussed. The findings might help generate new perspectives for developing anti-inflammatory drugs targeting the CXCR4/CXCL12 axis.
Collapse
Affiliation(s)
- Liuxin Lu
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Junjie Li
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiaoying Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Renren Bai
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Miyano T, Mikkaichi T, Nakamura K, Yoshigae Y, Abernathy K, Ogura Y, Kiyosawa N. Circulating microRNA Profiles Identify a Patient Subgroup with High Inflammation and Severe Symptoms in Schizophrenia Experiencing Acute Psychosis. Int J Mol Sci 2024; 25:4291. [PMID: 38673876 PMCID: PMC11050142 DOI: 10.3390/ijms25084291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Schizophrenia is a complex and heterogenous psychiatric disorder. This study aimed to demonstrate the potential of circulating microRNAs (miRNAs) as a clinical biomarker to stratify schizophrenia patients and to enhance understandings of their heterogenous pathophysiology. We measured levels of 179 miRNA and 378 proteins in plasma samples of schizophrenia patients experiencing acute psychosis and obtained their Positive and Negative Syndrome Scale (PANSS) scores. The plasma miRNA profile revealed three subgroups of schizophrenia patients, where one subgroup tended to have higher scores of all the PANSS subscales compared to the other subgroups. The subgroup with high PANSS scores had four distinctively downregulated miRNAs, which enriched 'Immune Response' according to miRNA set enrichment analysis and were reported to negatively regulate IL-1β, IL-6, and TNFα. The same subgroup had 22 distinctively upregulated proteins, which enriched 'Cytokine-cytokine receptor interaction' according to protein set enrichment analysis, and all the mapped proteins were pro-inflammatory cytokines. Hence, the subgroup is inferred to have comparatively high inflammation within schizophrenia. In conclusion, miRNAs are a potential biomarker that reflects both disease symptoms and molecular pathophysiology, and identify a patient subgroup with high inflammation. These findings provide insights for the precision medicinal strategies for anti-inflammatory treatments in the high-inflammation subgroup of schizophrenia.
Collapse
Affiliation(s)
- Takuya Miyano
- Translational Science Department II, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa, Tokyo 140-8710, Japan; (T.M.); (K.N.); (Y.Y.); (N.K.)
| | - Tsuyoshi Mikkaichi
- Translational Science Department II, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa, Tokyo 140-8710, Japan; (T.M.); (K.N.); (Y.Y.); (N.K.)
| | - Kouichi Nakamura
- Translational Science Department II, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa, Tokyo 140-8710, Japan; (T.M.); (K.N.); (Y.Y.); (N.K.)
| | - Yasushi Yoshigae
- Translational Science Department II, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa, Tokyo 140-8710, Japan; (T.M.); (K.N.); (Y.Y.); (N.K.)
| | - Kelly Abernathy
- Clinical Research Department, Sirtsei Pharmaceuticals, Inc., 3000 RDU Center Drive, Suite 130, Morrisville, NC 27560, USA;
| | - Yuji Ogura
- Translational Research Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa, Tokyo 134-8630, Japan;
| | - Naoki Kiyosawa
- Translational Science Department II, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa, Tokyo 140-8710, Japan; (T.M.); (K.N.); (Y.Y.); (N.K.)
| |
Collapse
|
6
|
Jiao Y, Zhou L, Huo J, Li H, Zhu H, Chen D, Lu Y. Flavonoid substituted polysaccharides from Tamarix chinensis Lour. alleviate H1N1-induced acute lung injury via inhibiting complement system. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117651. [PMID: 38135232 DOI: 10.1016/j.jep.2023.117651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Viral pneumonia is a highly pathogenic respiratory infectious disease associated with excessive activation of the complement system. Our previous studies found that the anticomplement polysaccharides from some medicinal plants could significantly alleviate H1N1-induced acute lung injury (H1N1-ALI). The leaves and twigs of Tamarix chinensis Lour. are traditionally used as a Chinese medicine Xiheliu for treating inflammatory disorders. Interestingly, its crude polysaccharides (MBAP90) showed potent anticomplement activity in vitro. AIM OF THE STUDY To evaluate the therapeutic effects and possible mechanism of MBAP90 on viral pneumonia and further isolate and characterize the key active substance of MBAP90. MATERIALS AND METHODS The protective effects of MBAP90 were evaluated by survival tests and pharmacodynamic experiments on H1N1-ALI mice. Histopathological changes, viral load, inflammatory markers, and complement deposition in lungs were analyzed by H&E staining, enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry (IHC), respectively. An anticomplement homogenous polysaccharide (MBAP-3) was obtained from MBAP90 by bio-guided separation, and its structure was further characterized by methylation analysis and NMR spectroscopy. RESULTS Oral administration of MBAP90 at a dose of 400 mg/kg significantly increased the survival rate of mice infected with the lethal H1N1 virus. In H1N1-induced ALI, mice treated with MBAP90 (200 and 400 mg/kg) could decrease the lung index, lung pathological injury, the levels of excessive proinflammatory cytokines (IL-6, TNF-α, MCP-1, IL-18, and IL-1β), and complement levels (C3c and C5b-9). In addition, MBAP-3 was characterized as a novel homogenous polysaccharide with potent in vitro anticomplement activity (CH50: 0.126 ± 0.002 mg/mL), containing 10.51% uronic acids and 9.67% flavonoids, which were similar to the composition of MBAP90. The backbone of MBAP-3 consisted of →4)-α-D-Glcp-(1→, →3,4,6)-α-D-Glcp-(1→, and →3,4)-α-D-Glcp-(1→, with branches comprising α-L-Araf-(1→, α-D-GlcpA-(1→, →4,6)-α-D-Manp-(1→ and →4)-β-D-Galp-(1 → . Particularly, O-6 of →4)-β-D-Galp-(1→ was conjugated with a flavonoid, myricetin. CONCLUSIONS MBAP90 could ameliorate H1N1-ALI by inhibiting inflammation and over-activation of the complement system. These polysaccharides (MBAP90 and MBAP-3) with relative high contents of uronic acid and flavonoid substituent might be vital components of T. chinensis for treating viral pneumonia.
Collapse
Affiliation(s)
- Yukun Jiao
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China.
| | - Lishuang Zhou
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China.
| | - Jiangyan Huo
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China.
| | - Hong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| | - Haiyan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai, China.
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China; Institutes of Integrative Medicine, School of Pharmacy, Fudan University, Shanghai, China.
| | - Yan Lu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Coavoy-Sanchez SA, da Costa Marques LA, Costa SKP, Muscara MN. Role of Gasotransmitters in Inflammatory Edema. Antioxid Redox Signal 2024; 40:272-291. [PMID: 36974358 DOI: 10.1089/ars.2022.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Significance: Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are, to date, the identified members of the gasotransmitter family, which consists of gaseous signaling molecules that play central roles in the regulation of a wide variety of physiological and pathophysiological processes, including inflammatory edema. Recent Advances: Recent studies show the potential anti-inflammatory and antiedematogenic effects of NO-, CO-, and H2S-donors in vivo. In general, it has been observed that the therapeutical effects of NO-donors are more relevant when administered at low doses at the onset of the inflammatory process. Regarding CO-donors, their antiedematogenic effects are mainly associated with inhibition of proinflammatory mediators (such as inducible NO synthase [iNOS]-derived NO), and the observed protective effects of H2S-donors seem to be mediated by reducing some proinflammatory enzyme activities. Critical Issues: The most recent investigations focus on the interactions among the gasotransmitters under different pathophysiological conditions. However, the biochemical/pharmacological nature of these interactions is neither general nor fully understood, although specifically dependent on the site where the inflammatory edema occurs. Future Directions: Considering the nature of the involved mechanisms, a deeper knowledge of the interactions among the gasotransmitters is mandatory. In addition, the development of new pharmacological tools, either donors or synthesis inhibitors of the three gasotransmitters, will certainly aid the basic investigations and open new strategies for the therapeutic treatment of inflammatory edema. Antioxid. Redox Signal. 40, 272-291.
Collapse
Affiliation(s)
| | | | - Soraia Katia Pereira Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Marcelo Nicolas Muscara
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| |
Collapse
|
8
|
Costa SF, Soares MF, Poleto Bragato J, dos Santos MO, Rebech GT, de Freitas JH, de Lima VMF. MicroRNA-194 regulates parasitic load and IL-1β-dependent nitric oxide production in the peripheral blood mononuclear cells of dogs with leishmaniasis. PLoS Negl Trop Dis 2024; 18:e0011789. [PMID: 38241360 PMCID: PMC10798644 DOI: 10.1371/journal.pntd.0011789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/11/2023] [Indexed: 01/21/2024] Open
Abstract
Domestic dogs are the primary urban reservoirs of Leishmania infantum, the causative agent of visceral leishmaniasis. In Canine Leishmaniasis (CanL), modulation of the host's immune response may be associated with the expression of small non-coding RNAs called microRNA (miR). miR-194 expression increases in peripheral blood mononuclear cells (PBMCs) of dogs with leishmaniasis with a positive correlation with the parasite load and in silico analysis demonstrated that the TRAF6 gene is the target of miR-194 in PBMCs from diseased dogs. Here, we isolated PBMCs from 5 healthy dogs and 28 dogs with leishmaniasis, naturally infected with L. infantum. To confirm changes in miR-194 and TRAF6 expression, basal expression of miR-194 and gene expression of TRAF6 was measured using qPCR. PBMCs from healthy dogs and dogs with leishmaniasis were transfected with miR-194 scramble, mimic, and inhibitor and cultured at 37° C, 5% CO2 for 48 hours. The expression of possible targets was measured: iNOS, NO, T-bet, GATA3, and FoxP3 were measured using flow cytometry; the production of cytokines IL-1β, IL-4, IL-6, IL-10, TNF-α, IFN-γ, and TGF-β in cell culture supernatants was measured using capture enzyme-linked immunosorbent assays (ELISA). Parasite load was measured using cytometry and qPCR. Functional assays followed by miR-194 inhibitor and IL-1β blockade and assessment of NO production were also performed. Basal miR-194 expression was increased in PBMC from dogs with Leishmaniasis and was negatively correlated with TRAF6 expression. The mimic of miR-194 promoted an increase in parasite load. There were no significant changes in T-bet, GATA3, or FoxP3 expression with miR-194 enhancement or inhibition. Inhibition of miR-194 increased IL-1β and NO in PBMCs from diseased dogs, and blockade of IL-1β following miR-194 inhibition decreased NO levels. These findings suggest that miR-194 is upregulated in PBMCs from dogs with leishmaniasis and increases parasite load, possibly decreasing NO production via IL-1β. These results increase our understanding of the mechanisms of evasion of the immune response by the parasite and the identification of possible therapeutic targets.
Collapse
Affiliation(s)
- Sidnei Ferro Costa
- Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Matheus Fujimura Soares
- Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Jaqueline Poleto Bragato
- Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Marilene Oliveira dos Santos
- Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Gabriela Torres Rebech
- Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Jéssica Henrique de Freitas
- Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Valéria Marçal Felix de Lima
- Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| |
Collapse
|
9
|
Cheng Y, Lin D, Wu S, Liu Q, Yan X, Ren T, Zhang J, Wang N. Cerebrospinal Fluid Pressure Reduction Induces Glia-Mediated Retinal Inflammation and Leads to Retinal Ganglion Cell Injury in Rats. Mol Neurobiol 2023; 60:5770-5788. [PMID: 37347366 DOI: 10.1007/s12035-023-03430-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023]
Abstract
Low intracranial pressure (LICP)-induced translaminar cribrosa pressure difference (TLCPD) elevation has been proven as a risk factor in glaucomatous neurodegeneration, whereas the underlying retinal immune features of LICP-induced retinal ganglion cells (RGC) injury remain elusive. Here, we identified the retinal immune characteristics of LICP rats, and minocycline (Mino) treatment was utilized to analyze its inhibitory role in glia-mediated retinal inflammation of LICP rats. The results showed that retrograde axonal transport was decreased in LICP rats without significant RGC loss, indicating the RGC injury was at an early stage before the morphological loss. The activation of retinal microglia and astrocytes with morphologic and M1 or A1-marker alternations was detected in TLCPD elevation rats, the activation level is more dramatic in HIOP rats than in the LICP rats (P<0.05). Besides, we detected reduced retinal tight junction protein expressions, accompanied by specific imbalance patterns of T lymphocytes in the retina of both LICP and HIOP rats (P<0.05). Further Mino treatment showed an effective inhibitory role in glia-driven inflammatory responses in LICP rats, including improving retrograde axonal transport, inhibiting retinal glial activation and proinflammatory subtype polarization, and alleviating the blood-retina barrier compromise. This study identified the glia-mediated retinal inflammation features triggered by LICP stimulus, and Mino application exhibited an effective role in the inhibition of retinal glia-mediated inflammation in LICP-induced TLCPD elevation rats.
Collapse
Affiliation(s)
- Ying Cheng
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Danting Lin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Qian Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Xuejing Yan
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Tianmin Ren
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Jingxue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China.
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, 100069, China.
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China.
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
10
|
Goeteyn E, Grassi L, Van den Bossche S, Rigauts C, Vande Weygaerde Y, Van Braeckel E, Maes T, Bracke KR, Crabbé A. Commensal bacteria of the lung microbiota synergistically inhibit inflammation in a three-dimensional epithelial cell model. Front Immunol 2023; 14:1176044. [PMID: 37168857 PMCID: PMC10164748 DOI: 10.3389/fimmu.2023.1176044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/30/2023] [Indexed: 05/13/2023] Open
Abstract
Patients with chronic lung disease suffer from persistent inflammation and are typically colonized by pro-inflammatory pathogenic bacteria. Besides these pathogens, a wide variety of commensal species is present in the lower airways but their role in inflammation is unclear. Here, we show that the lung microbiota contains several species able to inhibit activation of the pro-inflammatory NF-κB pathway and production of interleukin 8 (IL-8), triggered by lipopolysaccharide (LPS) or H2O2, in a physiologically relevant three-dimensional (3D) lung epithelial cell model. We demonstrate that the minimal dose needed for anti-inflammatory activity differs between species (with the lowest dose needed for Rothia mucilaginosa), and depends on the type of pro-inflammatory stimulus and read out. Furthermore, we evaluated synergistic activity between pairs of anti-inflammatory bacteria on the inhibition of the NF-κB pathway and IL-8 secretion. Synergistic anti-inflammatory activity was observed for 4/10 tested consortia. These findings indicate that various microbiota members can influence lung inflammation either alone or as a consortium. This information can contribute to a better understanding of the lung microbiota in chronic lung disease development and process, and could open up new avenues for treatment.
Collapse
Affiliation(s)
- Ellen Goeteyn
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Lucia Grassi
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | | | - Charlotte Rigauts
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Yannick Vande Weygaerde
- Cystic Fibrosis Reference Centre, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Eva Van Braeckel
- Cystic Fibrosis Reference Centre, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Lung Research Lab, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Tania Maes
- Lung Research Lab, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ken R. Bracke
- Lung Research Lab, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- *Correspondence: Aurélie Crabbé,
| |
Collapse
|
11
|
Lai X, Zhong J, Zhang A, Zhang B, Zhu T, Liao R. Focus on long non-coding RNA MALAT1: Insights into acute and chronic lung diseases. Front Genet 2022; 13:1003964. [PMID: 36186445 PMCID: PMC9523402 DOI: 10.3389/fgene.2022.1003964] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/06/2022] [Indexed: 12/12/2022] Open
Abstract
Acute lung injury (ALI) is a pulmonary illness with a high burden of morbidity and mortality around the world. Chronic lung diseases also represent life-threatening situations. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a type of long non-coding RNA (lncRNA) and is highly abundant in lung tissues. MALAT1 can function as a competitive endogenous RNA (ceRNA) to impair the microRNA (miRNA) inhibition on targeted messenger RNAs (mRNAs). In this review, we summarized that MALAT1 mainly participates in pulmonary cell biology and lung inflammation. Therefore, MALAT1 can positively or negatively regulate ALI and chronic lung diseases (e.g., chronic obstructive pulmonary disease (COPD), bronchopulmonary dysplasia (BPD), pulmonary fibrosis, asthma, and pulmonary hypertension (PH)). Besides, we also found a MALAT1-miRNA-mRNA ceRNA regulatory network in acute and chronic lung diseases. Through this review, we hope to cast light on the regulatory mechanisms of MALAT1 in ALI and chronic lung disease and provide a promising approach for lung disease treatment.
Collapse
Affiliation(s)
- Xingning Lai
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdou, Sichuan, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdou, Sichuan, China
| | - Jie Zhong
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdou, Sichuan, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdou, Sichuan, China
| | - Aihua Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdou, Sichuan, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdou, Sichuan, China
| | - Boyi Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdou, Sichuan, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdou, Sichuan, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdou, Sichuan, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdou, Sichuan, China
- *Correspondence: Tao Zhu, ; Ren Liao,
| | - Ren Liao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdou, Sichuan, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdou, Sichuan, China
- *Correspondence: Tao Zhu, ; Ren Liao,
| |
Collapse
|
12
|
Cui M, Guo S, Cui Y. SRC3 deficiency exacerbates lipopolysaccharide-induced acute respiratory distress syndrome in mice. Exp Lung Res 2022; 48:178-186. [PMID: 35916527 DOI: 10.1080/01902148.2022.2104958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe disease. Inflammation is the key element implicated in ARDS. Steroid receptor coactivator 3 (SRC3), a coactivator protein for transcription, is involved in regulation of inflammatory response. Here we explored the potential roles of SRC3 in ARDS. We utilized the SRC3 deficient (SRC3-/-) mice and established the lipopolysaccharides (LPS)-induced ARDS model. The mortality, lung injury, leucocytes infiltration and inflammatory cytokine production were compared between wild type (WT) and SRC3-/- mice. The NF-κB activation in lung of WT and SRC3-/- mice was measured. After LPS treatment, SRC3-/- mice had higher mortality and more severe lung damage than WT mice. LPS-treated SRC3-/- mice had more leucocytes infiltration and upregulated inflammatory cytokine production. LPS-treated SRC3-/- mice had elevated NF-κB activation. SRC3-/- mice had exacerbated ARDS in LPS-treated mice.
Collapse
Affiliation(s)
- Meixia Cui
- Department of Emergency, Brain Academy District, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Shengtong Guo
- TCM Docters, Brain Academy District, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Ying Cui
- Department of Emergency, Brain Academy District, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
13
|
Differential expression profile of plasma exosomal microRNAs in acute type A aortic dissection with acute lung injury. Sci Rep 2022; 12:11667. [PMID: 35804020 PMCID: PMC9270349 DOI: 10.1038/s41598-022-15859-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/30/2022] [Indexed: 11/08/2022] Open
Abstract
MicroRNAs (miRNAs) packaged into exosomes mediate cell communication and contribute to the pathogenesis of acute type A aortic dissection (ATAAD) with acute lung injury (ALI). The expression profile of plasma exosomal miRNAs in ATAAD patients with ALI hasn’t been identified. We performed a miRNA-sequencing to analyze the differentially expressed miRNAs (DE-miRNAs) of circulating exosomes in ATAAD patients with ALI compared to patients without ALI, founding 283 specific miRNAs in two groups. We respectively selected the top 10 downregulated and upregulated DE-miRNAs for further studies. The predicted transcription factors (TFs) of these DE-miRNAs were SMAD2, SRSF1, USF1, etc. The Gene Ontology (GO) and Kyoto Encyclopedia Genes and Genomes (KEGG) analysis predicted their target genes mainly involved acute inflammatory response, cell junction, cytoskeleton, NF-κB signaling pathway, etc. Construction and analysis of the PPI network revealed that RHOA and INSR were considered hub genes with the highest connectivity degrees. Moreover, we confirmed two exosomal miRNAs (hsa-miR-485-5p and hsa-miR-206) by real-time quantitative polymerase chain reaction (RT-qPCR) in a validation cohort. Our study identified a plasma exosomal miRNAs signature related to ATAAD with ALI. Certain DE-miRNAs may contribute to the progression of this disease, which help us better understand the pathogenesis of ATAAD with ALI.
Collapse
|
14
|
Wang X, Xu T, Jin J, Ting Gao MM, Wan B, Gong M, Bai L, Lv T, Song Y. Topotecan reduces sepsis-induced acute lung injury and decreases the inflammatory response via the inhibition of the NF-κB signaling pathway. Pulm Circ 2022; 12:e12070. [PMID: 35514783 PMCID: PMC9063966 DOI: 10.1002/pul2.12070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 11/23/2021] [Accepted: 03/29/2022] [Indexed: 11/06/2022] Open
Abstract
This study aims to determine the function of topotecan (TPT) in acute lung injury (ALI) induced by sepsis. The mouse sepsis model was constructed through cecal ligation and puncture (CLP). The ALI score and lung wet/dry (W/D) weight ratio were applied to evaluate the level of lung injury. Hematoxylin-eosin staining was used to examine the role of TPT in lung tissue in a CLP-induced ALI mouse model. Enzyme-linked immunosorbent assay and quantitative real-time polymerase chain reaction were used to detect the concentrations of inflammatory factors, such as interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α. Western blot was used to detect relevant protein levels in the nuclear factor-κB (NF-κB) pathway. Moreover, 10-day survival was recorded by constructing the CLP model. The results indicated that TPT could improve lung tissue damage in mice and could significantly reduce lung injury scores (p < 0.01) and the W/D ratio (p < 0.05). Treatment with ammonium pyrrolidinedithiocarbamate obtained the similar results with the TPT treatment. Both significantly reduced the inflammatory response in the lungs, including reducing the number of neutrophils and total cells in the bronchoalveolar lavage fluid (BALF), significantly reducing the total protein concentration of the BALF, and significantly inhibiting the activity of MPO. Both also inhibited inflammatory cytokine expression and the levels of NF-κB pathway proteins induced by sepsis. Furthermore, TPT significantly improved survival in sepsis. TPT improves ALI in the CLP model by inhibiting the NF-κB pathway, preventing fatal inflammation.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Intensive Care Unit, Inner Mongolia People's HospitalHohhotInner Mongolia Autonomous RegionChina
| | - Tianxiang Xu
- Center of Tumor, Inner Mongolia People's HospitalHohhotInner Mongolia Autonomous RegionChina
| | - Jiajia Jin
- Department of Respiratory Medicine, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - M. M. Ting Gao
- Baotou medical collegeBaotouInner Mongolia Autonomous RegionChina
| | - Bing Wan
- Department of Respiratory and Critical MedicineJinling HospitalNanjingChina
| | - Mei Gong
- Intensive Care Unit, Inner Mongolia People's HospitalHohhotInner Mongolia Autonomous RegionChina
| | - Lingxiao Bai
- Intensive Care Unit, Inner Mongolia People's HospitalHohhotInner Mongolia Autonomous RegionChina
| | - Tangfeng Lv
- Department of Respiratory and Critical MedicineJinling HospitalNanjingChina
| | - Yong Song
- Department of Respiratory and Critical MedicineJinling HospitalNanjingChina
| |
Collapse
|
15
|
Han S, Yuan R, Cui Y, He J, Wang QQ, Zhuo Y, Yang S, Gao H. Hederasaponin C Alleviates Lipopolysaccharide-Induced Acute Lung Injury In Vivo and In Vitro Through the PIP2/NF-κB/NLRP3 Signaling Pathway. Front Immunol 2022; 13:846384. [PMID: 35281058 PMCID: PMC8913935 DOI: 10.3389/fimmu.2022.846384] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/09/2022] [Indexed: 12/04/2022] Open
Abstract
Gene transcription is governed by epigenetic regulation that is essential for the pro-inflammatory mediators surge following pathological triggers. Acute lung injury (ALI) is driven by pro-inflammatory cytokines produced by the innate immune system, which involves the nod-like receptor 3 (NLRP3) inflammasome and nuclear factor-κB (NF-κB) pathways. These two pathways are interconnected and share a common inducer the phosphatidylinositol 4,5-bisphosphate (PIP2), an epigenetic regulator of (Ribosomal ribonucleic acid (rRNA) gene transcription, to regulate inflammation by the direct inhibition of NF-κB phosphorylation and NLRP3 inflammasome activation. Herein, we report that hederasaponin C (HSC) exerted a therapeutic effect against ALI through the regulation of the PIP2/NF-κB/NLRP3 signaling pathway. In lipopolysaccharide (LPS)/lipopolysaccharide + adenosine triphosphate (LPS+ATP)-stimulated macrophages, our results showed that HSC remarkably inhibited the secretion of interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α). Moreover, HSC inhibited NF-κB/p65 nuclear translocation and the binding of PIP2 to transforming growth factor-β activated kinase 1 (TAK1). The intracellular calcium (Ca2+) level was decreased by HSC via the PIP2 signaling pathway, which subsequently inhibited the activation of NLRP3 inflammasome. HSC markedly alleviated LPS-induced ALI, restored lung function of mice, and rescued ALI-induced mice death. In addition, HSC significantly reduced the level of white blood cells (WBC), neutrophils, and lymphocytes, as well as pro-inflammatory mediators like IL-6, IL-1β, and TNF-α. Hematoxylin and eosin (H&E) staining results suggested HSC has a significant therapeutic effect on lung injury of mice. Interestingly, the PIP2/NF-κB/NLRP3 signaling pathway was further confirmed by the treatment of HSC with ALI, which is consistent with the treatment of HSC with LPS/LPS+ATP-stimulated macrophages. Overall, our findings revealed that HSC demonstrated significant anti-inflammatory activity through modulating the PIP2/NF-κB/NLRP3 axis in vitro and in vivo, suggesting that HSC is a potential therapeutic agent for the clinical treatment of ALI.
Collapse
Affiliation(s)
- Shan Han
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Renyikun Yuan
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yushun Cui
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jia He
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qin-Qin Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Youqiong Zhuo
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Guangxi University of Chinese Medicine, Nanning, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Guangxi University of Chinese Medicine, Nanning, China
- *Correspondence: Hongwei Gao,
| |
Collapse
|
16
|
Zou C, Chen Y, Li H, Li W, Wei J, Li Z, Wang X, Chen T, Huang H. Engineered Bacteria EcN-MT Alleviate Liver Injury in Cadmium-Exposed Mice via its Probiotics Characteristics and Expressing of Metallothionein. Front Pharmacol 2022; 13:857869. [PMID: 35281910 PMCID: PMC8908209 DOI: 10.3389/fphar.2022.857869] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
Cadmium (Cd) exposure is a widespread problem in many parts of the world, but effective means to treat Cd exposure is still lacking. Hence, an engineered strain expressing metallothionein (MT) named Escherichia coli Nissle 1917 (EcN)-MT was constructed, and its potential in the treatment of Cd exposure was evaluated. The in vitro studies showed that metallothionein expressed by EcN-MT could significantly bind Cd. Further, the in vivo results indicated that EcN-MT strain could reduce 26.3% Cd in the liver and increase 24.7% Cd in the feces, which greatly decreased malondialdehyde (MDA) levels and increased catalase (CAT), glutathione (GSH), and superoxide dismutase (SOD) levels in liver, and reduced the expression of toll-like receptor4 (TLR4), nuclear factor-κB (NF-κB), the myeloid differentiation factor 88 (Myd88) andincreased B-cell lymphoma 2 (Bcl-2)/Bcl-2-Associated X (Bax). Moreover, high throughput sequencing results indicated that EcN-MT strain greatly enhanced the beneficial bacteria of Ruminococcaceae, Lactobacillaceae, Akkermansia, Muribaculaceae, Lachnospiraceae, Dubosiella and restored the disturbed microbial ecology to the normal level. Therefore, the high Cd binding capacity of the expressed metallothionein, together with the beneficial characteristics of the host bacteria EcN, makes EcN-MT a sound reagent for the treatment of subchronic Cd exposure-induced liver injury.
Collapse
Affiliation(s)
- Changwei Zou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Resources Environmental and Chemical Engineering, Ministry of Education, Nanchang University, Nanchang, China
| | - Ying Chen
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Resources Environmental and Chemical Engineering, Ministry of Education, Nanchang University, Nanchang, China
| | - Hongyu Li
- Queen Mary School, Nanchang University, Nanchang, China
| | - Wenyu Li
- Queen Mary School, Nanchang University, Nanchang, China
| | - Jin Wei
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Ziyan Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Resources Environmental and Chemical Engineering, Ministry of Education, Nanchang University, Nanchang, China
| | - Xinliang Wang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Resources Environmental and Chemical Engineering, Ministry of Education, Nanchang University, Nanchang, China
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- *Correspondence: Tingtao Chen, ; Hong Huang,
| | - Hong Huang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Resources Environmental and Chemical Engineering, Ministry of Education, Nanchang University, Nanchang, China
- *Correspondence: Tingtao Chen, ; Hong Huang,
| |
Collapse
|
17
|
Wu YX, Wang YY, Gao ZQ, Chen D, Liu G, Wan BB, Jiang FJ, Wei MX, Zuo J, Zhu J, Chen YQ, Qian F, Pang QF. Ethyl ferulate protects against lipopolysaccharide-induced acute lung injury by activating AMPK/Nrf2 signaling pathway. Acta Pharmacol Sin 2021; 42:2069-2081. [PMID: 34417573 DOI: 10.1038/s41401-021-00742-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023]
Abstract
Ethyl ferulate (EF) is abundant in Rhizoma Chuanxiong and grains (e.g., rice and maize) and possesses antioxidative, antiapoptotic, antirheumatic, and anti-inflammatory properties. However, its effect on lipopolysaccharide (LPS)-induced acute lung injury (ALI) is still unknown. In the present study, we found that EF significantly alleviated LPS-induced pathological damage and neutrophil infiltration and inhibited the gene expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) in murine lung tissues. Moreover, EF reduced the gene expression of TNF-α, IL-1β, IL-6, and iNOS and decreased the production of NO in LPS-stimulated RAW264.7 cells and BMDMs. Mechanistic experiments revealed that EF prominently activated the AMPK/Nrf2 pathway and promoted Nrf2 nuclear translocation. AMPK inhibition (Compound C) and Nrf2 inhibition (ML385) abolished the beneficial effect of EF on the inflammatory response. Furthermore, the protective effect of EF on LPS-induced ALI was not observed in Nrf2 knockout mice. Taken together, the results of our study suggest that EF ameliorates LPS-induced ALI in an AMPK/Nrf2-dependent manner. These findings provide a foundation for developing EF as a new anti-inflammatory agent for LPS-induced ALI/ARDS therapy.
Collapse
|
18
|
Yin J, Han B, Shen Y. RETRACTED: LncRNA NEAT1 inhibition upregulates miR-16-5p to restrain the progression of sepsis-induced lung injury via suppressing BRD4 in a mouse model. Int Immunopharmacol 2021; 97:107691. [PMID: 33962228 DOI: 10.1016/j.intimp.2021.107691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/17/2021] [Accepted: 04/18/2021] [Indexed: 12/20/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Western blot results in Figs. 5B and 6B, which appear to have the same eyebrow shaped phenotype as many other publications tabulated here (https://docs.google.com/spreadsheets/d/149EjFXVxpwkBXYJOnOHb6RhAqT4a2llhj9LM60MBffM/edit#gid=0 [docs.google.com]). The journal requested the corresponding author comment on these concerns and provide the raw data. However, the authors were not responsive to the request for comment. Since original data could not be provided, the overall validity of the results could not be confirmed. Therefore, the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Jianhong Yin
- Department of Emergency, the First People's Hospital of Yunnan Province, Kunming, 650032 Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032 Yunnan, China
| | - Bin Han
- Department of Emergency, the First People's Hospital of Yunnan Province, Kunming, 650032 Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032 Yunnan, China
| | - Yuan Shen
- Department of Emergency, the First People's Hospital of Yunnan Province, Kunming, 650032 Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032 Yunnan, China.
| |
Collapse
|
19
|
Alharbi KS, Fuloria NK, Fuloria S, Rahman SB, Al-Malki WH, Javed Shaikh MA, Thangavelu L, Singh SK, Rama Raju Allam VS, Jha NK, Chellappan DK, Dua K, Gupta G. Nuclear factor-kappa B and its role in inflammatory lung disease. Chem Biol Interact 2021; 345:109568. [PMID: 34181887 DOI: 10.1016/j.cbi.2021.109568] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/14/2021] [Accepted: 06/24/2021] [Indexed: 12/28/2022]
Abstract
Nuclear factor-kappa B, involved in inflammation, host immune response, cell adhesion, growth signals, cell proliferation, cell differentiation, and apoptosis defense, is a dimeric transcription factor. Inflammation is a key component of many common respiratory disorders, including asthma, chronic obstructive pulmonary disease (COPD), bronchiectasis, and acute respiratory distress syndrome. Many basic transcription factors are found in NF-κB signaling, which is a member of the Rel protein family. Five members of this family c-REL, NF-κB2 (p100/p52), RelA (p65), NF-κB1 (p105/p50), RelB, and RelA (p65) produce 5 transcriptionally active molecules. Proinflammatory cytokines, T lymphocyte, and B lymphocyte cell mitogens, lipopolysaccharides, bacteria, viral proteins, viruses, double-stranded RNA, oxidative stress, physical exertion, various chemotherapeutics are the stimulus responsible for NF-κB activation. NF-κB act as a principal component for several common respiratory illnesses, such as asthma, lung cancer, pulmonary fibrosis, COPD as well as infectious diseases like pneumonia, tuberculosis, COVID-19. Inflammatory lung disease, especially COVID-19, can make NF-κB a key target for drug production.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | | | | | - Sk Batin Rahman
- Bengal School of Technology, Churchura, Hooghly, West Bengal, India
| | - Waleed Hassan Al-Malki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha University, Chennai, India
| | - Sachin K Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Venkata Sita Rama Raju Allam
- Department of Medical Biochemistry and Microbiology, Biomedical Centre (BMC), Uppsala University, Uppsala, Sweden
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No.32-34, Knowledge Park III, Greater Noida, 201310, Uttar Pradesh, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia.
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, 302017, Mahal Road, Jaipur, India.
| |
Collapse
|
20
|
Gu XX, Xu XX, Liao HH, Wu RN, Huang WM, Cheng LX, Lu YW, Mo J. Dexmedetomidine hydrochloride inhibits hepatocyte apoptosis and inflammation by activating the lncRNA TUG1/miR-194/SIRT1 signaling pathway. J Inflamm (Lond) 2021; 18:20. [PMID: 34039367 PMCID: PMC8157629 DOI: 10.1186/s12950-021-00287-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/06/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Liver injury seriously threatens the health of people. Meanwhile, dexmedetomidine hydrochloride (DEX) can protect against liver injury. However, the mechanism by which Dex mediates the progression of liver injury remains unclear. Thus, this study aimed to investigate the function of DEX in oxygen and glucose deprivation (OGD)-treated hepatocytes and its underlying mechanism. METHODS In order to investigate the function of DEX in liver injury, WRL-68 cells were treated with OGD. Cell viability was measured by MTT assay. Cell apoptosis was detected by flow cytometry. Inflammatory cytokines levels were measured by ELISA assay. The interaction between miR-194 and TUG1 or SIRT1 was detected by dual-luciferase reporter. Gene and protein levels were measured by qPCR or western blotting. RESULTS DEX notably reversed OGD-induced inflammation and apoptosis in WRL-68 cell. Meanwhile, the effect of OGD on TUG1, SIRT1 and miR-194 expression in WRL-68 cells was reversed by DEX treatment. However, TUG1 knockdown or miR-194 overexpression reversed the function of DEX in OGD-treated WRL-68 cells. Moreover, TUG1 could promote the expression of SIRT1 by sponging miR-194. Furthermore, knockdown of TUG1 promoted OGD-induced cell growth inhibition and inflammatory responses, while miR-194 inhibitor or SIRT1 overexpression partially reversed this phenomenon. CONCLUSIONS DEX could suppress OGD-induced hepatocyte apoptosis and inflammation by mediation of TUG1/miR-194/SIRT1 axis. Therefore, this study might provide a scientific basis for the application of DEX on liver injury treatment.
Collapse
Affiliation(s)
- Xiao-Xia Gu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, No.57, South People's Avenue, Xiashan District, 524001, Zhanjiang, Guangdong Province, P.R. China
| | - Xiao-Xia Xu
- Operating room, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong Province, P.R. China
| | - Hui-Hua Liao
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, No.57, South People's Avenue, Xiashan District, 524001, Zhanjiang, Guangdong Province, P.R. China
| | - Ruo-Na Wu
- Operating room, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong Province, P.R. China
| | - Wei-Ming Huang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong Province, P.R. China
| | - Li-Xia Cheng
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, No.57, South People's Avenue, Xiashan District, 524001, Zhanjiang, Guangdong Province, P.R. China
| | - Yi-Wen Lu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, No.57, South People's Avenue, Xiashan District, 524001, Zhanjiang, Guangdong Province, P.R. China
| | - Jian Mo
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, No.57, South People's Avenue, Xiashan District, 524001, Zhanjiang, Guangdong Province, P.R. China.
| |
Collapse
|
21
|
Jin J, Qian H, Wan B, Zhou L, Chen C, Lv Y, Chen M, Zhu S, Ye L, Wang X, Xu W, Lv T, Song Y. Geranylgeranyl diphosphate synthase deficiency hyperactivates macrophages and aggravates lipopolysaccharide-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1011-L1024. [PMID: 33729030 DOI: 10.1152/ajplung.00281.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Macrophage activation is a key contributing factor for excessive inflammatory responses of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Geranylgeranyl diphosphate synthase (GGPPS) plays a key role in the development of inflammatory diseases. Our group previously showed that GGPPS in alveolar epithelium have deleterious effects on acute lung injury induced by LPS or mechanical ventilation. Herein, we examined the role of GGPPS in modulating macrophage activation in ALI/ARDS. We found significant increased GGPPS expression in alveolar macrophages in patients with ARDS compared with healthy volunteers and in ALI mice induced by LPS. GGPPS-floxed control (GGPPSfl/fl) and myeloid-selective knockout (GGPPSfl/flLysMcre) mice were then generated. Interestingly, using an LPS-induced ALI mouse model, we showed that myeloid-specific GGPPS knockout significantly increased mortality, aggravated lung injury, and increased the accumulation of inflammatory cells, total protein, and inflammatory cytokines in BALF. In vitro, GGPPS deficiency upregulated the production of LPS-induced IL-6, IL-1β, and TNF-α in alveolar macrophages, bone marrow-derived macrophages (BMDMs), and THP-1 cells. Mechanistically, GGPPS knockout increased phosphorylation and nuclear translocation of NF-κB p65 induced by LPS. In addition, GGPPS deficiency increased the level of GTP-Rac1, which was responsible for NF-κB activation. In conclusion, decreased expression of GGPPS in macrophages aggravates lung injury and inflammation in ARDS, at least partly by regulating Rac1-dependent NF-κB signaling. GGPPS in macrophages may represent a novel therapeutic target in ARDS.
Collapse
Affiliation(s)
- Jiajia Jin
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University (Guangzhou), Nanjing, China.,Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hong Qian
- Department of Orthopaedic Surgery, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Bing Wan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Li Zhou
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Cen Chen
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University (Guangzhou), Nanjing, China
| | - Yanling Lv
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meizi Chen
- Department of General Internal Medicine, the First People's Hospital of Chenzhou, Chenzhou, China
| | - Suhua Zhu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University (Guangzhou), Nanjing, China
| | - Liang Ye
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaoxia Wang
- Department of Intensive Care Unit, Inner Mongolia People's Hospital, Inner Mongolia Autonomous Region, Hohhot, China
| | - Wujian Xu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University (Guangzhou), Nanjing, China
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University (Guangzhou), Nanjing, China
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University (Guangzhou), Nanjing, China
| |
Collapse
|
22
|
Wan SY, Li GS, Tu C, Chen WL, Wang XW, Wang YN, Peng LB, Tan F. MicroNAR-194-5p hinders the activation of NLRP3 inflammasomes and alleviates neuroinflammation during intracerebral hemorrhage by blocking the interaction between TRAF6 and NLRP3. Brain Res 2021; 1752:147228. [PMID: 33385377 DOI: 10.1016/j.brainres.2020.147228] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022]
Abstract
The possible role of miR-194-5p in brain and neurodegenerative diseases has been reported, but its role in intracerebral hemorrhage (ICH) has not been studied. This study estimated the mechanism of miR-194-5p in ICH. ICH rat model was established by injecting collagenase type VII. miR-194-5p expression in brain tissue of ICH rats was overexpressed by injection of miR-194-5p agomir. Then neurological function score and brain water content were measured. The morphological changes of brain tissue and neuronal apoptosis were evaluated by histological staining. Levels of NLRP3 inflammasomes, IL-1β and IL-18 were measured. The target relation between miR-194-5p and TRAF6 was verified and the binding of TRAF6 to NLRP3 was explored. miR-194-5p was decreased in ICH rats. After overexpression of miR-194-5p, the neuropathological injury in ICH rats was significantly reduced, and NLRP3-mediated inflammatory injury was inhibited. miR-194-5p targeted TRAF6. TRAF6 interacted with NLRP3 to promote the activation of NLRP3 inflammasomes. Overexpression of miR-194-5p reduced the interaction between TRAF6 and NLRP3, thereby alleviating the neuroinflammation. Collectively, overexpression of miR-194-5p reduced the TRAF6/NLRP3 interaction, thus inhibiting the activation of NLRP3 inflammasomes and reducing neuroinflammation during ICH. This study may shed new light on ICH treatment.
Collapse
Affiliation(s)
- Sai-Ying Wan
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine of Guangdong Province, China
| | - Gui-Su Li
- Department of Neurology, Shenzhen Longhua District People's Hospital, China
| | - Chen Tu
- Department of Bone, Foshan Hospital of Traditional Chinese Medicine of Guangdong Province, China
| | - Wen-Lin Chen
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine of Guangdong Province, China
| | - Xue-Wen Wang
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine of Guangdong Province, China
| | - Yun-Nan Wang
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine of Guangdong Province, China
| | - Lie-Biao Peng
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine of Guangdong Province, China
| | - Feng Tan
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine of Guangdong Province, China.
| |
Collapse
|
23
|
Liu Y, Xiang D, Zhang H, Yao H, Wang Y. Hypoxia-Inducible Factor-1: A Potential Target to Treat Acute Lung Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8871476. [PMID: 33282113 PMCID: PMC7685819 DOI: 10.1155/2020/8871476] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
Acute lung injury (ALI) is an acute hypoxic respiratory insufficiency caused by various intra- and extrapulmonary injury factors. Presently, excessive inflammation in the lung and the apoptosis of alveolar epithelial cells are considered to be the key factors in the pathogenesis of ALI. Hypoxia-inducible factor-1 (HIF-1) is an oxygen-dependent conversion activator that is closely related to the activity of reactive oxygen species (ROS). HIF-1 has been shown to play an important role in ALI and can be used as a potential therapeutic target for ALI. This manuscript will introduce the progress of HIF-1 in ALI and explore the feasibility of applying inhibitors of HIF-1 to ALI, which brings hope for the treatment of ALI.
Collapse
Affiliation(s)
- Yang Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China
| | - Du Xiang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China
| | - Hengcheng Zhang
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115 MA, USA
| | - Hanlin Yao
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China
| |
Collapse
|