1
|
Zhu X, Ma K, Zhou K, Pan X, Liu J, Nürnberg B, Alesutan I, Völkl J, Lang F. Requirement of Na+/H+ Exchanger NHE1 for Vasopressin-Induced Osteogenic Signaling and Calcification in Human Aortic Smooth Muscle Cells. Kidney Blood Press Res 2022; 47:399-409. [PMID: 35339998 DOI: 10.1159/000524050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/07/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND/AIMS Vasopressin is a powerful stimulator of vascular calcification, augmenting osteogenic signaling in vascular smooth muscle cells (VSMCs) including upregulation of transcription factors such as core-binding factor α-1 (CBFA1), msh homeobox 2 (MSX2), and SRY-Box 9 (SOX9), as well as of tissue-nonspecific alkaline phosphatase (ALPL). Vasopressin-induced osteogenic signaling and calcification require the serum- and glucocorticoid-inducible kinase 1 (SGK1). Known effects of SGK1 include upregulation of Na+/H+ exchanger 1 (NHE1). NHE1 further participates in the regulation of reactive oxygen species (ROS). NHE1 has been shown to participate in the orchestration of bone mineralization. The present study, thus, explored whether vasopressin modifies NHE1 expression and ROS generation, as well as whether pharmacological inhibition of NHE1 disrupts vasopressin-induced osteogenic signaling and calcification in VSMCs. METHODS Human aortic smooth muscle cells (HAoSMCs) were treated with vasopressin in the absence or presence of SGK1 silencing, SGK1 inhibitor GSK-650394, and NHE1 blocker cariporide. Transcript levels were determined by using quantitative real-time polymerase chain reaction, protein abundance by Western blotting, ROS generation with 2',7'-dichlorofluorescein diacetate fluorescence, and ALP activity and calcium content by using colorimetric assays. RESULTS Vasopressin significantly enhanced the NHE1 transcript and protein levels in HAoSMCs, effects significantly blunted by SGK1 inhibition with GSK-650394 or SGK1 silencing. Vasopressin increased ROS accumulation, an effect significantly blocked by the NHE1 inhibitor cariporide. Vasopressin further significantly increased osteogenic markers CBFA1, MSX2, SOX9, and ALPL transcript levels, as well as ALP activity and calcium content in HAoSMCs, all effects significantly blunted by SGK1 silencing or in the presence of GSK-650394 or cariporide. CONCLUSION Vasopressin stimulates NHE1 expression and ROS generation, an effect dependent on SGK1 and required for vasopressin-induced stimulation of osteogenic signaling and calcification of VSMCs.
Collapse
Affiliation(s)
- Xuexue Zhu
- Department of Pharmacology, Experimental Therapy & Toxicology, Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Ke Ma
- Department of Pharmacology, Experimental Therapy & Toxicology, Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Kuo Zhou
- Department of Pharmacology, Experimental Therapy & Toxicology, Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Xia Pan
- Department of Pharmacology, Experimental Therapy & Toxicology, Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Jibin Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bernd Nürnberg
- Department of Pharmacology, Experimental Therapy & Toxicology, Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Jakob Völkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria.,Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Florian Lang
- Department of Physiology, Eberhard-Karls-University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Cure MC, Cure E. Prolonged NHE Activation may be both Cause and Outcome of Cytokine Release Syndrome in COVID-19. Curr Pharm Des 2022; 28:1815-1822. [PMID: 35838211 DOI: 10.2174/1381612828666220713121741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023]
Abstract
The release of cytokines and chemokines such as IL-1β, IL-2, IL-6, IL-7, IL-10, TNF-α, IFN-γ, CCL2, CCL3, and CXCL10 is increased in critically ill patients with COVID-19. Excessive cytokine release during COVID-19 is related to increased morbidity and mortality. Several mechanisms are put forward for cytokine release syndrome during COVID-19. Here we have mentioned novel pathways. SARS-CoV-2 increases angiotensin II levels by rendering ACE2 nonfunctional. Angiotensin II causes cytokine release via AT1 and AT2 receptors. Moreover, angiotensin II potently stimulates the Na+/H+ exchanger (NHE). It is a pump found in the membranes of many cells that pumps Na+ inward and H+ outward. NHE has nine isoforms. NHE1 is the most common isoform found in endothelial cells and many cells. NHE is involved in keeping the intracellular pH within physiological limits. When the intracellular pH is acidic, NHE is activated, bringing the intracellular pH to physiological levels, ending its activity. Sustained NHE activity is highly pathological and causes many problems. Prolonged NHE activation in COVID-19 may cause a decrease in intracellular pH through H+ ion accumulation in the extracellular area and subsequent redox reactions. The activation reduces the intracellular K+ concentration and leads to Na+ and Ca2+ overload. Increased ROS can cause intense cytokine release by stimulating NF-κB and NLRP3 inflammasomes. Cytokines also cause overstimulation of NHE. As the intracellular pH decreases, SARS-CoV-2 rapidly infects new cells, increasing the viral load. This vicious circle increases morbidity and mortality in patients with COVID-19. On the other hand, SARS-CoV-2 interaction with NHE3 in intestinal tissue is different from other tissues. SARS-CoV-2 can trigger CRS via NHE3 inhibition by disrupting the intestinal microbiota. This review aimed to help develop new treatment models against SARS-CoV-2- induced CRS by revealing the possible effects of SARS-CoV-2 on the NHE.
Collapse
Affiliation(s)
| | - Erkan Cure
- Department of Internal Medicine, Bagcilar Medilife Hospital, Istanbul, Turkey
| |
Collapse
|
3
|
Kosmachevskaya OV, Novikova NN, Topunov AF. Carbonyl Stress in Red Blood Cells and Hemoglobin. Antioxidants (Basel) 2021; 10:253. [PMID: 33562243 PMCID: PMC7914924 DOI: 10.3390/antiox10020253] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
The paper overviews the peculiarities of carbonyl stress in nucleus-free mammal red blood cells (RBCs). Some functional features of RBCs make them exceptionally susceptible to reactive carbonyl compounds (RCC) from both blood plasma and the intracellular environment. In the first case, these compounds arise from the increased concentrations of glucose or ketone bodies in blood plasma, and in the second-from a misbalance in the glycolysis regulation. RBCs are normally exposed to RCC-methylglyoxal (MG), triglycerides-in blood plasma of diabetes patients. MG modifies lipoproteins and membrane proteins of RBCs and endothelial cells both on its own and with reactive oxygen species (ROS). Together, these phenomena may lead to arterial hypertension, atherosclerosis, hemolytic anemia, vascular occlusion, local ischemia, and hypercoagulation phenotype formation. ROS, reactive nitrogen species (RNS), and RCC might also damage hemoglobin (Hb), the most common protein in the RBC cytoplasm. It was Hb with which non-enzymatic glycation was first shown in living systems under physiological conditions. Glycated HbA1c is used as a very reliable and useful diagnostic marker. Studying the impacts of MG, ROS, and RNS on the physiological state of RBCs and Hb is of undisputed importance for basic and applied science.
Collapse
Affiliation(s)
- Olga V. Kosmachevskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
| | | | - Alexey F. Topunov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
| |
Collapse
|
4
|
Kosmachevskaya OV, Shumaev KB, Topunov AF. Signal and regulatory effects of methylglyoxal in eukaryotic cells (review). APPL BIOCHEM MICRO+ 2017; 53:273-289. [DOI: 10.1134/s0003683817030103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Singh Y, Zhou Y, Shi X, Zhang S, Umbach AT, Salker MS, Lang KS, Lang F. Alkaline Cytosolic pH and High Sodium Hydrogen Exchanger 1 (NHE1) Activity in Th9 Cells. J Biol Chem 2016; 291:23662-23671. [PMID: 27629415 DOI: 10.1074/jbc.m116.730259] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 01/05/2023] Open
Abstract
CD4+ T helper 9 (Th9) cells are a newly discovered Th cell subset that produce the pleiotropic cytokine IL-9. Th9 cells can protect against tumors and provide resistance against helminth infections. Given their pivotal role in the adaptive immune system, understanding Th9 cell development and the regulation of IL-9 production could open novel immunotherapeutic opportunities. The Na+/H+ exchanger 1 (NHE1; gene name Slc9α1)) is critically important for regulating intracellular pH (pHi), cell volume, migration, and cell survival. The pHi influences cytokine secretion, activities of membrane-associated enzymes, ion transport, and other effector signaling molecules such as ATP and Ca2+ levels. However, whether NHE1 regulates Th9 cell development or IL-9 secretion has not yet been defined. The present study explored the role of NHE1 in Th9 cell development and function. Th cell subsets were characterized by flow cytometry and pHi was measured using 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein-acetoxymethyl ester (BCECF-AM) dye. NHE1 functional activity was estimated from the rate of realkalinization following an ammonium pulse. Surprisingly, in Th9 cells pHi and NHE1 activity were significantly higher than in all other Th cell subsets (Th1/Th2/Th17 and induced regulatory T cells (iTregs)). NHE1 transcript levels and protein abundance were significantly higher in Th9 cells than in other Th cell subsets. Inhibition of NHE1 by siRNA-NHE1 or with cariporide in Th9 cells down-regulated IL-9 and ATP production. NHE1 activity, Th9 cell development, and IL-9 production were further blunted by pharmacological inhibition of protein kinase Akt1/Akt2. Our findings reveal that Akt1/Akt2 control of NHE1 could be an important physiological regulator of Th9 cell differentiation, IL-9 secretion, and ATP production.
Collapse
Affiliation(s)
- Yogesh Singh
- From the Departments of Cardiology, Cardiovascular Medicine and Physiology, Eberhard-Karls-Tübingen University, Tübingen, Gmelinstraße5, D-72076 Tübingen, Germany,
| | - Yuetao Zhou
- From the Departments of Cardiology, Cardiovascular Medicine and Physiology, Eberhard-Karls-Tübingen University, Tübingen, Gmelinstraße5, D-72076 Tübingen, Germany
| | - Xiaolong Shi
- From the Departments of Cardiology, Cardiovascular Medicine and Physiology, Eberhard-Karls-Tübingen University, Tübingen, Gmelinstraße5, D-72076 Tübingen, Germany
| | - Shaqiu Zhang
- From the Departments of Cardiology, Cardiovascular Medicine and Physiology, Eberhard-Karls-Tübingen University, Tübingen, Gmelinstraße5, D-72076 Tübingen, Germany.,the Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China, and
| | - Anja T Umbach
- From the Departments of Cardiology, Cardiovascular Medicine and Physiology, Eberhard-Karls-Tübingen University, Tübingen, Gmelinstraße5, D-72076 Tübingen, Germany
| | - Madhuri S Salker
- From the Departments of Cardiology, Cardiovascular Medicine and Physiology, Eberhard-Karls-Tübingen University, Tübingen, Gmelinstraße5, D-72076 Tübingen, Germany
| | - Karl S Lang
- the Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Florian Lang
- From the Departments of Cardiology, Cardiovascular Medicine and Physiology, Eberhard-Karls-Tübingen University, Tübingen, Gmelinstraße5, D-72076 Tübingen, Germany,
| |
Collapse
|
6
|
Boydens C, Pauwels B, Vanden Daele L, Van de Voorde J. Protective effect of resveratrol and quercetin on in vitro-induced diabetic mouse corpus cavernosum. Cardiovasc Diabetol 2016; 15:46. [PMID: 26993793 PMCID: PMC4797116 DOI: 10.1186/s12933-016-0366-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/11/2016] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Hyperglycemia and increased levels of methylglyoxal (MGO) can trigger the development of vascular complications in diabetes. Resveratrol and quercetin are red wine polyphenols with known beneficial cardiovascular properties, including an antioxidant capacity. This study evaluated whether resveratrol and/or quercetin could prevent in vitro-induced diabetic changes in neurogenic and vascular relaxant responses of mouse arteries and corpora cavernosa. METHODS Isometric tension of isolated aorta, mesenteric arteries and corpora cavernosa was measured using organ bath systems. Diabetic conditions were mimicked in vitro by co-incubating the tissues for 2 h with high glucose (HG, 30 mM) and MGO (120 µM). RESULTS The presence of HG and MGO significantly blunted acetylcholine (Ach)-induced relaxations in corpora cavernosa and mesenteric arteries but not in aorta. Electrical field stimulated (EFS) responses of corpora cavernosa were also significantly inhibited by these diabetic conditions. In corpora cavernosa 2 h co-incubation with resveratrol (30 µM) or quercetin (30 µM) significantly attenuated HG and MGO-induced deficits in Ach- and EFS-responses. CONCLUSIONS Our study demonstrates that in mouse arteries, HG and MGO rather affect endothelium derived hyperpolarizing factor-mediated than nitric oxide (NO)-mediated relaxations. In corpora cavernosa HG and MGO interfere with NO release. Resveratrol and quercetin protect mouse corpora cavernosa from diabetic-induced damage to NO-mediated relaxant responses. This might rely on their antioxidant capacity.
Collapse
Affiliation(s)
- Charlotte Boydens
- Department of Pharmacology, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium
| | - Bart Pauwels
- Department of Pharmacology, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium
| | - Laura Vanden Daele
- Department of Pharmacology, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium
| | - Johan Van de Voorde
- Department of Pharmacology, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium.
| |
Collapse
|
7
|
Li P, Chen GR, Wang F, Xu P, Liu LY, Yin YL, Wang SX. Inhibition of NA(+)/H(+) Exchanger 1 Attenuates Renal Dysfunction Induced by Advanced Glycation End Products in Rats. J Diabetes Res 2016; 2016:1802036. [PMID: 26697498 PMCID: PMC4677205 DOI: 10.1155/2016/1802036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/24/2015] [Indexed: 11/20/2022] Open
Abstract
It has been recognized that sodium hydrogen exchanger 1 (NHE1) is involved in the development of diabetic nephropathy. The role of NHE1 in kidney dysfunction induced by advanced glycation end products (AGEs) remains unknown. Renal damage was induced by AGEs via tail vein injections in rats. Function and morphology of kidney were determined. Compared to vehicle- or BSA-treated rats, AGEs caused abnormalities of kidney structures and functions in rats, accompanied with higher MDA level and lower GSH content. Gene expressions of NHE1 gene and TGF-β1 in the renal cortex and urine were also increased in AGEs-injected rats. Importantly, all these detrimental effects induced by AGEs were reversed by inhibition of NHE1 or suppression of oxidative stress. These pieces of data demonstrated that AGEs may activate NHE1 to induce renal damage, which is related to TGF-β1.
Collapse
Affiliation(s)
- Peng Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
- Department of Pharmacology, Pharmaceutical College, Central South University, Changsha 410078, China
| | - Geng-Rong Chen
- Department of Pharmacology, Pharmaceutical College, Central South University, Changsha 410078, China
| | - Fu Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, School of Medicine, Shandong University, Jinan 250012, China
| | - Ping Xu
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Li-Ying Liu
- Department of Pharmacology, Pharmaceutical College, Central South University, Changsha 410078, China
- Medical College of San-Quan, Xinxiang Medical University, Xinxiang 453003, China
| | - Ya-Ling Yin
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Shuang-Xi Wang
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, School of Medicine, Shandong University, Jinan 250012, China
- *Shuang-Xi Wang:
| |
Collapse
|