1
|
Li K, Xie F, Xiong Y, Jiang J, Huang B. Progress in the application of molecular imaging technology in immunological tolerance and immune metabolism visualization research. Front Immunol 2025; 16:1583228. [PMID: 40236707 PMCID: PMC11996769 DOI: 10.3389/fimmu.2025.1583228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/17/2025] [Indexed: 04/17/2025] Open
Abstract
Immunological tolerance and immune metabolism play crucial roles in maintaining immune homeostasis and the immune response to diseases. The advancement of molecular imaging technologies, particularly optical molecular imaging, nuclear medicine imaging, and magnetic resonance imaging, has led to a significant progress in the visualization of immune tolerance and immune metabolism. Molecular imaging technologies enable real-time monitoring and analysis of dynamic changes in immune tolerance mechanisms and immune metabolism in living organisms, allowing the development of new strategies for early disease diagnosis, targeted therapy, and immunotherapy. This article reviews the latest advancements in the application of molecular imaging technologies in the fields of immunological tolerance and immune metabolism, with a focus on their applications in the regulation of immune tolerance regulation, immune metabolism, and immunotherapy.
Collapse
Affiliation(s)
- Kailang Li
- Department of Radiology, The Third People’s Hospital In Xindu District of Chengdu, Chengdu, China
| | - Fang Xie
- Department of Oncology, The Second People’s Hospital of Yibin, Yibin, China
| | - Yongfu Xiong
- Department of General Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jin Jiang
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Bifan Huang
- Department of Radiology, The Third People’s Hospital In Xindu District of Chengdu, Chengdu, China
| |
Collapse
|
2
|
Hershenson R, Nardi-Agmon I, Leshem-Lev D, Kornowski R, Eisen A. The effect of empagliflozin on circulating endothelial progenitor cells in patients with diabetes and stable coronary artery disease. Cardiovasc Diabetol 2024; 23:386. [PMID: 39468546 PMCID: PMC11520434 DOI: 10.1186/s12933-024-02466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is associated with premature atherosclerotic disease, coronary artery disease (CAD) and chronic heart failure (HF), leading to increased morbidity and mortality. Sodium-Glucose Co-transporter 2 Inhibitors (SGLT2i) exhibit cardioprotective benefits beyond glucose lowering, reducing the risk of major cardiovascular events (MACE) and HF hospitalizations in patients with DM and CAD. Endothelial progenitor cells (EPCs) are bone marrow-derived cells involved in vascular repair, mobilized in response to vascular injury. The number and function of circulating EPCs (cEPCs) are negatively affected by cardiovascular risk factors, including DM. This study aimed to examine the response of cEPCs to SGLT2i treatment in DM patients with stable CAD. METHODS A prospective single-center study included patients with DM and stable CAD who were started on an SGLT2i (empagliflozin). Peripheral blood samples were collected at baseline, 1 month, and 3 months to evaluate cEPC levels and function by flow cytometry, immunohistochemistry and MTT assays. RESULTS Eighteen patients were included in the study (median age 73, (IQR 69, 77) years, 67% male). After 1 month of treatment with empagliflozin, there was no significant change in cEPCs level or function. However, following 3 months of treatment, a significant increase was observed both in cell levels (CD34(+)/VEGFR-2(+): from 0.49% (IQR 0.32, 0.64) to 1.58% (IQR 0.93, 1.82), p = 0.0006; CD133(+)/VEGFR-2(+): from 0.38% (IQR 0.27, 0.6) to 0.82% (IQR 0.7, 1.95), p = 0.0001) and in cell function (from 0.25 CFUs (IQR 0, 0.5) at baseline, to 2 CFUs (IQR 1, 2) at 3 months, p = 0.0012). CONCLUSIONS Empagliflozin treatment in patients with DM and stable CAD increases cEPC levels and function, implying a cardioprotective mechanism. These findings highlight the potential of SGLT2i in treating cardiovascular diseases, warranting further research to explore these effects and their long-term implications.
Collapse
Affiliation(s)
- Roy Hershenson
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St., 49100, Petah Tikva, Israel.
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Inbar Nardi-Agmon
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St., 49100, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Dorit Leshem-Lev
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Ran Kornowski
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St., 49100, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alon Eisen
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St., 49100, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Zhang L, Deng R, Guo R, Jiang Y, Guan Y, Chen C, Zhao W, Huang G, Liu L, Du H, Tang D. Recent progress of methods for cuproptosis detection. Front Mol Biosci 2024; 11:1460987. [PMID: 39297074 PMCID: PMC11408227 DOI: 10.3389/fmolb.2024.1460987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
Varying from other identified cell death pathways, cuproptosis is a new type of regulated cell death characterized by excess Cu ions, abnormal aggregation of lipoylated proteins in TCA cycle, loss of Fe-S cluster proteins, upregulation of HSP70, leading to proteotoxic and oxidative stress. Cuproptosis is highly concerned by scientific community and as the field of cuproptosis further develops, remarkable progress has been made in the verification and mechanism of cuproptosis, and methods used to detect cuproptosis have been continuously improved. According to the characteristic changes of cuproptosis, techniques based on cell death verification, Cu content, morphology, molecular biology of protein levels of cuproptosis-related molecules and biochemical pathways of cuproptosis-related enzyme activity and metabolites of oxidative stress, lipoic acid, TCA cycle, Fe-S cluster proteins, oxidative phosphorylation, cell respiration intensity have been subject to cuproptosis verification and research. In order to further deepen the understanding of detecting cuproptosis, the principle and application of common cuproptosis detection methods are reviewed and categorized in cellular phenomena and molecular mechanism in terms of cell death, Cu content, morphology, molecular biology, biochemical pathways with a flow chart. All the indicating results have been displayed in response to the markers of cuproptosis, their advantages and limitations are summaried, and comparison of cuproptosis and ferroptosis detection is performed in this study. Our collection of methods for cuproptosis detection will provide a great basis for cuproptosis verification and research in the future.
Collapse
Affiliation(s)
- Ligang Zhang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ruiting Deng
- Beijing Mercer United International Education Consulting Co., Ltd., Guangzhou, China
| | - Raoqing Guo
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yawen Jiang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, China
| | - Yichen Guan
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, China
| | - Caiyue Chen
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, China
| | - Wudi Zhao
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, China
| | - Guobin Huang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, China
| | - Lian Liu
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Dongsheng Tang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, China
| |
Collapse
|
4
|
Terenzi DC, Bakbak E, Teoh H, Krishnaraj A, Puar P, Rotstein OD, Cosentino F, Goldenberg RM, Verma S, Hess DA. Restoration of blood vessel regeneration in the era of combination SGLT2i and GLP-1RA therapy for diabetes and obesity. Cardiovasc Res 2024; 119:2858-2874. [PMID: 38367275 DOI: 10.1093/cvr/cvae016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 02/19/2024] Open
Abstract
Ischaemic cardiovascular diseases, including peripheral and coronary artery disease, myocardial infarction, and stroke, remain major comorbidities for individuals with type 2 diabetes (T2D) and obesity. During cardiometabolic chronic disease (CMCD), hyperglycaemia and excess adiposity elevate oxidative stress and promote endothelial damage, alongside an imbalance in circulating pro-vascular progenitor cells that mediate vascular repair. Individuals with CMCD demonstrate pro-vascular 'regenerative cell exhaustion' (RCE) characterized by excess pro-inflammatory granulocyte precursor mobilization into the circulation, monocyte polarization towards pro-inflammatory vs. anti-inflammatory phenotype, and decreased pro-vascular progenitor cell content, impairing the capacity for vessel repair. Remarkably, targeted treatment with the sodium-glucose cotransporter-2 inhibitor (SGLT2i) empagliflozin in subjects with T2D and coronary artery disease, and gastric bypass surgery in subjects with severe obesity, has been shown to partially reverse these RCE phenotypes. SGLT2is and glucagon-like peptide-1 receptor agonists (GLP-1RAs) have reshaped the management of individuals with T2D and comorbid obesity. In addition to glucose-lowering action, both drug classes have been shown to induce weight loss and reduce mortality and adverse cardiovascular outcomes in landmark clinical trials. Furthermore, both drug families also act to reduce systemic oxidative stress through altered activity of overlapping oxidase and antioxidant pathways, providing a putative mechanism to augment circulating pro-vascular progenitor cell content. As SGLT2i and GLP-1RA combination therapies are emerging as a novel therapeutic opportunity for individuals with poorly controlled hyperglycaemia, potential additive effects in the reduction of oxidative stress may also enhance vascular repair and further reduce the ischaemic cardiovascular comorbidities associated with T2D and obesity.
Collapse
Affiliation(s)
- Daniella C Terenzi
- UCD School of Medicine, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland
- Division of Cardiovascular Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Ehab Bakbak
- Division of Cardiovascular Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, 27 King's College Circle, Toronto, ON M5S 3J3, Canada
| | - Hwee Teoh
- Division of Cardiovascular Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Division of Endocrinology and Metabolism, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Aishwarya Krishnaraj
- Division of Cardiovascular Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, 27 King's College Circle, Toronto, ON M5S 3J3, Canada
| | - Pankaj Puar
- Division of Cardiovascular Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Ori D Rotstein
- Division of General Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Department of Surgery, University of Toronto, Stewart Building, 149 College Street, 5th floor, Toronto, ON M5T 1P5, Canada
| | - Francesco Cosentino
- Cardiology Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Solnavagen 1, 171 77 Solna, Sweden
| | | | - Subodh Verma
- Division of Cardiovascular Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, 27 King's College Circle, Toronto, ON M5S 3J3, Canada
- Department of Surgery, University of Toronto, Stewart Building, 149 College Street, 5th floor, Toronto, ON M5T 1P5, Canada
| | - David A Hess
- Department of Pharmacology and Toxicology, University of Toronto, 27 King's College Circle, Toronto, ON M5S 3J3, Canada
- Molecular Medicine Research Laboratories, Krembil Centre for Stem Cells Biology, Robarts Research Institute, University of Western Ontario, 1151 Richmond Street North, London, ON N6H 0E8, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street North, London, ON N6H 0E8, Canada
| |
Collapse
|