1
|
Zhuang Z, Sethupathy S, Bajón-Fernández Y, Ali S, Niu L, Zhu D. Microbial chemotaxis in degradation of xenobiotics: Current trends and opportunities. Microbiol Res 2025; 290:127935. [PMID: 39476517 DOI: 10.1016/j.micres.2024.127935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 12/12/2024]
Abstract
Chemotaxis, the directed movement of microbes in response to chemical gradients, plays a crucial role in the biodegradation of xenobiotics, such as pesticides, industrial chemicals, and pharmaceuticals, which pose significant environmental and health risks. Emerging trends in genomics, proteomics, and synthetic biology have advanced our understanding and control of these processes, thereby enabling the development of engineered microorganisms with tailored chemotactic responses and degradation capabilities. This process plays an essential physiological role in processes, such as surface sensing, biofilm formation, quorum detection, pathogenicity, colonization, symbiotic interactions with the host system, and plant growth promotion. Field applications have demonstrated the potential of bioremediation for cleaning contaminated environments. Therefore, it helps to increase the bioavailability of pollutants and enables bacteria to access distantly located pollutants. Despite considerable breakthroughs in decoding the regulatory mechanisms of bacterial chemotaxis, there are still gaps in knowledge that need to be resolved to harness its potential for sensing and degrading pollutants in the environment. This review covers the role of bacterial chemotaxis in the degradation of xenobiotics present in the environment, focusing on chemotaxis-based bacterial and microfluidic biosensors for environmental monitoring. Finally, we highlight the current challenges and future perspectives for developing more effective and sustainable strategies to mitigate the environmental impact of xenobiotics.
Collapse
Affiliation(s)
- Zhipeng Zhuang
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Sivasamy Sethupathy
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yadira Bajón-Fernández
- Water Science Institute, School of Water, Energy and Environment, Cranfield University, MK430AL, UK
| | - Shehbaz Ali
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lili Niu
- Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Daochen Zhu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
2
|
Pardeshi S, Shede P. A Novel Device and Method for Assay of Bacterial Chemotaxis Towards Chemoattractants. Indian J Microbiol 2024; 64:990-999. [PMID: 39282202 PMCID: PMC11399546 DOI: 10.1007/s12088-024-01194-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/01/2024] [Indexed: 09/18/2024] Open
Abstract
Capillary assemblies and microfluidic devices used for bacterial chemotaxis assays have certain inherent limitations. This opens opportunities for innovation in the area. The present study describes an innovative economical device called chemotaxis plate and also a method to use this device for chemotaxis assay. Two type cultures, Pseudomonas putida MCC 2989 and Bacillus subtilis MCC 2049, chemotactic to L-aspartate, were used to validate the new device and establish the protocol for assay. 100 to 1000 fold higher number of cells were recovered in presence of chemoattractant as compared to control (p < 0.05). This novel assay technique showed 100% sensitivity and 99.21% specificity for chemotaxis assay of Pseudomonas putida MCC 2989 towards 3 mM L-aspartate over 50 min assay time. The device was also used to isolate bacteria chemotactic to caffeine directly from environmental samples. Very high chemotaxis response indices were reported for the first-time using chemotaxis plate.
Collapse
Affiliation(s)
- Sheetal Pardeshi
- Department of Microbiology, PES Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar, Pune, 411005 India
- Department of Microbiology, MES Abasaheb Garware College (Autonomous), Karve Road, Pune, 411004 India
| | - Prafulla Shede
- Department of Microbiology, MES Abasaheb Garware College (Autonomous), Karve Road, Pune, 411004 India
| |
Collapse
|
3
|
Tang Y, Zhou Y, Wang P, Ge L, Lou W, Yan X, Li S, Wang X, Hu C, Zhao X. Selenium-Mediated Shaping of Citrus Rhizobiome for Promotion in Root Growth and Soil Phosphorus Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39018060 DOI: 10.1021/acs.jafc.4c02761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Selenium (Se) has been widely reported to affect plant growth, nutrient cycling, and the rhizobiome. However, how Se shapes the rhizobiome and interacts with plants remains largely elusive. Pot and hydroponic experiments were employed to elucidate the regulatory mechanism of Se in the citrus rhizobiome. Compared to the control, soil Se application significantly increased the root biomass (34.7%) and markedly reduced rhizosphere HCl-P, H2O-P, NaHCO3-IP, and residual-P of citrus, which were related to the variation of citrus rhizobiome. Se primarily enriched Proteobacteria and Actinobacteria as well as the phosphorus (P) functional genes phod and pqqc. Further study revealed that Se altered the metabolite profile of root exudate, particularly enhancing the abundance of l-cyclopentylglycine, cycloleucine, l-proline, l-pipecolic acid, and inositol, which played a key role in reshaping the citrus rhizobiome. These metabolites could serve as both nutrient sources and signaling molecules, thus supporting the growth or chemotaxis of the functional microbes. These bacterial taxa have the potential to solubilize P or stimulate plant growth. These findings provide a novel mechanistic understanding of the intriguing interactions between Se, root exudate, and rhizosphere microbiomes, and demonstrate the potential for utilizing Se to regulate rhizobiome function and enhance soil P utilization in citrus cultivation.
Collapse
Affiliation(s)
- Yanni Tang
- College of Resources and Environment/National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingjie Zhou
- College of Resources and Environment/National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Pengwei Wang
- College of Resources and Environment/National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Liqiang Ge
- National Research Center for Geoanalysis/Key Laboratory of Eco-geochemistry, Ministry of Natural Resources, Beijing 100037, China
| | - Wei Lou
- Ganzhou Citrus Research Institute, Gannan Academy of Sciences, Ganzhou 341000, China
| | - Xiang Yan
- Ganzhou Citrus Research Institute, Gannan Academy of Sciences, Ganzhou 341000, China
| | - Shiqian Li
- Fujian Universities and Colleges Engineering Research Center of Modern Facility Agriculture, Fuqing 350300, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chengxiao Hu
- College of Resources and Environment/National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohu Zhao
- College of Resources and Environment/National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
4
|
Alam SA, Saha P. Chemotactic response of p-nitrophenol degrading Pseudomonas asiatica strain PNPG3 through phenotypic and genome sequence-based in silico studies. 3 Biotech 2023; 13:408. [PMID: 37987023 PMCID: PMC10657342 DOI: 10.1007/s13205-023-03809-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/08/2023] [Indexed: 11/22/2023] Open
Abstract
The Pseudomonas asiatica strain PNPG3 was documented to possess chemotactic potential toward p-nitrophenol (PNP), and other nitroaromatic compounds. Initial screening with drop plate and swarm plate assays demonstrated significant movement of the strain toward the test compounds. A quantitative capillary assay revealed the highest chemotactic potential of the strain toward 4-Aminophenol (4AP), (CI: 12.33); followed by p-benzoquinone (PBQ), (CI: 6.8); and PNP, (CI: 5.33). Gene annotation revealed the presence of chemotactic genes (Che), (Methyl-accepting Proteins) MCPs, rotary motor proteins, and flagellar proteins within the genome of strain PNPG3. The chemotactic machinery of the strain PNPG3 comprised of thirteen Che genes, twenty-two MCPs, eight rotary motors, and thirty-four flagellar proteins that are involved in sensing chemoattractant. Two chemotactic gene clusters were recorded in the genome, of which the major cluster consisted of two copies of CheW, one copy of CheA, CheY, CheZ, one MotD gene, and several Fli genes. Various conserved regions and motifs were documented in them using a standard bioinformatics tool. Genes involved in the chemotaxis of strain PNPG3 were compared with three closely related strains and one distantly related strain belonging to Burkholderia sp. Considering these phenotypic and genotypic data, it can be speculated that it is metabolism-dependent chemotaxis; and that test compound activated the Che. This study indicated that strain PNPG3 could be used as a model organism for the study of the molecular mechanism of chemotaxis and bioremediation of PNP. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03809-3.
Collapse
Affiliation(s)
- Sk Aftabul Alam
- Department of Microbiology, The University of Burdwan, Golapbag, Burdwan, WB 713104 India
| | - Pradipta Saha
- Department of Microbiology, The University of Burdwan, Golapbag, Burdwan, WB 713104 India
| |
Collapse
|
5
|
Tahir U, Aslam F, Nawaz S, Khan UH, Yasmin A. Annotation of chemotaxis gene clusters and proteins involved in chemotaxis of Bacillus subtilis strain MB378 capable of biodecolorizing different dyes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3510-3520. [PMID: 34389949 DOI: 10.1007/s11356-021-15634-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
This study explores the chemotactic potential of Bacillus subtilis MB378 against industrial dyes. Initial screening with swim plate assay showed significant movement of Bacillus subtilis MB378 towards test compounds. According to quantitative capillary assay, B. subtilis MB378 exhibited high chemotaxis potential towards Acid Orange 52 (CI: 9.52), followed by Direct Red 28 (CI: 8.39) and Basic Green 4 (CI: 5.21) in glucose-supplemented medium. Sequencing and gene annotation results evidently showed presence of chemotaxis genes and flagellar motor proteins in Bacillus subtilis draft genome. Methyl-accepting proteins (involved in chemotaxis regulation) belonged to pfam00672, pfam00072, and pfam00015 protein families. Annotated chemotaxis machinery of MB378 comprised 8 Che genes, 5 chemoreceptor genes, associated flagellar proteins, and rotary motors. Chemotaxis genes of B. subtilis MB378 were compared with genes of closely related Bacillus strains (168, WK1, and HTA426), depicting highly conserved regions showing evolutionary relation between them. Considering results of present study, it can be speculated that test compounds triggered chemotactic genes, which made these compounds bioavailable to the bacterium. Hence, the bacterium recognized and approached these compounds and facilitated biodegradation and detoxification of these compounds.
Collapse
Affiliation(s)
- Uruj Tahir
- Microbiology and Biotechnology Laboratory, Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, 46000, Pakistan.
- Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, 46000, Pakistan.
- Department of Environmental Sciences, Faculty of Natural Sciences, University of Okara, Okara, 56130, Pakistan.
| | - Fozia Aslam
- Microbiology and Biotechnology Laboratory, Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, 46000, Pakistan
| | - Shiza Nawaz
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Umair Hassan Khan
- School of Agriculture and Environment, The University of Western Australia, Crawley, Perth, Australia
| | - Azra Yasmin
- Microbiology and Biotechnology Laboratory, Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, 46000, Pakistan
- Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, 46000, Pakistan
| |
Collapse
|
6
|
Ahmad F, Zhu D, Sun J. Bacterial chemotaxis: a way forward to aromatic compounds biodegradation. ENVIRONMENTAL SCIENCES EUROPE 2020; 32:52. [DOI: 10.1186/s12302-020-00329-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/23/2020] [Indexed: 07/23/2024]
Abstract
AbstractWorldwide industrial development has released hazardous polycyclic aromatic compounds into the environment. These pollutants need to be removed to improve the quality of the environment. Chemotaxis mechanism has increased the bioavailability of these hydrophobic compounds to microorganisms. The mechanism, however, is poorly understood at the ligand and chemoreceptor interface. Literature is unable to furnish a compiled review of already published data on up-to-date research on molecular aspects of chemotaxis mechanism, ligand and receptor-binding mechanism, and downstream signaling machinery. Moreover, chemotaxis-linked biodegradation of aromatic compounds is required to understand the chemotaxis role in biodegradation better. To fill this knowledge gap, the current review is an attempt to cover PAHs occurrence, chemical composition, and potential posed risks to humankind. The review will cover the aspects of microbial signaling mechanism, the structural diversity of methyl-accepting chemotaxis proteins at the molecular level, discuss chemotaxis mechanism role in biodegradation of aromatic compounds in model bacterial genera, and finally conclude with the potential of bacterial chemotaxis for aromatics biodegradation.
Collapse
|
7
|
Xu Z, Wang D, Tang W, Wang L, Li Q, Lu Z, Liu H, Zhong Y, He T, Guo S. Phytoremediation of cadmium-polluted soil assisted by D-gluconate-enhanced Enterobacter cloacae colonization in the Solanum nigrum L. rhizosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139265. [PMID: 32416401 DOI: 10.1016/j.scitotenv.2020.139265] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/23/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Microbe-assisted phytoremediation for Cd-polluted soil is being regarded increasingly. However, the availability of microbes that can collaborate with Cd-hyperaccumulators effectively has become one of bottlenecks restricting the remediation efficiency. A siderophore-producing bacterium (Y16; Enterobacter cloacae) isolated from the rhizospheric soil of Cd-hyperaccumulator Solanum nigrum L. was identified by 16S rRNA gene sequencing and biochemical analysis, and then used for analyzing microbial chemotaxis, carbon source utilization, and insoluble P/Cd mobilization capacities. Besides, a soil-pot trial was performed to underlie the phytoremediation mechanism of Cd-polluted soil assisted by D-gluconate-enhanced Enterobacter cloacae colonization (DEYC) in the Solanum nigrum L. rhizosphere. Results displayed that D-gluconate was an effective chemoattractant and carbon source strengthening Y16 colonization, and Y16 exhibited strong abilities to mobilize insoluble P/Cd in shake flask by extracellular acidification (p < 0.05). In the soil-pot trial, DEYC observably enhanced soil Cd phytoextraction by Solanum nigrum L., and increased microbial diversity according to alpha- and beta-diversity analysis (p < 0.05). Taxonomic distribution and co-occurrence network analysis suggested that DEYC increased relative abundances of dominant microbial taxa associated with soil acidification (Acidobacteria-6), indoleacetic acid secretion (Ensifer adhaerens), soil fertility improvement (Flavisolibacter, Bdellovibrio bacteriovorus, and Candidatus nitrososphaera), and insoluble Cd mobilization (Massilia timonae) at different classification levels. Importantly, COGs analysis further shown that DEYC aroused the up-regulation of key genes related to chemotactic motility, carbon fixation, TCA cycle, and propanoate metabolism. These results indicated that DEYC drove the rhizospheric enrichment of pivotal microbial taxa directly or indirectly involved in soil Cd mobilization, meanwhile distinctly promoted plant growth for accumulating more mobilizable Cd. Therefore, Y16 could be used as bio-inoculants for assisting phytoremediation of Cd-polluted soil.
Collapse
Affiliation(s)
- Zhimin Xu
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Environmental Pollution and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China; Guangdong Provincial Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control, Guangzhou 510225, China
| | - Dongsheng Wang
- Key Laboratory of Environmental Pollution and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China
| | - Wanpeng Tang
- Key Laboratory of Environmental Pollution and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China
| | - Lili Wang
- Key Laboratory of Environmental Pollution and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China.
| | - Qusheng Li
- Key Laboratory of Environmental Pollution and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China
| | - Ziyan Lu
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control, Guangzhou 510225, China
| | - Hui Liu
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control, Guangzhou 510225, China
| | - Yuming Zhong
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control, Guangzhou 510225, China
| | - Tao He
- Key Laboratory of Environmental Pollution and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China
| | - Shihong Guo
- Fujian Provincial Academy of Environmental Science, Fuzhou 350013, China
| |
Collapse
|
8
|
Gong T, Xu X, Dang Y, Kong A, Wu Y, Liang P, Wang S, Yu H, Xu P, Yang C. An engineered Pseudomonas putida can simultaneously degrade organophosphates, pyrethroids and carbamates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:1258-1265. [PMID: 30045547 DOI: 10.1016/j.scitotenv.2018.02.143] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/11/2018] [Accepted: 02/12/2018] [Indexed: 05/21/2023]
Abstract
Agricultural soils are often polluted with a variety of pesticides. Unfortunately, natural microorganisms lack the capacity to simultaneously degrade different types of pesticides. Currently, synthetic biology provides powerful approaches to create versatile degraders. In this work, a biosafety strain Pseudomonas putida KT2440 was engineered for simultaneous degradation of organophosphates, pyrethroids, and carbamates, enhanced oxygen-sequestering capability, and real-time monitoring by targeted insertion of four pesticide-degrading genes, vgb, and gfp into the chromosome using a scarless genome-editing method. The resulting recombinant strain, designated as P. putida KTUe, could completely degrade 50mg/L methyl parathion, chlorpyrifos, fenpropathrin, cypermethrin, carbofuran and carbaryl within 30h when incubated in M9 minimal medium supplemented with 20g/L glucose. In soil remediation studies, all the tested six pesticides (50mg/kg soil each) were completely removed in soils inoculated with P. putida KTUe within 15days. Moreover, Vitreoscilla hemoglobin (VHb)-expressing P. putida KTUe grew faster than P. putida KTUd without VHb expression under oxygen-limited conditions, suggesting that VHb may enhance the capability of this recombinant strain to sequester oxygen. Furthermore, the green fluorescence was observed on the P. putida KTUe cells, suggesting that this green fluorescent protein (GFP)-marked strain may be tracked by fluorescence during bioremediation. Therefore, this recombinant strain may serve as a promising candidate for in situ bioremediation of soil contaminated with multiple pesticides. This work not only underscores the value of P. putida KT2440 as an ideal host for bioremediation but also highlights the power of synthetic biology for expanding the degradation capability of natural degraders.
Collapse
Affiliation(s)
- Ting Gong
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xiaoqing Xu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yulei Dang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Annie Kong
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yunbo Wu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Peixin Liang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Shufang Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Huilei Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
9
|
Yang J, Feng Y, Zhan H, Liu J, Yang F, Zhang K, Zhang L, Chen S. Characterization of a Pyrethroid-Degrading Pseudomonas fulva Strain P31 and Biochemical Degradation Pathway of D-Phenothrin. Front Microbiol 2018; 9:1003. [PMID: 29867894 PMCID: PMC5964208 DOI: 10.3389/fmicb.2018.01003] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/30/2018] [Indexed: 11/28/2022] Open
Abstract
D-phenothrin is one of the most popular pyrethroid insecticides for its broad spectrum and high insecticidal activity. However, continuous use of D-phenothrin has resulted in serious environmental contamination and raised public concern about its impact on human health. Biodegradation of D-phenothrin has never been investigated and its metabolic behaviors remain unknown. Here, a novel bacterial strain P31 was isolated from active sludge, which completely degraded (100%) D-phenothrin at 50 mg⋅L-1 in 72 h. Based on the morphology, 16S rRNA gene and Biolog tests, the strain was identified as Pseudomonas fulva. Biodegradation conditions were optimized as 29.5°C and pH 7.3 by utilizing response surface methodology. Strain P31 depicted high tolerance and strong D-phenothrin degradation ability through hydrolysis pathway. Strain P31 degraded D-phenothrin at inhibition constant (Ki) of 482.1673 mg⋅L-1 and maximum specific degradation constant (qmax) of 0.0455 h-1 whereas critical inhibitor concentration remained as 41.1189 mg⋅L-1. The 3-Phenoxybenzaldehyde and 1,2-benzenedicarboxylic butyl dacyl ester were identified as the major intermediate metabolites of D-phenothrin degradation pathway through high-performance liquid chromatography and gas chromatography-mass spectrometry. Bioaugmentation of D-phenothrin-contaminated soils with strain P31 dramatically enhanced its degradation, and over 75% of D-phenothrin was removed from soils within 10 days. Moreover, the strain illustrated a remarkable capacity to degrade other synthetic pyrethroids, including permethrin, cyhalothrin, β-cypermethrin, deltamethrin, fenpropathrin, and bifenthrin, exhibiting great potential in bioremediation of pyrethroid-contaminated environment.
Collapse
Affiliation(s)
- Jingjing Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Yanmei Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Hui Zhan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Jie Liu
- Laboratory of Insect Toxicology, and Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Fang Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Kaiyang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Lianhui Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
Kinetics study of nicosulfuron degradation by a Pseudomonas nitroreducens strain NSA02. Biodegradation 2018; 29:271-283. [DOI: 10.1007/s10532-018-9828-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/31/2018] [Indexed: 10/17/2022]
|
11
|
Min J, Wang J, Chen W, Hu X. Biodegradation of 2-chloro-4-nitrophenol via a hydroxyquinol pathway by a Gram-negative bacterium, Cupriavidus sp. strain CNP-8. AMB Express 2018; 8:43. [PMID: 29560541 PMCID: PMC5861257 DOI: 10.1186/s13568-018-0574-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/12/2018] [Indexed: 11/21/2022] Open
Abstract
Cupriavidus sp. strain CNP-8 isolated from a pesticide-contaminated soil was able to utilize 2-chloro-4-nitrophenol (2C4NP) as a sole source of carbon, nitrogen and energy, together with the release of nitrite and chloride ions. It could degrade 2C4NP at temperatures from 20 to 40 °C and at pH values from 5 to 10, and degrade 2C4NP as high as 1.6 mM. Kinetics assay showed that biodegradation of 2C4NP followed Haldane substrate inhibition model, with the maximum specific growth rate (μmax) of 0.148/h, half saturation constant (Ks) of 0.022 mM and substrate inhibition constant (Ki) of 0.72 mM. Strain CNP-8 was proposed to degrade 2C4NP with hydroxyquinol (1,2,4-benzenetriol, BT) as the ring-cleavage substrate. The 2C4NP catabolic pathway in strain CNP-8 is significant from those reported in other Gram-negative 2C4NP utilizers. Enzymatic assay indicated that the monooxygenase initiating 2C4NP catabolism had different substrates specificity compared with previously reported 2C4NP monooxygenations. Capillary assays showed that strain CNP-8 exhibited metabolism-dependent chemotactic response toward 2C4NP at the optimum concentration of 0.5 mM with a maximum chemotaxis index of 37.5. Furthermore, microcosm studies demonstrated that strain CNP-8, especially the pre-induced cells, could remove 2C4NP rapidly from the 2C4NP-contaminated soil. Considering its adaptability to pH and temperature fluctuations and great degradation efficiency against 2C4NP, strain CNP-8 could be a promising candidate for the bioremediation of 2C4NP-contaminated sites.
Collapse
|
12
|
Arora PK, Srivastava A, Garg SK, Singh VP. Recent advances in degradation of chloronitrophenols. BIORESOURCE TECHNOLOGY 2018; 250:902-909. [PMID: 29229201 DOI: 10.1016/j.biortech.2017.12.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
Chloronitrophenols (CNPs) constitute a group of environmental pollutants that are widely distributed in our surrounding environment due to human based activities. This group of chemicals is highly toxic to living beings due to its mutagenic and carcinogenic nature. Examples include 2-chloro-4-nitrophenol, 4-chloro-2-nitrophenol, 2-chloro-5-nitrophenol, 4-chloro-3-nitrophenol and 2,6-dichloro-4-nitrophenol. Several methods including advanced oxidation processes, adsorption and bacterial degradation have been used for degradation of CNPs. Among, bacterial degradation is an eco-friendly and effective way to degrade CNPs. Several bacterial metabolic pathways have been proposed for degradation of CNPs and their genes and enzymes have been identified in bacteria. These bacteria were able to degrade CNPs in broth culture and soil. Therefore, CNPs-degrading bacteria are suitable candidates for bioremediation of CNPs-contaminated sites. Few CNP-degrading bacteria exhibited chemotaxis towards CNPs to enhance their biodegradation. The present review summarizes recent progress in degradation of CNPs.
Collapse
Affiliation(s)
- Pankaj Kumar Arora
- Department of Plant Science, MJP Rohilkhand University, Bareilly 243006, India; Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India.
| | - Alok Srivastava
- Department of Plant Science, MJP Rohilkhand University, Bareilly 243006, India
| | - Sanjay Kumar Garg
- Department of Plant Science, MJP Rohilkhand University, Bareilly 243006, India
| | - Vijai Pal Singh
- Department of Plant Science, MJP Rohilkhand University, Bareilly 243006, India
| |
Collapse
|
13
|
Min J, Chen W, Wang J, Hu X. Genetic and Biochemical Characterization of 2-Chloro-5-Nitrophenol Degradation in a Newly Isolated Bacterium, Cupriavidus sp. Strain CNP-8. Front Microbiol 2017; 8:1778. [PMID: 28959252 PMCID: PMC5604080 DOI: 10.3389/fmicb.2017.01778] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/31/2017] [Indexed: 11/13/2022] Open
Abstract
Compound 2-chloro-5-nitrophenol (2C5NP) is a typical chlorinated nitroaromatic pollutant. To date, the bacteria with the ability to degrade 2C5NP are rare, and the molecular mechanism of 2C5NP degradation remains unknown. In this study, Cupriavidus sp. strain CNP-8 utilizing 2-chloro-5-nitrophenol (2C5NP) and meta-nitrophenol (MNP) via partial reductive pathways was isolated from pesticide-contaminated soil. Biodegradation kinetic analysis indicated that 2C5NP degradation by this strain was concentration dependent, with a maximum specific degradation rate of 21.2 ± 2.3 μM h−1. Transcriptional analysis showed that the mnp genes are up-regulated in both 2C5NP- and MNP-induced strain CNP-8. Two Mnp proteins were purified to homogeneity by Ni-NTA affinity chromatography. In addition to catalyzing the reduction of MNP, MnpA, a NADPH-dependent nitroreductase, also catalyzes the partial reduction of 2C5NP to 2-chloro-5-hydroxylaminophenol via 2-chloro-5-nitrosophenol, which was firstly identified as an intermediate of 2C5NP catabolism. MnpC, an aminohydroquinone dioxygenase, is likely responsible for the ring-cleavage reaction of 2C5NP degradation. Gene knockout and complementation indicated that mnpA is necessary for both 2C5NP and MNP catabolism. To our knowledge, strain CNP-8 is the second 2C5NP-utilizing bacterium, and this is the first report of the molecular mechanism of microbial 2C5NP degradation.
Collapse
Affiliation(s)
- Jun Min
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China
| | - Weiwei Chen
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China
| | - Jinpei Wang
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of SciencesWuhan, China
| | - Xiaoke Hu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China
| |
Collapse
|
14
|
Meng L, Li H, Bao M, Sun P. Metabolic pathway for a new strain Pseudomonas synxantha LSH-7': from chemotaxis to uptake of n-hexadecane. Sci Rep 2017; 7:39068. [PMID: 28051099 PMCID: PMC5209730 DOI: 10.1038/srep39068] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 11/17/2016] [Indexed: 11/08/2022] Open
Abstract
Bacteria can use n-hexadecane as a carbon source, but it remains incompletely understood whether n-hexadecane is transformed into metabolic intermediates prior to cellular uptake or not. We newly isolated a strain identified as Pseudomonas synxantha LSH-7' and conducted chemotaxis experiment of this bacterial strain towards n-hexadecane, hexadecanol and hexadecanoic acid with qualitative assays respectively. Furthermore, we described the identification of extracellular alkane hydroxylase and alcohol dehydrogenase activity; acidification of the culture medium; identification of hexadecanoic acid in the culture medium by the GC-MS analysis; and variation concentration of intracellular n-hexadecane and hexadecanoic acid. A detailed analysis of the experimental data revealed the chemotaxis of this bacterial strain towards n-hexadecane instead of its metabolic intermediates. Our results further suggested that only a fraction of total n-hexadecane followed this path, and alkane hydrolase and hexadecanol dehydrogenase were constitutively expressed when grown in the medium of n-hexadecane. Most strikingly, we quantitatively investigated the concentration of n-hexadecane adsorbed by bacterial chemotaxis. Our findings provided an original insight n-hexadecane might be converted to hexadecanoic acid extracellularly before it was taken up across the cell membrane.
Collapse
Affiliation(s)
- Long Meng
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
- College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Haoshuai Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
- College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
- College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Peiyan Sun
- Key Laboratory of Marine Spill Oil Identification and Damage Assessment Technology, North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao 266033, China
| |
Collapse
|
15
|
Mulla SI, Sun Q, Hu A, Wang Y, Ashfaq M, Eqani SAMAS, Yu CP. Evaluation of Sulfadiazine Degradation in Three Newly Isolated Pure Bacterial Cultures. PLoS One 2016; 11:e0165013. [PMID: 27755578 PMCID: PMC5068754 DOI: 10.1371/journal.pone.0165013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/05/2016] [Indexed: 11/24/2022] Open
Abstract
This study is aimed to assess the biodegradation of sulfadiazine (SDZ) and characterization of heavy metal resistance in three pure bacterial cultures and also their chemotactic response towards 2-aminopyrimidine. The bacterial cultures were isolated from pig manure, activated sludge and sediment samples, by enrichment technique on SDZ (6 mg L-1). Based on the 16S rRNA gene sequence analysis, the microorganisms were identified within the genera of Paracoccus, Methylobacterium and Kribbella, which were further designated as SDZ-PM2-BSH30, SDZ-W2-SJ40 and SDZ-3S-SCL47. The three identified pure bacterial strains degraded up to 50.0, 55.2 and 60.0% of SDZ (5 mg L-1), respectively within 290 h. On the basis of quadrupole time-of-flight mass spectrometry and high performance liquid chromatography, 2-aminopyrimidine and 4-hydroxy-2-aminopyrimidine were identified as the main intermediates of SDZ biodegradation. These bacteria were also able to degrade the metabolite, 2-aminopyrimidine, of the SDZ. Furthermore, SDZ-PM2-BSH30, SDZ-W2-SJ40 and SDZ-3S-SCL47 also showed resistance to various heavy metals like copper, cadmium, chromium, cobalt, lead, nickel and zinc. Additionally, all three bacteria exhibited positive chemotaxis towards 2-aminopyrimidine based on the drop plate method and capillary assay. The results of this study advanced our understanding about the microbial degradation of SDZ, which would be useful towards the future SDZ removal in the environment.
Collapse
Affiliation(s)
- Sikandar I. Mulla
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yuwen Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Muhammad Ashfaq
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | | | - Chang-Ping Yu
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan
- * E-mail:
| |
Collapse
|
16
|
Abstract
Eighteen bacterial strains, isolated from a waste water sample collected from a chemically contaminated site, Patancheru (17°32′N 78°16′E/17.53°N 78.27°E), India, were able to decolorize 4-chloro-2-nitrophenol (4C2NP) in the presence of an additional carbon source. These eighteen 4C2NP-decolorizing strains have been identified as members of four different genera, includingBacillus,Paenibacillus,Pseudomonas, andLeuconostocbased on the 16S rRNA gene sequencing and phylogenetic analysis. Most of the bacteria (10) belonged to the genusBacillusand contributed 56% of the total 4C2NP-degrading bacteria, whereas the members of generaPaenibacillusandPseudomonasrepresented 22% and 17%, respectively, of total 4C2NP-degrading isolates. There was only one species ofLeuconostoccapable of degrading 4C2NP. This is the first report of the diversity of 4C2NP-decolorizing bacteria in a waste water sample. Furthermore, one bacterium,Bacillus aryabhattaistrain PC-7, was able to decolorize 4C2NP up to a concentration of 2.0 mM. Gas chromatography-mass spectrometry analysis identified 5-chloro-2-methylbenzoxazole as the final product of 4C2NP decolorization in strain PC-7.
Collapse
|
17
|
Pailan S, Saha P. Chemotaxis and degradation of organophosphate compound by a novel moderately thermo-halo tolerant Pseudomonas sp. strain BUR11: evidence for possible existence of two pathways for degradation. PeerJ 2015; 3:e1378. [PMID: 26587344 PMCID: PMC4647611 DOI: 10.7717/peerj.1378] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/14/2015] [Indexed: 11/20/2022] Open
Abstract
An organophosphate (OP) degrading chemotactic bacterial strain BUR11 isolated from an agricultural field was identified as a member of Pseudomonas genus on the basis of its 16S rRNA gene sequence. The strain could utilize parathion, chlorpyrifos and their major hydrolytic intermediates as sole source of carbon for its growth and exhibited positive chemotactic response towards most of them. Optimum concentration of parathion for its growth was recorded to be 200 ppm and 62% of which was degraded within 96 h at 37 °C. Growth studies indicated the strain to be moderately thermo-halo tolerant in nature. Investigation based on identification of intermediates of parathion degradation by thin layer chromatography (TLC), high performance liquid chromatography (HPLC), gas chromatography (GC) and liquid chromatography mass spectrometry (LC-MS/MS) provided evidence for possible existence of two pathways. The first pathway proceeds via 4-nitrophenol (4-NP) while the second proceeds through formation of 4-aminoparathion (4-APar), 4-aminophenol (4-AP) and parabenzoquinone (PBQ). This is the first report of chemotaxis towards organophosphate compound by a thermo-halo tolerant bacterium.
Collapse
Affiliation(s)
- Santanu Pailan
- Microbiology Department, The University of Burdwan , West Bengal , India
| | - Pradipta Saha
- Microbiology Department, The University of Burdwan , West Bengal , India
| |
Collapse
|
18
|
Parales RE, Luu RA, Hughes JG, Ditty JL. Bacterial chemotaxis to xenobiotic chemicals and naturally-occurring analogs. Curr Opin Biotechnol 2015; 33:318-26. [DOI: 10.1016/j.copbio.2015.03.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/21/2015] [Accepted: 03/25/2015] [Indexed: 10/23/2022]
|