1
|
Berreiros-Hortala H, Vilchez-Pinto G, Diaz-Perales A, Garrido-Arandia M, Tome-Amat J. Virus-like Particles as Vaccines for Allergen-Specific Therapy: An Overview of Current Developments. Int J Mol Sci 2024; 25:7429. [PMID: 39000536 PMCID: PMC11242184 DOI: 10.3390/ijms25137429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Immune engineering and modulation are the basis of a novel but powerful tool to treat immune diseases using virus-like particles (VLPs). VLPs are formed by the viral capsid without genetic material making them non-infective. However, they offer a wide variety of possibilities as antigen-presenting platforms, resulting in high immunogenicity and high efficacy in immune modulation, with low allergenicity. Both animal and plant viruses are being studied for use in the treatment of food allergies. These formulations are combined with adjuvants, T-stimulatory epitopes, TLR ligands, and other immune modulators to modulate or enhance the immune response toward the presented allergen. Here, the authors present an overview of VLP production systems, their immune modulation capabilities, and the applicability of actual VLP-based formulations targeting allergic diseases.
Collapse
Affiliation(s)
- Helena Berreiros-Hortala
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Gonzalo Vilchez-Pinto
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Araceli Diaz-Perales
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Maria Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Jaime Tome-Amat
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| |
Collapse
|
2
|
Bai GH, Tsai MC, Lin SC, Hsu YH, Chen SY. Unraveling the interplay between norovirus infection, gut microbiota, and novel antiviral approaches: a comprehensive review. Front Microbiol 2023; 14:1212582. [PMID: 37485533 PMCID: PMC10359435 DOI: 10.3389/fmicb.2023.1212582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
Norovirus infection is a leading cause of acute gastroenteritis worldwide and can also cause harmful chronic infections in individuals with weakened immune systems. The role of the gut microbiota in the interactions between the host and noroviruses has been extensively studied. While most past studies were conducted in vitro or focused on murine noroviruses, recent research has expanded to human noroviruses using in vivo or ex vivo human intestinal enteroids culture studies. The gut microbiota has been observed to have both promoting and inhibiting effects on human noroviruses. Understanding the interaction between noroviruses and the gut microbiota or probiotics is crucial for studying the pathogenesis of norovirus infection and its potential implications, including probiotics and vaccines for infection control. Recently, several clinical trials of probiotics and norovirus vaccines have also been published. Therefore, in this review, we discuss the current understanding and recent updates on the interactions between noroviruses and gut microbiota, including the impact of norovirus on the microbiota profile, pro-viral and antiviral effects of microbiota on norovirus infection, the use of probiotics for treating norovirus infections, and human norovirus vaccine development.
Collapse
Affiliation(s)
- Geng-Hao Bai
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Meng-Chen Tsai
- Department of General Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Sheng-Chieh Lin
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pediatrics, Division of Allergy, Asthma and Immunology, Shuang Ho Hospital, New Taipei, Taiwan
| | - Yi-Hsiang Hsu
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Shih-Yen Chen
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pediatrics, Division of Pediatric Gastroenterology and Hepatology, Shuang Ho Hospital, New Taipei, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
3
|
Chien ML, Yu CF, Huang CT. Extracellular Production of the Taiwan-Native Norovirus P Domain Overexpressed in Pichia pastoris. FERMENTATION-BASEL 2023; 9:498. [DOI: 10.3390/fermentation9060498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Many efforts in norovirus vaccine development have focused on subunit or recombinant protein vaccines, such as subviral P particles formed by the protruding (P) domain of VP1. P particles are immunogenic and have a region with a human histo-blood group antigen binding site, an interaction critical for infecting the host. In the past, only intracellular NoV P proteins expressed in Escherichia coli and Pichia pastoris were reported, and the low yield and difficulty in purification limited their applications. In this study, the Taiwan-native NoV P domain was successfully expressed and secreted by P. pastoris. The secretion efficiency was greatly enhanced by integrating oligosaccharyl transferase (Ost1) into the α-factor signal peptide and coexpressing Hac1. The production of NoV P in fermentation cultures reached 345 mg/L, and the purity and recovery were 94.8% and 66.9%, respectively, after only ion-exchange chromatography. Transmission electron microscopy analysis showed that the small P particles were mostly ring-, square-, and triangle-shaped, with diameters of 10-15 nm. The biological activity of NoV P was confirmed by saliva-binding assay using human histo-blood group antigen. This study describes the secretion and characterization of the Taiwan-native norovirus P domain in P. pastoris. Particles formed from the P domain were similar in size, morphology, and binding ability to those expressed intracellularly. The strategy described in this study provides great potential in scale-up production and antiviral vaccine development.
Collapse
Affiliation(s)
- Man-Ling Chien
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106216, Taiwan
| | - Chun-Fu Yu
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106216, Taiwan
| | - Ching-Tsan Huang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106216, Taiwan
| |
Collapse
|
4
|
Srivastava V, Nand KN, Ahmad A, Kumar R. Yeast-Based Virus-like Particles as an Emerging Platform for Vaccine Development and Delivery. Vaccines (Basel) 2023; 11:vaccines11020479. [PMID: 36851356 PMCID: PMC9965603 DOI: 10.3390/vaccines11020479] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Virus-like particles (VLPs) are empty, nanoscale structures morphologically resembling viruses. Internal cavity, noninfectious, and particulate nature with a high density of repeating epitopes, make them an ideal platform for vaccine development and drug delivery. Commercial use of Gardasil-9 and Cervarix showed the usefulness of VLPs in vaccine formulation. Further, chimeric VLPs allow the raising of an immune response against different immunogens and thereby can help reduce the generation of medical or clinical waste. The economically viable production of VLPs significantly impacts their usage, application, and availability. To this end, several hosts have been used and tested. The present review will discuss VLPs produced using different yeasts as fermentation hosts. We also compile a list of studies highlighting the expression and purification of VLPs using a yeast-based platform. We also discuss the advantages of using yeast to generate VLPs over other available systems. Further, the issues or limitations of yeasts for producing VLPs are also summarized. The review also compiles a list of yeast-derived VLP-based vaccines that are presently in public use or in different phases of clinical trials.
Collapse
Affiliation(s)
- Vartika Srivastava
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Kripa N. Nand
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Ravinder Kumar
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Correspondence:
| |
Collapse
|
5
|
Masuda A, Man Lee J, Miyata T, Sato S, Masuda A, Taniguchi M, Fujita R, Ushijima H, Morimoto K, Ebihara T, Hino M, Kakino K, Mon H, Kusakabe T. High yield production of norovirus GII.4 virus-like particles using silkworm pupae and evaluation of their protective immunogenicity. Vaccine 2023; 41:766-777. [PMID: 36528444 DOI: 10.1016/j.vaccine.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/08/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Noroviruses (NoVs) are one of the major causes of acute viral gastroenteritis in humans. Virus-like particles (VLPs) without genomes that mimic the capsid structure of viruses are promising vaccine candidates for the prevention of NoVs infection. To produce large amounts of recombinant protein, including VLPs, the silkworm-expression vector system (silkworm-BEVS) is an efficient and powerful tool. In this study, we constructed a recombinant baculovirus that expresses VP1 protein, the major structural protein of NoV GII.4. Expression analysis showed that the baculovirus-infected silkworm pupae expressed NoV VP1 protein more efficiently than silkworm larval fat bodies. We obtained about 4.9 mg of purified NoV VP1 protein from only five silkworm pupae. The purified VP1 protein was confirmed by dynamic light scattering and electron microscopy to form VLPs of approximately 40 nm in diameter. Antisera from mice immunized with the antigen blocked NoV VLPs binding to histo-blood group antigens of pig gastric mucin and also blocked NoV infection in intestinal epithelial cells derived from human induced pluripotent stem (iPS) cells. Our findings demonstrated that NoV VLP eliciting protective antibodies could be obtained in milligram quantities from a few silkworm pupae using the silkworm-BEVS.
Collapse
Affiliation(s)
- Akitsu Masuda
- Laboratory of Creative Science for Insect Industries, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jae Man Lee
- Laboratory of Creative Science for Insect Industries, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takeshi Miyata
- Department of Biochemistry and Biotechnology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Shintaro Sato
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-cho, Wakayama 640-8156, Japan
| | - Atsushi Masuda
- Research and Development Household Products Research, Kao Corporation, Minato 1334, Wakayama 640-8580, Japan
| | - Masahiro Taniguchi
- Research and Development Department, KAICO Ltd, 4-1 Kyudaishinmachi, Nishi-ku, Fukuoka 819-0388, Japan
| | - Ryosuke Fujita
- Laboratory of Sanitary Entomology, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi Kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Keisuke Morimoto
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takeru Ebihara
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masato Hino
- Laboratory of Sanitary Entomology, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kohei Kakino
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroaki Mon
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
6
|
Schneider CG, Fey J, Zou X, Gerbasi V, Savransky T, Batt C, Bergmann-Leitner E, Angov E. Norovirus-VLPs expressing pre-erythrocytic malaria antigens induce functional immunity against sporozoite infection. Vaccine 2022; 40:4270-4280. [PMID: 35697572 DOI: 10.1016/j.vaccine.2022.05.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/27/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
Despite the development of prophylactic anti-malarial drugs and practices to prevent infection, malaria remains a health concern. Preclinical testing of novel malaria vaccine strategies achieved through rational antigen selection and novel particle-based delivery platforms is yielding encouraging results. One such platform, self-assembling virus-like particles (VLP) is safer than attenuated live viruses, and has been approved as a vaccination tool by the FDA. We explore the use of Norovirus sub-viral particles lacking the natural shell (S) domain forming the interior shell but that retain the protruding (P) structures of the native virus as a vaccine vector. Epitope selection and their surface display has the potential to focus antigen specific immune responses to crucial epitopes. Recombinant P-particles displaying epitopes from two malaria antigens, Plasmodium falciparum (Pf) CelTOS and Plasmodium falciparum (Pf) CSP, were evaluated for immunogenicity and their ability to confer protection in a murine challenge model. Immune responses induced in mice resulted either in sterile protection (displaying PfCelTOS epitopes) or in antibodies with functional activity against sporozoites (displaying PfCSP epitopes) in an in vitro liver-stage development assay (ILSDA). These results are encouraging and support further evaluation of this platform as a vaccine delivery system.
Collapse
Affiliation(s)
- Cosette G Schneider
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831, USA.
| | - Julien Fey
- Agave BioSystems, Ithaca, NY 14850, USA.
| | - Xiaoyan Zou
- Naval Medical Research Center, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Vince Gerbasi
- Naval Medical Research Center, Silver Spring, MD 20910, USA.
| | - Tatyana Savransky
- Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; General Dynamics Information Technology, Falls Church, VA 22042, USA.
| | - Carl Batt
- College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Elke Bergmann-Leitner
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| | - Evelina Angov
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| |
Collapse
|
7
|
Panasiuk M, Zimmer K, Czarnota A, Narajczyk M, Peszyńska-Sularz G, Chraniuk M, Hovhannisyan L, Żołędowska S, Nidzworski D, Żaczek AJ, Gromadzka B. Chimeric virus-like particles presenting tumour-associated MUC1 epitope result in high titers of specific IgG antibodies in the presence of squalene oil-in-water adjuvant: towards safe cancer immunotherapy. J Nanobiotechnology 2022; 20:160. [PMID: 35351156 PMCID: PMC8961490 DOI: 10.1186/s12951-022-01357-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background Immunotherapy is emerging as a powerful treatment approach for several types of cancers. Modulating the immune system to specifically target cancer cells while sparing healthy cells, is a very promising approach for safer therapies and increased survival of cancer patients. Tumour-associated antigens are favorable targets for cancer immunotherapy, as they are exclusively expressed by the cancer cells, minimizing the risk of an autoimmune reaction. The ability to initiate the activation of the immune system can be achieved by virus-like particles (VLPs) which are safe and potent delivery tools. VLP‐based vaccines have evolved dramatically over the last few decades and showed great potential in preventing infectious diseases. Immunogenic potency of engineered VLPs as a platform for the development of effective therapeutic cancer vaccines has been studied extensively. This study involves recombinant VLPs presenting multiple copies of tumour-specific mucin 1 (MUC1) epitope as a potentially powerful tool for future immunotherapy. Results In this report VLPs based on the structural protein of Norovirus (NoV VP1) were genetically modified to present multiple copies of tumour-specific MUC1 epitope on their surface. Chimeric MUC1 particles were produced in the eukaryotic Leishmania tarentolae expression system and used in combination with squalene oil-in-water emulsion MF59 adjuvant to immunize BALB/c mice. Sera from vaccinated mice demonstrated high titers of IgG and IgM antibodies which were specifically recognizing MUC1 antigen. Conclusions The obtained results show that immunization with recombinant chimeric NoV VP1- MUC1 VLPs result in high titers of MUC1 specific IgG antibodies and show great therapeutic potential as a platform to present tumour-associated antigens. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Mirosława Panasiuk
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, A. Abrahama 58, 80-307, Gdańsk, Poland.,NanoExpo Sp. z o.o., Kładki 24, 80-822, Gdańsk, Poland.,Department of in vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland
| | - Karolina Zimmer
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, A. Abrahama 58, 80-307, Gdańsk, Poland.,Faculty of Health Sciences, Department of Biochemistry and Molecular Biology, University of Bielsko-Biala, Willowa 2, 43-309, Bielsko-Biala, Poland
| | - Anna Czarnota
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, A. Abrahama 58, 80-307, Gdańsk, Poland
| | - Magdalena Narajczyk
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Grażyna Peszyńska-Sularz
- Tri-City Central Animal Laboratory Research and Service Center, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Milena Chraniuk
- Department of in vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland
| | - Lilit Hovhannisyan
- Department of in vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland
| | - Sabina Żołędowska
- Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland
| | - Dawid Nidzworski
- Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland
| | - Anna J Żaczek
- Laboratory of Translational Oncology, Medical University of Gdańsk, Dębinki 1, 80-210, Gdańsk, Poland
| | - Beata Gromadzka
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, A. Abrahama 58, 80-307, Gdańsk, Poland. .,NanoExpo Sp. z o.o., Kładki 24, 80-822, Gdańsk, Poland. .,Department of in vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland.
| |
Collapse
|
8
|
Lucero Y, Matson DO, Ashkenazi S, George S, O’Ryan M. Norovirus: Facts and Reflections from Past, Present, and Future. Viruses 2021; 13:v13122399. [PMID: 34960668 PMCID: PMC8707792 DOI: 10.3390/v13122399] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023] Open
Abstract
Human Norovirus is currently the main viral cause of acute gastroenteritis (AGEs) in most countries worldwide. Nearly 50 years after the discovery of the "Norwalk virus" by Kapikian and colleagues, the scientific and medical community continue to generate new knowledge on the full biological and disease spectrum of Norovirus infection. Nevertheless, several areas remain incompletely understood due to the serious constraints to effectively replicate and propagate the virus. Here, we present a narrated historic perspective and summarize our current knowledge, including insights and reflections on current points of interest for a broad medical community, including clinical and molecular epidemiology, viral-host-microbiota interactions, antivirals, and vaccine prototypes. We also include a reflection on the present and future impacts of the COVID-19 pandemic on Norovirus infection and disease.
Collapse
Affiliation(s)
- Yalda Lucero
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (Y.L.); (S.G.)
- Hospital Dr. Roberto del Río Hospital, Department of Pediatrics and Pediatric Surgery (Northern Campus), Faculty of Medicine, Universidad de Chile, Santiago 8380418, Chile
- Clínica Alemana de Santiago, Faculty of Medicine, Universidad del Desarrollo-Clínica Alemana, Santiago 7650568, Chile
| | - David O. Matson
- Eastern Shore Health Department, Virginia Department of Public Health, Accomack County, VA 23301, USA;
| | - Shai Ashkenazi
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
- Department of Pediatrics A, Schneider Children’s Medical Center, Petach Tikva 49202, Israel
| | - Sergio George
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (Y.L.); (S.G.)
| | - Miguel O’Ryan
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (Y.L.); (S.G.)
- Correspondence:
| |
Collapse
|
9
|
Boonyakida J, Utomo DIS, Soma FN, Park EY. Two-step purification of tag-free norovirus-like particles from silkworm larvae (Bombyx mori). Protein Expr Purif 2021; 190:106010. [PMID: 34737040 DOI: 10.1016/j.pep.2021.106010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
Recombinantly expressed VP1 of norovirus self-assembled and formed norovirus-like particles (NoV-LPs). This native VP1 was expressed using the Bombyx mori nucleopolyhedrovirus (BmNPV) expression system in silkworm larva. NoV-LPs were collected from silkworm fat body lysate by density gradient centrifugation. To improve the purity of the NoV-LP, the proteins were further purified using immobilized metal affinity chromatography based on the surface exposed side chain of histidine residues. The additional purification led to a highly purified virus-like particle (VLP). The morphology and size of the purified VLPs were examined using a transmission electron microscope, and dynamic light scattering revealed a monodispersed spherical morphology with a diameter of 34 nm. The purified product had a purity of >90% with a recovery yield of 48.7% (equivalent to 930 μg) from crude lysate, obtained from seven silkworm larvae. In addition, the purified VLP could be recognized by antibodies against GII norovirus in sandwich enzyme-linked immunosorbent assay, which indicated that the silkworm-derived VLP is biologically functional as a NoV-LP in its native state, is structurally correct, and exerts its biological function. Our results suggest that the silkworm-derived NoV-LP may be useful for subsequent applications, such as in a vaccine platform. Moreover, the silkworm-based expression system is known for its robustness, facile up-scalability, and relatively low expense compared to insect cell systems.
Collapse
Affiliation(s)
- Jirayu Boonyakida
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Doddy Irawan Setyo Utomo
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Fahmida Nasrin Soma
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Enoch Y Park
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
10
|
Antigenic Diversity of Human Norovirus Capsid Proteins Based on the Cross-Reactivities of Their Antisera. Pathogens 2021; 10:pathogens10080986. [PMID: 34451450 PMCID: PMC8398591 DOI: 10.3390/pathogens10080986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022] Open
Abstract
Human norovirus (HuNoV), which is the major causative agent of acute gastroenteritis, has broad antigenic diversity; thus, the development of a broad-spectrum vaccine is challenging. To establish the relationship between viral genetic diversity and antigenic diversity, capsid P proteins and antisera of seven GI and 16 GII HuNoV genotypes were analyzed. Enzyme-linked immunosorbent assays showed that HuNoV antisera strongly reacted with the homologous capsid P proteins (with titers > 5 × 104). However, 17 (73.9%) antisera had weak or no cross-reactivity with heterologous genotypes. Interestingly, the GII.5 antiserum cross-reacted with seven (30.4%) capsid P proteins (including pandemic genotypes GII.4 and GII.17), indicating its potential use for HuNoV vaccine development. Moreover, GI.2 and GI.6 antigens reacted widely with heterologous antisera (n ≥ 5). Sequence alignment and phylogenetic analyses of the P proteins revealed conserved regions, which may be responsible for the immune crossover reactivity observed. These findings may be helpful in identifying broad-spectrum epitopes with clinical value for the development of a future vaccine.
Collapse
|
11
|
Du J, Gu Q, Liu Y, Li Q, Guo T, Liu Y. The endemic GII.4 norovirus-like-particle induced-antibody lacks of cross-reactivity against the epidemic GII.17 strain. J Med Virol 2021; 93:3974-3979. [PMID: 32869863 PMCID: PMC8246737 DOI: 10.1002/jmv.26474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/02/2020] [Accepted: 08/20/2020] [Indexed: 12/26/2022]
Abstract
Norovirus-like particle (VLP) vaccine is promising against human norovirus infection. Unfortunately, genetic diversity of norovirus hindered the development of this vaccine. In this study, the immunogenicity of norovirus VLPs induced by the endemic GII.4 and the epidemic GII.17 genotypes, and the cross-reactivity between them as well as GI.1 and GII.3 VLPs were evaluated in mice by using serum IgG and histo-blood group antigen (HBGA) blocking antibodies as index. Results showed well immunogenicity of both GII.4 and GII.17 VLPs in mice. Serum IgG GMT (Geometric Mean Titer) were 3.63 (GII.4) and 3.88 (GII.17) respectively, and sustained to the 15th week. The HBGA blocking antibodies were 130 (GII.4) and 360 (GII.17) respectively at the end of the 4th week. Additionally, there was a dramatically statistical difference found in the cross-reactivity within genogroup (GII.3, GII.4 and GII.17) (p < .001), and also showed similar difference between genogroups (GI.1 vs. GII.3, GII.4 and GII.17) (p < .001). Summarized the pPICZa pichi pichia expression system showed a potential to be the alternative for expression of norovirus VLPs in secretion form, and the little cross-reactivity found between the endemic strain and the epidemic strain provides an evident for the consideration of selecting candidates of norovirus vaccine strains.
Collapse
Affiliation(s)
- Jialiang Du
- Division of Enteric Viral VaccinesNational Institutes for Food and Drug ControlBeijingChina
| | - Qiong Gu
- Division of Enteric Viral VaccinesNational Institutes for Food and Drug ControlBeijingChina
- National Vaccine and Serum InstituteBeijingChina
| | - Yan Liu
- Division of Enteric Viral VaccinesNational Institutes for Food and Drug ControlBeijingChina
| | - Qiming Li
- National Vaccine and Serum InstituteBeijingChina
| | - Tai Guo
- Division of Enteric Viral VaccinesNational Institutes for Food and Drug ControlBeijingChina
| | - Yueyue Liu
- Division of Enteric Viral VaccinesNational Institutes for Food and Drug ControlBeijingChina
| |
Collapse
|
12
|
N-terminal VP1 Truncations Favor T = 1 Norovirus-Like Particles. Vaccines (Basel) 2020; 9:vaccines9010008. [PMID: 33374273 PMCID: PMC7824077 DOI: 10.3390/vaccines9010008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022] Open
Abstract
Noroviruses cause immense sporadic gastroenteritis outbreaks worldwide. Emerging genotypes, which are divided based on the sequence of the major capsid protein VP1, further enhance this public threat. Self-assembling properties of the human norovirus major capsid protein VP1 are crucial for using virus-like particles (VLPs) for vaccine development. However, there is no vaccine available yet. Here, VLPs from different variants produced in insect cells were characterized in detail using a set of biophysical and structural tools. We used native mass spectrometry, gas-phase electrophoretic mobility molecular analysis, and proteomics to get clear insights into particle size, structure, and composition, as well as stability. Generally, noroviruses have been known to form mainly T = 3 particles. Importantly, we identified a major truncation in the capsid proteins as a likely cause for the formation of T = 1 particles. For vaccine development, particle production needs to be a reproducible, reliable process. Understanding the underlying processes in capsid size variation will help to produce particles of a defined capsid size presenting antigens consistent with intact virions. Next to vaccine production itself, this would be immensely beneficial for bio-/nano-technological approaches using viral particles as carriers or triggers for immunological reactions.
Collapse
|
13
|
Chen YL, Huang CT. Establishment of a two-step purification scheme for tag-free recombinant Taiwan native norovirus P and VP1 proteins. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1159:122357. [PMID: 32920339 DOI: 10.1016/j.jchromb.2020.122357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 12/17/2022]
Abstract
The protruding (P) domain of the major capsid protein VP1 of norovirus (NoV) is the crucial element for immune recognition and host receptor binding. The heterologous P protein expressed by Pichia pastoris self-assembles into P particles. However, tag-free NoV protein purification schemes have rarely been reported due to the low isoelectric point of NoV proteins, which leads to highly competitive binding between the target protein and yeast host cell proteins at alkaline pH. In this study, a two-step purification scheme based on surface histidines and the charge on the NoV GII.4 strain P protein was developed. Using HisTrap and ion exchange chromatography, the P protein was directly purified, with a recovery of 28.1% and purity of 82.1%. Similarly, the NoV capsid protein VP1 was also purified using HisTrap and gel filtration chromatography based on native surface histidines and self-assembly ability, with 20% recovery and over 90% purity. Dynamic light scattering and transmission electron microscopy analyses of the purified NoV P revealed that most of these small P particles were triangle-, square- and ring-shaped, with a diameter of approximately 14 nm, and that the purified NoV VP1 self-assembles into particles with a diameter of approximately 47 nm. Both the purified NoV P and VP1 particles retained human histo-blood group antigen-binding ability, as evidenced by a saliva-binding assay.
Collapse
Affiliation(s)
- Yu-Ling Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taiwan
| | - Ching-Tsan Huang
- Department of Biochemical Science and Technology, National Taiwan University, Taiwan.
| |
Collapse
|
14
|
Highly secretory expression of recombinant cowpea chlorotic mottle virus capsid proteins in Pichia pastoris and in-vitro encapsulation of ruthenium nanoparticles for catalysis. Protein Expr Purif 2020; 174:105679. [PMID: 32534017 DOI: 10.1016/j.pep.2020.105679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/17/2022]
Abstract
The applications of viral protein cages have expanded rapidly into the fields of bionanotechnology and materials science. However, the low-cost production of viral capsid proteins (CPs) on a large scale is always a challenge. Herein, we develop a highly efficient expression system by constructing recombinant Pichia pastoris cells as a "factory" for the secretion of soluble cowpea chlorotic mottle virus (CCMV) CPs. Under optimal induction conditions (0.9 mg/mL of methanol concentration at 30 °C for 96 h), a high yield of approximately 95 mg/L of CCMV CPs was harvested from the fermentation supernatant with CPs purity >90%, which has significantly simplified the rest of the purification process. The resultant CPs are employed to encapsulate Ruthenium (Ru) nanoparticles (NPs) via in-vitro self-assembly to prepare hybrid nanocatalyst, i.e. Ru@virus-like particles (VLPs). The catalytic activity over Ru@VLPs was evaluated by reducing 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). The results indicate that, with the protection of protein cages, Ru NPs were highly stabilized during the catalytic reaction. This results in enhanced catalytic activity (reaction rate constant k = 0.14 min-1) in comparison with unsupported citrate-stabilized Ru NPs (Ru-CA) (k = 0.08 min-1). Additionally, comparatively lower activation energy over Ru@VLPs (approximately 32 kJ/mol) than that over Ru-CA (approximately 39 kJ/mol) could be attributed to the synergistic effect between Ru NPs and some functional groups such as amino groups (-NH2) on CPs that weakened the activation barrier of 4-NP reduction. Therefore, enhanced activity and decreased activation energy over Ru@VLPs demonstrated the superiority of Ru@VLPs to unsupported Ru-CA.
Collapse
|
15
|
Paul R, Karthik S, Vimalraj P, Meenakshisundaram S, Kaliraj P. Cloning, large-scale production and characterization of fusion protein (P-TUFT-ALT-2) of Brugian abundant larval transcript-2 with tuftsin in Pichia pastoris. Prep Biochem Biotechnol 2018; 48:823-833. [PMID: 30303452 DOI: 10.1080/10826068.2018.1514511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Lymphatic filariasis is a "disease of poor people" due to a large section of affected people with economic backwardness. Therefore, successful elimination of this disease requires a cost-effective prophylactic agent such as vaccine along with conventional drugs. The Abundant Larval Transcript-2 (BmALT-2) protein of Brugia malayi has been recognized as the most potential vaccine candidate. Tuftsin, a tetra-peptide immunopotentiator has already shown the enhanced immunogenicity of various vaccine antigens in earlier studies. This study deals with the development of tuft-alt-2 fusion construct and a suitable culture condition for its large-scale production in Pichia pastoris. The recombinant P. pastoris/tuft-alt-2 with 9-11 copies of the gene construct exhibited the highest expression level. The molecular weight of P-TUFT-ALT-2 was determined as 28 kDa in SDS-PAGE including 3 kDa due to glycosylation. The dry cell biomass was 57.4 gL-1 in the bioreactor. The P-TUFT-ALT-2 expression was measured as about 35 mg L-1, which was 102% higher than flask culture. The P-TUFT-ALT-2 produced the highest 65,000 IgG peak titer in Balb/c mice. Moreover, P-TUFT-ALT-2 exhibited about 9.46% higher splenocyte proliferation than E. coli expressed E-ALT-2 alone. The enhanced secreted production of P-TUFT-ALT-2 in bioreactor would step up its commercialization as an inexpensive commercial vaccine for human lymphatic filariasis.
Collapse
Affiliation(s)
- Rajkumar Paul
- a Centre for Biotechnology , Anna University , Chennai , India
| | | | | | | | - Perumal Kaliraj
- a Centre for Biotechnology , Anna University , Chennai , India
| |
Collapse
|
16
|
Mattison CP, Cardemil CV, Hall AJ. Progress on norovirus vaccine research: public health considerations and future directions. Expert Rev Vaccines 2018; 17:773-784. [PMID: 30092671 DOI: 10.1080/14760584.2018.1510327] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Noroviruses are the leading cause of foodborne illness worldwide, account for approximately one-fifth of acute gastroenteritis (AGE) cases globally, and cause a substantial economic burden. Candidate norovirus vaccines are in development, but there is currently no licensed vaccine. AREAS COVERED Noroviruses cause approximately 684 million cases and 212,000 deaths per year across all age groups, though burden estimates vary by study and region. Challenges to vaccine research include substantial and rapidly evolving genetic diversity, short-term and homotypic immunity to infection, and the absence of a single, well-established correlate of protection. Nonetheless, several norovirus vaccine candidates are currently in development, utilizing virus-like particles (VLPs), P particles, and recombinant adenoviruses. Of these, a bivalent GI.1/GII.4 VLP-based intramuscular vaccine (Phase IIb) and GI.1 oral vaccine (Phase I) are in clinical trials. EXPERT COMMENTARY A norovirus vaccine should target high-risk populations, including the young and the elderly, and protect them against the most common circulating norovirus strains. A norovirus vaccine would be a powerful tool in the prevention and control of norovirus while lessening the burden of AGE worldwide. However, more robust burden and cost estimates are needed to justify investments in and guide norovirus vaccine development.
Collapse
Affiliation(s)
- Claire P Mattison
- a Oak Ridge Institute for Science and Education , Oak Ridge , TN , USA.,b Division of Viral Diseases, Viral Gastroenteritis Branch , Centers for Disease Control and Prevention , Atlanta , USA
| | - Cristina V Cardemil
- b Division of Viral Diseases, Viral Gastroenteritis Branch , Centers for Disease Control and Prevention , Atlanta , USA
| | - Aron J Hall
- b Division of Viral Diseases, Viral Gastroenteritis Branch , Centers for Disease Control and Prevention , Atlanta , USA
| |
Collapse
|
17
|
Sheng J, Lei S, Yuan L, Feng X. Cell-free protein synthesis of norovirus virus-like particles. RSC Adv 2017. [DOI: 10.1039/c7ra03742b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cell-free protein expression of norovirus virus-like-particles.
Collapse
Affiliation(s)
- Jiayuan Sheng
- Department of Biological Systems Engineering
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Shaohua Lei
- Department of Biomedical Sciences and Pathobiology
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Xueyang Feng
- Department of Biological Systems Engineering
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| |
Collapse
|
18
|
Kim H, Kim HJ. Yeast as an expression system for producing virus-like particles: what factors do we need to consider? Lett Appl Microbiol 2016; 64:111-123. [DOI: 10.1111/lam.12695] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/11/2016] [Accepted: 11/04/2016] [Indexed: 12/16/2022]
Affiliation(s)
- H.J. Kim
- Laboratory of Virology; College of Pharmacy; Chung-Ang University; Seoul South Korea
| | - H.-J. Kim
- Laboratory of Virology; College of Pharmacy; Chung-Ang University; Seoul South Korea
| |
Collapse
|
19
|
Production of an enzymatically active and immunogenic form of ectodomain of Porcine rubulavirus hemagglutinin-neuraminidase in the yeast Pichia pastoris. J Biotechnol 2016; 223:52-61. [PMID: 26940828 DOI: 10.1016/j.jbiotec.2016.02.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/23/2015] [Accepted: 02/26/2016] [Indexed: 11/20/2022]
Abstract
Blue-eye disease (BED) of swine is a viral disease endemic in Mexico. The etiological agent is a paramyxovirus classified as Porcine rubulavirus (PoRV-LPMV), which exhibits in its envelope the hemagglutinin-neuraminidase (HN) glycoprotein, the most immunogenic and a major target for vaccine development. We report in this study the obtaining of ectodomain of PoRV HN (eHN) through the Pichia pastoris expression system. The expression vector (pPICZαB-HN) was integrated by displacement into the yeast chromosome and resulted in a Mut(+) phenotype. Expressed eHN in the P. pastoris X33 strain was recovered from cell-free medium, featuring up to 67 nmol/min/mg after 6 days of expression. eHN was recognized by the serum of infected pigs with strains currently circulating in the Mexican Bajio region. eHN induces antibodies in mice after 28 days of immunization with specific recognition in ELISA test. These antibodies were able to inhibit >80% replication by viral neutralization assays in cell culture. These studies show the obtaining of a protein with similar characteristics to the native HN and which may be a candidate to propose a vaccine or to use the antigen in a serologic diagnostic test.
Collapse
|
20
|
Parker SA, Maloy MH, Tome-Amat J, Bardliving CL, Batt CA, Lanz KJ, Olesberg JT, Arnold MA. Optimization of norovirus virus-like particle production inPichia pastorisusing a real-time near-infrared bioprocess monitor. Biotechnol Prog 2016; 32:518-26. [DOI: 10.1002/btpr.2224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/02/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Stephanie A. Parker
- Dept. of Biomedical Engineering; Cornell University; 357 Stocking Hall Ithaca, NY 14853 Ithaca NY
| | | | - Jaime Tome-Amat
- Dept. of Microbiology; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai; New York NY
| | | | - Carl A. Batt
- Dept. of Food Science; Cornell University; Ithaca NY
| | | | | | | |
Collapse
|
21
|
Koho T, Ihalainen TO, Stark M, Uusi-Kerttula H, Wieneke R, Rahikainen R, Blazevic V, Marjomäki V, Tampé R, Kulomaa MS, Hytönen VP. His-tagged norovirus-like particles: A versatile platform for cellular delivery and surface display. Eur J Pharm Biopharm 2015; 96:22-31. [PMID: 26170162 DOI: 10.1016/j.ejpb.2015.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/01/2015] [Accepted: 07/06/2015] [Indexed: 11/26/2022]
Abstract
In addition to vaccines, noninfectious virus-like particles (VLPs) that mimic the viral capsid show an attractive possibility of presenting immunogenic epitopes or targeting molecules on their surface. Here, functionalization of norovirus-derived VLPs by simple non-covalent conjugation of various molecules is shown. By using the affinity between a surface-exposed polyhistidine-tag and multivalent tris-nitrilotriacetic acid (trisNTA), fluorescent dye molecules and streptavidin-biotin conjugated to trisNTA are displayed on the VLPs to demonstrate the use of these VLPs as easily modifiable nanocarriers as well as a versatile vaccine platform. The VLPs are able to enter and deliver surface-displayed fluorescent dye into HEK293T cells via a surface-attached cell internalization peptide (VSV-G). The ease of manufacturing, the robust structure of these VLPs, and the straightforward conjugation provide a technology, which can be adapted to various applications in biomedicine.
Collapse
Affiliation(s)
- Tiia Koho
- BioMediTech, University of Tampere, Biokatu 6, FI-33520 Tampere, Finland
| | - Teemu O Ihalainen
- BioMediTech, University of Tampere, Biokatu 6, FI-33520 Tampere, Finland
| | - Marie Stark
- Department of Biological and Environmental Science/Nanoscience Center, Survontie 9, FI-40500 Jyväskylä, Finland
| | - Hanni Uusi-Kerttula
- Vaccine Research Center, Medical School, University of Tampere, Biokatu 10, FI-33520 Tampere, Finland
| | - Ralph Wieneke
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Rolle Rahikainen
- BioMediTech, University of Tampere, Biokatu 6, FI-33520 Tampere, Finland
| | - Vesna Blazevic
- Vaccine Research Center, Medical School, University of Tampere, Biokatu 10, FI-33520 Tampere, Finland
| | - Varpu Marjomäki
- Department of Biological and Environmental Science/Nanoscience Center, Survontie 9, FI-40500 Jyväskylä, Finland
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Markku S Kulomaa
- BioMediTech, University of Tampere, Biokatu 6, FI-33520 Tampere, Finland
| | - Vesa P Hytönen
- BioMediTech, University of Tampere, Biokatu 6, FI-33520 Tampere, Finland; Fimlab Laboratories, Biokatu 4, FI-33520 Tampere, Finland.
| |
Collapse
|
22
|
Effio CL, Hubbuch J. Next generation vaccines and vectors: Designing downstream processes for recombinant protein-based virus-like particles. Biotechnol J 2015; 10:715-27. [PMID: 25880158 DOI: 10.1002/biot.201400392] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/11/2015] [Accepted: 03/19/2015] [Indexed: 12/28/2022]
Abstract
In recent years, the development of novel recombinant virus-like particles (VLPs) has been generating new perspectives for the prevention of untreated and arising infectious diseases. However, cost-reduction and acceleration of manufacturing processes for VLP-based vaccines or vectors are key challenges for the global health system. In particular, the design of rapid and cost-efficient purification processes is a critical bottleneck. In this review, we describe and evaluate new concepts, development strategies and unit operations for the downstream processing of VLPs. A special focus is placed on purity requirements and current trends, as well as chances and limitations of novel technologies. The discussed methods and case studies demonstrate the advances and remaining challenges in both rational process development and purification tools for large biomolecules. The potential of a new era of VLP-based products is highlighted by the progress of various VLPs in clinical phases.
Collapse
Affiliation(s)
- Christopher Ladd Effio
- Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe, Germany
| | | |
Collapse
|