1
|
Sakoleva T, Vesenmaier F, Koch L, Schunke JE, Novak KD, Grobe S, Dörr M, Bornscheuer UT, Bayer T. Biosensor-Guided Engineering of a Baeyer-Villiger Monooxygenase for Aliphatic Ester Production. Chembiochem 2025; 26:e202400712. [PMID: 39320950 PMCID: PMC11727011 DOI: 10.1002/cbic.202400712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
Esters are valuable aroma compounds and can be produced enzymatically by Baeyer-Villiger monooxygenases (BVMOs) from (aliphatic) ketone precursors. However, a genetically encoded biosensor system for the assessment of BVMO activity and the detection of reaction products is missing. In this work, we assembled a synthetic enzyme cascade - featuring an esterase, an alcohol dehydrogenase, and LuxAB - in the heterologous host Escherichia coli. Target esters are produced by a BVMO, subsequently cleaved, and the corresponding alcohol oxidized through the artificial pathway. Ultimately, aldehyde products are detected in vivo by LuxAB, a luciferase from Photorhabdus luminescens that emits bioluminescence upon the oxidation of aldehydes to the corresponding carboxylates. This biosensor system greatly accelerated the screening and selection of active BVMO variants from a focused library, omitting commonly used low-throughput chromatographic analysis. Engineered enzymes accepted linear aliphatic ketones such as 2-undecanone and 2-dodecanone and exhibited improved ester formation.
Collapse
Affiliation(s)
- Thaleia Sakoleva
- Department of Biotechnology & Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Florian Vesenmaier
- Department of Biotechnology & Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Lena Koch
- Department of Biotechnology & Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Jarne E. Schunke
- Department of Biotechnology & Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| | | | - Sascha Grobe
- Department of Biotechnology & Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Mark Dörr
- Department of Biotechnology & Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Thomas Bayer
- Department of Biotechnology & Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| |
Collapse
|
2
|
Kurnia K, Efimova E, Santala V, Santala S. Metabolic engineering of Acinetobacter baylyi ADP1 for naringenin production. Metab Eng Commun 2024; 19:e00249. [PMID: 39555486 PMCID: PMC11568779 DOI: 10.1016/j.mec.2024.e00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Naringenin, a flavanone and a precursor for a variety of flavonoids, has potential applications in the health and pharmaceutical sectors. The biological production of naringenin using genetically engineered microbes is considered as a promising strategy. The naringenin synthesis pathway involving chalcone synthase (CHS) and chalcone isomerase (CHI) relies on the efficient supply of key substrates, malonyl-CoA and p-coumaroyl-CoA. In this research, we utilized a soil bacterium, Acinetobacter baylyi ADP1, which exhibits several characteristics that make it a suitable candidate for naringenin biosynthesis; the strain naturally tolerates and can uptake and metabolize p-coumaric acid, a primary compound in alkaline-pretreated lignin and a precursor for naringenin production. A. baylyi ADP1 also produces intracellular lipids, such as wax esters, thereby being able to provide malonyl-CoA for naringenin biosynthesis. Moreover, the genomic engineering of this strain is notably straightforward. In the course of the construction of a naringenin-producing strain, the p-coumarate catabolism was eliminated by a single gene knockout (ΔhcaA) and various combinations of plant-derived CHS and CHI were evaluated. The best performance was obtained by a novel combination of genes encoding for a CHS from Hypericum androsaemum and a CHI from Medicago sativa, that enabled the production of 17.9 mg/L naringenin in batch cultivations from p-coumarate. Furthermore, the implementation of a fed-batch system led to a 3.7-fold increase (66.4 mg/L) in naringenin production. These findings underscore the potential of A. baylyi ADP1 as a host for naringenin biosynthesis as well as advancement of lignin-based bioproduction.
Collapse
Affiliation(s)
- Kesi Kurnia
- Faculty of Engineering and Natural Sciences, Tampere University, Hervanta Campus, 33720, Tampere, Finland
| | - Elena Efimova
- Faculty of Engineering and Natural Sciences, Tampere University, Hervanta Campus, 33720, Tampere, Finland
| | - Ville Santala
- Faculty of Engineering and Natural Sciences, Tampere University, Hervanta Campus, 33720, Tampere, Finland
| | - Suvi Santala
- Faculty of Engineering and Natural Sciences, Tampere University, Hervanta Campus, 33720, Tampere, Finland
| |
Collapse
|
3
|
Liu C, Efimova E, Santala V, Santala S. Analysis of detoxification kinetics and end products of furan aldehydes in Acinetobacter baylyi ADP1. Sci Rep 2024; 14:29678. [PMID: 39613800 DOI: 10.1038/s41598-024-81124-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024] Open
Abstract
The efficient utilization of lignocellulosic hydrolysates in bioprocesses is impeded by their complex composition and the presence of toxic compounds, such as furan aldehydes, formed during lignocellulose pretreatment. Biological detoxification of these furan aldehydes offers a promising solution to enhance the utilization of lignocellulosic hydrolysates. Acinetobacter baylyi ADP1 is known to metabolize furan aldehydes, yet the complete spectrum of reaction products and dynamics remains unclear. Here, we determined the detoxification metabolites of furfural and 5-hydroxymethylfurfural in A. baylyi ADP1 and studied the kinetics of detoxification. The results indicate that detoxification in A. baylyi ADP1 follows a typical alcohol-aldehyde-acid scheme, with furoic acid and 5-hydroxymethyl-2-furancarboxylic acid as the final products for furfural and 5-hydroxymethylfurfural, respectively. Both end products were found to be less toxic for cells than their unmodified forms. These findings underscore the potential of A. baylyi ADP1 in detoxifying lignocellulosic hydrolysates for bioprocess applications.
Collapse
Affiliation(s)
- Changshuo Liu
- Faculty of Engineering and Natural Sciences, Tampere University, Hervanta Campus, PO Box 527, Tampere, FI-33014, Finland
| | - Elena Efimova
- Faculty of Engineering and Natural Sciences, Tampere University, Hervanta Campus, PO Box 527, Tampere, FI-33014, Finland
| | - Ville Santala
- Faculty of Engineering and Natural Sciences, Tampere University, Hervanta Campus, PO Box 527, Tampere, FI-33014, Finland
| | - Suvi Santala
- Faculty of Engineering and Natural Sciences, Tampere University, Hervanta Campus, PO Box 527, Tampere, FI-33014, Finland.
| |
Collapse
|
4
|
Dickey RM, Gopal MR, Nain P, Kunjapur AM. Recent developments in enzymatic and microbial biosynthesis of flavor and fragrance molecules. J Biotechnol 2024; 389:43-60. [PMID: 38616038 DOI: 10.1016/j.jbiotec.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Flavors and fragrances are an important class of specialty chemicals for which interest in biomanufacturing has risen during recent years. These naturally occurring compounds are often amenable to biosynthesis using purified enzyme catalysts or metabolically engineered microbial cells in fermentation processes. In this review, we provide a brief overview of the categories of molecules that have received the greatest interest, both academically and industrially, by examining scholarly publications as well as patent literature. Overall, we seek to highlight innovations in the key reaction steps and microbial hosts used in flavor and fragrance manufacturing.
Collapse
Affiliation(s)
- Roman M Dickey
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - Madan R Gopal
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - Priyanka Nain
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - Aditya M Kunjapur
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA.
| |
Collapse
|
5
|
Liu C, Choi B, Efimova E, Nygård Y, Santala S. Enhanced upgrading of lignocellulosic substrates by coculture of Saccharomyces cerevisiae and Acinetobacter baylyi ADP1. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:61. [PMID: 38711153 DOI: 10.1186/s13068-024-02510-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/23/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Lignocellulosic biomass as feedstock has a huge potential for biochemical production. Still, efficient utilization of hydrolysates derived from lignocellulose is challenged by their complex and heterogeneous composition and the presence of inhibitory compounds, such as furan aldehydes. Using microbial consortia where two specialized microbes complement each other could serve as a potential approach to improve the efficiency of lignocellulosic biomass upgrading. RESULTS This study describes the simultaneous inhibitor detoxification and production of lactic acid and wax esters from a synthetic lignocellulosic hydrolysate by a defined coculture of engineered Saccharomyces cerevisiae and Acinetobacter baylyi ADP1. A. baylyi ADP1 showed efficient bioconversion of furan aldehydes present in the hydrolysate, namely furfural and 5-hydroxymethylfurfural, and did not compete for substrates with S. cerevisiae, highlighting its potential as a coculture partner. Furthermore, the remaining carbon sources and byproducts of S. cerevisiae were directed to wax ester production by A. baylyi ADP1. The lactic acid productivity of S. cerevisiae was improved approximately 1.5-fold (to 0.41 ± 0.08 g/L/h) in the coculture with A. baylyi ADP1, compared to a monoculture of S. cerevisiae. CONCLUSION The coculture of yeast and bacterium was shown to improve the consumption of lignocellulosic substrates and the productivity of lactic acid from a synthetic lignocellulosic hydrolysate. The high detoxification capacity and the ability to produce high-value products by A. baylyi ADP1 demonstrates the strain to be a potential candidate for coculture to increase production efficiency and economics of S. cerevisiae fermentations.
Collapse
Affiliation(s)
- Changshuo Liu
- Faculty of Engineering and Natural Sciences, Tampere University, Hervanta Campus, Tampere, Finland
| | - Bohyun Choi
- Department of Life Sciences, Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| | - Elena Efimova
- Faculty of Engineering and Natural Sciences, Tampere University, Hervanta Campus, Tampere, Finland
| | - Yvonne Nygård
- Department of Life Sciences, Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Suvi Santala
- Faculty of Engineering and Natural Sciences, Tampere University, Hervanta Campus, Tampere, Finland.
| |
Collapse
|
6
|
Monedeiro-Milanowski M, Monedeiro F, Pomastowski P. Silver Lactoferrin as Antimicrobials: Mechanisms of Action and Resistance Assessed by Bacterial Molecular Profiles. ACS OMEGA 2023; 8:46236-46251. [PMID: 38075786 PMCID: PMC10702476 DOI: 10.1021/acsomega.3c07562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 01/04/2025]
Abstract
A diverse silver-lactoferrin (AgLTF) complex, comprising silver ions (Ag+) and silver nanoparticles, displayed a synergistic antibacterial effect while being almost five times more lethal than LTF alone. Gas chromatography-mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry-in linear (LP) and reflectron (RP) positive modes-were used to comprehensively analyze metabolites and proteins profiles of bacteria (Staphylococcus aureus (SA), Pseudomonas aeruginosa (PA) and Enterococcus faecalis (EF)) treated using AgLTF complex versus exclusively Ag+. Although both agents resulted in similar metabolic shifts in bacteria, AgLTF significantly triggered the production of sulfides (related to bacterial stress resistance), ethanol, 2-butanol (indicating exhaustion of cell respiration), decanoic acid, and nonane (suggesting ongoing oxidative stress). Keto acids formation and fermentation pathways were enhanced by AgLTF and suppressed by Ag+. Furthermore, AgLTF appears to interact with proteins fraction of bacteria in a concentration-dependent manner. EF molecular profiles showed less changes between treated and untreated bacteria. On the other hand, SA and PA proteins and metabolic patterns were the most differentiated from untreated bacteria. In conclusion, our study may provide valuable insights regarding the molecular mechanisms involved in AgLTF antimicrobial action.
Collapse
Affiliation(s)
| | | | - Paweł Pomastowski
- Centre for Modern
Interdisciplinary
Technologies, Nicolaus Copernicus University
in Toruń, Wileńska
4 Str, Toruń 87-100, Poland
| |
Collapse
|
7
|
Luo J, Efimova E, Volke DC, Santala V, Santala S. Engineering cell morphology by CRISPR interference in Acinetobacter baylyi ADP1. Microb Biotechnol 2022; 15:2800-2818. [PMID: 36005297 DOI: 10.1111/1751-7915.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022] Open
Abstract
Microbial production of intracellular compounds can be engineered by redirecting the carbon flux towards products and increasing the cell size. Potential engineering strategies include exploiting clustered regularly interspaced short palindromic repeats interference (CRISPRi)-based tools for controlling gene expression. Here, we applied CRISPRi for engineering Acinetobacter baylyi ADP1, a model bacterium for synthesizing intracellular storage lipids, namely wax esters. We first established an inducible CRISPRi system for strain ADP1, which enables tightly controlled repression of target genes. We then targeted the glyoxylate shunt to redirect carbon flow towards wax esters. Second, we successfully employed CRISPRi for modifying cell morphology by repressing ftsZ, an essential gene required for cell division, in combination with targeted knock-outs to generate significantly enlarged filamentous or spherical cells respectively. The engineered cells sustained increased wax ester production metrics, demonstrating the potential of cell morphology engineering in the production of intracellular lipids.
Collapse
Affiliation(s)
- Jin Luo
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Elena Efimova
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Daniel Christoph Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ville Santala
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Suvi Santala
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| |
Collapse
|
8
|
Kim IJ, Bayer T, Terholsen H, Bornscheuer U. α-Dioxygenases (α-DOXs): Promising biocatalysts for the environmentally friendly production of aroma compounds. Chembiochem 2022; 23:e202100693. [PMID: 35107200 PMCID: PMC9305512 DOI: 10.1002/cbic.202100693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/02/2022] [Indexed: 11/14/2022]
Abstract
Fatty aldehydes (FALs) can be derived from fatty acids (FAs) and related compounds and are frequently used as flavors and fragrances. Although chemical methods have been conventionally used, their selective biotechnological production aiming at more efficient and eco‐friendly synthetic routes is in demand. α‐Dioxygenases (α‐DOXs) are heme‐dependent oxidative enzymes biologically involved in the initial step of plant FA α‐oxidation during which molecular oxygen is incorporated into the Cα‐position of a FA (Cn) to generate the intermediate FA hydroperoxide, which is subsequently converted into the shortened corresponding FAL (Cn‐1). α‐DOXs are promising biocatalysts for the flavor and fragrance industries, they do not require NAD(P)H as cofactors or redox partner proteins, and they have a broad substrate scope. Here, we highlight recent advances in the biocatalytic utilization of α‐DOXs with emphasis on newly discovered cyanobacterial α‐DOXs as well as analytical methods to measure α‐DOX activity in vitro and in vivo.
Collapse
Affiliation(s)
- In Jung Kim
- University of Greifswald: Universitat Greifswald, Biotechnology & Enzyme Catalysis, GERMANY
| | - Thomas Bayer
- University of Greifswald: Universitat Greifswald, Biotechnology & Enzyme Catalysis, GERMANY
| | - Henrik Terholsen
- Universitat Greifswald, Biotechnology & Enzyme Catalysis, GERMANY
| | - Uwe Bornscheuer
- Greifswald University, Dept. of Biotechnology & Enzyme Catalysis, Felix-Hausdorff-Str. 4, 17487, Greifswald, GERMANY
| |
Collapse
|
9
|
Kim IJ, Brack Y, Bayer T, Bornscheuer UT. Two novel cyanobacterial α-dioxygenases for the biosynthesis of fatty aldehydes. Appl Microbiol Biotechnol 2021; 106:197-210. [PMID: 34882252 PMCID: PMC8720084 DOI: 10.1007/s00253-021-11724-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 11/21/2022]
Abstract
α-Dioxygenases (α-DOXs) are known as plant enzymes involved in the α-oxidation of fatty acids through which fatty aldehydes, with a high commercial value as flavor and fragrance compounds, are synthesized as products. Currently, little is known about α-DOXs from non-plant organisms. The phylogenic analysis reported here identified a substantial number of α-DOX enzymes across various taxa. Here, we report the functional characterization and Escherichia coli whole-cell application of two novel α-DOXs identified from cyanobacteria: CalDOX from Calothrix parietina and LepDOX from Leptolyngbya sp. The catalytic behavior of the recombinantly expressed CalDOX and LepDOX revealed that they are heme-dependent like plant α-DOXs but exhibit activities toward medium carbon fatty acids ranging from C10 to C14 unlike plant α-DOXs. The in-depth molecular investigation of cyanobacterial α-DOXs and their application in an E. coli whole system employed in this study is useful not only for the understanding of the molecular function of α-DOXs, but also for their industrial utilization in fatty aldehyde biosynthesis. Key points • Two novel α-dioxygenases from Cyanobacteria are reported • Both enzymes prefer medium-chain fatty acids • Both enzymes are useful for fatty aldehyde biosynthesis
Collapse
Affiliation(s)
- In Jung Kim
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Yannik Brack
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Thomas Bayer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany.
| |
Collapse
|
10
|
Characterization of highly ferulate-tolerant Acinetobacter baylyi ADP1 isolates by a rapid reverse-engineering method. Appl Environ Microbiol 2021; 88:e0178021. [PMID: 34788063 DOI: 10.1128/aem.01780-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adaptive laboratory evolution (ALE) is a powerful approach for improving phenotypes of microbial hosts. Evolved strains typically contain numerous mutations that can be revealed by whole-genome sequencing. However, determining the contribution of specific mutations to new phenotypes is typically challenging and laborious. This task is complicated by factors such as the mutation type, the genomic context, and the interplay between different mutations. Here, a novel approach was developed to identify the significance of mutations in strains evolved from Acinetobacter baylyi ADP1. This method, termed Rapid Advantageous Mutation ScrEening and Selection (RAMSES), was used to analyze mutants that emerged from stepwise adaptation to, and consumption of, high levels of ferulate, a common lignin-derived aromatic compound. After whole-genome sequence analysis, RAMSES allowed rapid determination of effective mutations and seamless introduction of the beneficial mutations into the chromosomes of new strains with different genetic backgrounds. This simple approach to reverse-engineering exploits the natural competence and high recombination efficiency of ADP1. Mutated DNA, added directly to growing cells, replaces homologous chromosomal regions to generate transformants that will become enriched if there is selective benefit. Thus, advantageous mutations can be rapidly identified. Here, the growth advantage of transformants under selective pressure revealed key mutations in genes related to aromatic transport, including hcaE, hcaK, and vanK, and a gene, ACIAD0482, which is associated with lipopolysaccharide synthesis. This study provides insights into enhanced utilization of industrially relevant aromatic substrates and demonstrates the use of A. baylyi ADP1 as a convenient platform for strain development and evolution studies. Importance Microbial conversion of lignin-enriched streams is a promising approach for lignin valorization. However, the lignin-derived aromatic compounds are toxic to cells at relevant concentrations. Although adaptive laboratory evolution (ALE) is a powerful approach to develop more tolerant strains, it is typically laborious to identify the mechanisms underlying phenotypic improvement. We employed Acinetobacter baylyi ADP1, an aromatic compound degrading strain that may be useful for biotechnology. The natural competence and high recombination efficiency of this strain can be exploited for critical applications such as the breakdown of lignin and plastics, abundant polymers composed of aromatic subunits. The natural transformability of this bacterium enabled us to develop a novel approach for rapid screening of advantageous mutations from ALE-derived aromatic-tolerant ADP1-derived strains. We clarified the mechanisms and genetic targets for improved tolerance towards common lignin-derived aromatic compounds. This study facilitates metabolic engineering for lignin valorization.
Collapse
|
11
|
Jiang Y, Peng W, Li Z, You C, Zhao Y, Tang D, Wang B, Li S. Unexpected Reactions of α,β‐Unsaturated Fatty Acids Provide Insight into the Mechanisms of CYP152 Peroxygenases. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuanyuan Jiang
- State Key Laboratory of Microbial Technology Shandong University No. 72 Binhai Road Qingdao Shandong 266237 China
- Shandong Provincial Key Laboratory of Synthetic Biology CAS Key Laboratory of Biofuels Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences No. 189 Songling Road Qingdao Shandong 266101 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wei Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Zhong Li
- State Key Laboratory of Microbial Technology Shandong University No. 72 Binhai Road Qingdao Shandong 266237 China
- Shandong Provincial Key Laboratory of Synthetic Biology CAS Key Laboratory of Biofuels Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences No. 189 Songling Road Qingdao Shandong 266101 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Cai You
- State Key Laboratory of Microbial Technology Shandong University No. 72 Binhai Road Qingdao Shandong 266237 China
| | - Yue Zhao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University Wuhan 430071 China
| | - Dandan Tang
- State Key Laboratory of Microbial Technology Shandong University No. 72 Binhai Road Qingdao Shandong 266237 China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Shengying Li
- State Key Laboratory of Microbial Technology Shandong University No. 72 Binhai Road Qingdao Shandong 266237 China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao Shandong 266237 China
| |
Collapse
|
12
|
Jiang Y, Peng W, Li Z, You C, Zhao Y, Tang D, Wang B, Li S. Unexpected Reactions of α,β-Unsaturated Fatty Acids Provide Insight into the Mechanisms of CYP152 Peroxygenases. Angew Chem Int Ed Engl 2021; 60:24694-24701. [PMID: 34523786 DOI: 10.1002/anie.202111163] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/06/2021] [Indexed: 11/08/2022]
Abstract
CYP152 peroxygenases catalyze decarboxylation and hydroxylation of fatty acids using H2 O2 as cofactor. To understand the molecular basis for the chemo- and regioselectivity of these unique P450 enzymes, we analyze the activities of three CYP152 peroxygenases (OleTJE , P450SPα , P450BSβ ) towards cis- and trans-dodecenoic acids as substrate probes. The unexpected 6S-hydroxylation of the trans-isomer and 4R-hydroxylation of the cis-isomer by OleTJE , and molecular docking results suggest that the unprecedented selectivity is due to OleTJE 's preference of C2-C3 cis-configuration. In addition to the common epoxide products, undecanal is the unexpected major product of P450SPα and P450BSβ regardless of the cis/trans-configuration of substrates. The combined H2 18 O2 tracing experiments, MD simulations, and QM/MM calculations unravel an unusual mechanism for Compound I-mediated aldehyde formation in which the active site water derived from H2 O2 activation is involved in the generation of a four-membered ring lactone intermediate. These findings provide new insights into the unusual mechanisms of CYP152 peroxygenases.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China.,Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhong Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China.,Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cai You
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Yue Zhao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Dandan Tang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China
| |
Collapse
|
13
|
Adetunji AI, Olaniran AO. Production strategies and biotechnological relevance of microbial lipases: a review. Braz J Microbiol 2021; 52:1257-1269. [PMID: 33904151 PMCID: PMC8324693 DOI: 10.1007/s42770-021-00503-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/16/2021] [Indexed: 01/14/2023] Open
Abstract
Lipases are enzymes that catalyze the breakdown of lipids into long-chain fatty acids and glycerol in oil-water interface. In addition, they catalyze broad spectrum of bioconversion reactions including esterification, inter-esterification, among others in non-aqueous and micro-aqueous milieu. Lipases are universally produced from plants, animals, and microorganisms. However, lipases from microbial origin are mostly preferred owing to their lower production costs, ease of genetic manipulation etc. The secretion of these biocatalysts by microorganisms is influenced by nutritional and physicochemical parameters. Optimization of the bioprocess parameters enhanced lipase production. In addition, microbial lipases have gained intensified attention for a wide range of applications in food, detergent, and cosmetics industries as well as in environmental bioremediation. This review provides insights into strategies for production of microbial lipases for potential biotechnological applications.
Collapse
Affiliation(s)
- Adegoke Isiaka Adetunji
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville campus), Private Bag X54001, Durban, 4000, Republic of South Africa.
| | - Ademola Olufolahan Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville campus), Private Bag X54001, Durban, 4000, Republic of South Africa
| |
Collapse
|
14
|
LuxAB-Based Microbial Cell Factories for the Sensing, Manufacturing and Transformation of Industrial Aldehydes. Catalysts 2021. [DOI: 10.3390/catal11080953] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The application of genetically encoded biosensors enables the detection of small molecules in living cells and has facilitated the characterization of enzymes, their directed evolution and the engineering of (natural) metabolic pathways. In this work, the LuxAB biosensor system from Photorhabdus luminescens was implemented in Escherichia coli to monitor the enzymatic production of aldehydes from primary alcohols and carboxylic acid substrates. A simple high-throughput assay utilized the bacterial luciferase—previously reported to only accept aliphatic long-chain aldehydes—to detect structurally diverse aldehydes, including aromatic and monoterpene aldehydes. LuxAB was used to screen the substrate scopes of three prokaryotic oxidoreductases: an alcohol dehydrogenase (Pseudomonas putida), a choline oxidase variant (Arthrobacter chlorophenolicus) and a carboxylic acid reductase (Mycobacterium marinum). Consequently, high-value aldehydes such as cinnamaldehyde, citral and citronellal could be produced in vivo in up to 80% yield. Furthermore, the dual role of LuxAB as sensor and monooxygenase, emitting bioluminescence through the oxidation of aldehydes to the corresponding carboxylates, promises implementation in artificial enzyme cascades for the synthesis of carboxylic acids. These findings advance the bio-based detection, preparation and transformation of industrially important aldehydes in living cells.
Collapse
|
15
|
Yi D, Bayer T, Badenhorst CPS, Wu S, Doerr M, Höhne M, Bornscheuer UT. Recent trends in biocatalysis. Chem Soc Rev 2021; 50:8003-8049. [PMID: 34142684 PMCID: PMC8288269 DOI: 10.1039/d0cs01575j] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Indexed: 12/13/2022]
Abstract
Biocatalysis has undergone revolutionary progress in the past century. Benefited by the integration of multidisciplinary technologies, natural enzymatic reactions are constantly being explored. Protein engineering gives birth to robust biocatalysts that are widely used in industrial production. These research achievements have gradually constructed a network containing natural enzymatic synthesis pathways and artificially designed enzymatic cascades. Nowadays, the development of artificial intelligence, automation, and ultra-high-throughput technology provides infinite possibilities for the discovery of novel enzymes, enzymatic mechanisms and enzymatic cascades, and gradually complements the lack of remaining key steps in the pathway design of enzymatic total synthesis. Therefore, the research of biocatalysis is gradually moving towards the era of novel technology integration, intelligent manufacturing and enzymatic total synthesis.
Collapse
Affiliation(s)
- Dong Yi
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Thomas Bayer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Christoffel P. S. Badenhorst
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Shuke Wu
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Mark Doerr
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Matthias Höhne
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| |
Collapse
|
16
|
Production of Aldehydes by Biocatalysis. Int J Mol Sci 2021; 22:ijms22094949. [PMID: 34066641 PMCID: PMC8124467 DOI: 10.3390/ijms22094949] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
The production of aldehydes, highly reactive and toxic chemicals, brings specific challenges to biocatalytic processes. Absence of natural accumulation of aldehydes in microorganisms has led to a combination of in vitro and in vivo strategies for both, bulk and fine production. Advances in genetic and metabolic engineering and implementation of computational techniques led to the production of various enzymes with special requirements. Cofactor synthesis, post-translational modifications and structure engineering are applied to prepare active enzymes for one-step or cascade reactions. This review presents the highlights in biocatalytical production of aldehydes with the potential to shape future industrial applications.
Collapse
|
17
|
Acinetobacter baylyi ADP1-naturally competent for synthetic biology. Essays Biochem 2021; 65:309-318. [PMID: 33769448 DOI: 10.1042/ebc20200136] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 02/02/2023]
Abstract
Acinetobacter baylyi ADP1 is a non-pathogenic soil bacterium known for its metabolic diversity and high natural transformation and recombination efficiency. For these features, A. baylyi ADP1 has been long exploited in studying bacterial genetics and metabolism. The large pool of information generated in the fundamental studies has facilitated the development of a broad range of sophisticated and robust tools for the genome and metabolic engineering of ADP1. This mini-review outlines and describes the recent advances in ADP1 engineering and tool development, exploited in, for example, pathway and enzyme evolution, genome reduction and stabilization, and for the production of native and non-native products in both pure and rationally designed multispecies cultures. The rapidly expanding toolbox together with the unique features of A. baylyi ADP1 provide a strong base for a microbial cell factory excelling in synthetic biology applications where evolution meets rational engineering.
Collapse
|
18
|
Santala S, Santala V, Liu N, Stephanopoulos G. Partitioning metabolism between growth and product synthesis for coordinated production of wax esters in Acinetobacter baylyi ADP1. Biotechnol Bioeng 2021; 118:2283-2292. [PMID: 33666232 DOI: 10.1002/bit.27740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/17/2021] [Accepted: 02/27/2021] [Indexed: 11/11/2022]
Abstract
Microbial storage compounds, such as wax esters (WE), are potential high-value lipids for the production of specialty chemicals and medicines. Their synthesis, however, is strictly regulated and competes with cell growth, which leads to trade-offs between biomass and product formation. Here, we use metabolic engineering and synergistic substrate cofeeding to partition the metabolism of Acinetobacter baylyi ADP1 into two distinct modules, each dedicated to cell growth and WE biosynthesis, respectively. We first blocked the glyoxylate shunt and upregulated the WE synthesis pathway to direct the acetate substrate exclusively for WE synthesis, then we controlled the supply of gluconate so it could be used exclusively for cell growth and maintenance. We show that the two modules are functionally independent from each other, allowing efficient lipid accumulation while maintaining active cell growth. Our strategy resulted in 7.2- and 4.2-fold improvements in WE content and productivity, respectively, and the product titer was enhanced by 8.3-fold over the wild type strain. Notably, during a 24-h cultivation, a yield of 18% C-WE/C-total-substrates was achieved, being the highest reported for WE biosynthesis. This study provides a simple, yet powerful, means of controlling cellular operations and overcoming some of the fundamental challenges in microbial storage lipid production.
Collapse
Affiliation(s)
- Suvi Santala
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Ville Santala
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Nian Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
19
|
Abstract
Biological wax esters offer a sustainable, renewable and biodegradable alternative to many fossil fuel derived chemicals including plastics and paraffins. Many species of bacteria accumulate waxes with similar structure and properties to highly desirable animal and plant waxes such as Spermaceti and Jojoba oils, the use of which is limited by resource requirements, high cost and ethical concerns. While bacterial fermentations overcome these issues, a commercially viable bacterial wax production process would require high yields and renewable, affordable feedstock to make it economically competitive and environmentally beneficial. This review describes recent progress in wax ester generation in both wild type and genetically engineered bacteria, with a focus on comparing substrates and quantifying obtained waxes. The full breadth of wax accumulating species is discussed, with emphasis on species generating high yields and utilising renewable substrates. Key areas of the field that have, thus far, received limited attention are highlighted, such as waste stream valorisation, mixed microbial cultures and efficient wax extraction, as, until effectively addressed, these will slow progress in creating commercially viable wax production methods.
Collapse
|
20
|
Cheng Z, McCann S, Faraone N, Clarke JA, Hudson EA, Cloonan K, Hillier NK, Tahlan K. Production of Plant-Associated Volatiles by Select Model and Industrially Important Streptomyces spp. Microorganisms 2020; 8:microorganisms8111767. [PMID: 33187102 PMCID: PMC7697265 DOI: 10.3390/microorganisms8111767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 01/13/2023] Open
Abstract
The Streptomyces produce a great diversity of specialized metabolites, including highly volatile compounds with potential biological activities. Volatile organic compounds (VOCs) produced by nine Streptomyces spp., some of which are of industrial importance, were collected and identified using gas chromatography–mass spectrometry (GC-MS). Biosynthetic gene clusters (BGCs) present in the genomes of the respective Streptomyces spp. were also predicted to match them with the VOCs detected. Overall, 33 specific VOCs were identified, of which the production of 16 has not been previously reported in the Streptomyces. Among chemical classes, the most abundant VOCs were terpenes, which is consistent with predicted biosynthetic capabilities. In addition, 27 of the identified VOCs were plant-associated, demonstrating that some Streptomyces spp. can also produce such molecules. It is possible that some of the VOCs detected in the current study have roles in the interaction of Streptomyces with plants and other higher organisms, which might provide opportunities for their application in agriculture or industry.
Collapse
Affiliation(s)
- Zhenlong Cheng
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada; (Z.C.); (J.-A.C.)
| | - Sean McCann
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (E.A.H.); (K.C.)
| | - Nicoletta Faraone
- Department of Chemistry, Acadia University, Wolfville, NS B4P 2R6, Canada;
| | - Jody-Ann Clarke
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada; (Z.C.); (J.-A.C.)
| | - E. Abbie Hudson
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (E.A.H.); (K.C.)
| | - Kevin Cloonan
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (E.A.H.); (K.C.)
| | - N. Kirk Hillier
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (E.A.H.); (K.C.)
- Correspondence: (N.K.H.); (K.T.)
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada; (Z.C.); (J.-A.C.)
- Correspondence: (N.K.H.); (K.T.)
| |
Collapse
|
21
|
Foo JL, Rasouliha BH, Susanto AV, Leong SSJ, Chang MW. Engineering an Alcohol-Forming Fatty Acyl-CoA Reductase for Aldehyde and Hydrocarbon Biosynthesis in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2020; 8:585935. [PMID: 33123518 PMCID: PMC7573125 DOI: 10.3389/fbioe.2020.585935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/08/2020] [Indexed: 11/19/2022] Open
Abstract
Aldehydes are a class of highly versatile chemicals that can undergo a wide range of chemical reactions and are in high demand as starting materials for chemical manufacturing. Biologically, fatty aldehydes can be produced from fatty acyl-CoA by the action of fatty acyl-CoA reductases. The aldehydes produced can be further converted enzymatically to other valuable derivatives. Thus, metabolic engineering of microorganisms for biosynthesizing aldehydes and their derivatives could provide an economical and sustainable platform for key aldehyde precursor production and subsequent conversion to various value-added chemicals. Saccharomyces cerevisiae is an excellent host for this purpose because it is a robust organism that has been used extensively for industrial biochemical production. However, fatty acyl-CoA-dependent aldehyde-forming enzymes expressed in S. cerevisiae thus far have extremely low activities, hence limiting direct utilization of fatty acyl-CoA as substrate for aldehyde biosynthesis. Toward overcoming this challenge, we successfully engineered an alcohol-forming fatty acyl-CoA reductase for aldehyde production through rational design. We further improved aldehyde production through strain engineering by deleting competing pathways and increasing substrate availability. Subsequently, we demonstrated alkane and alkene production as one of the many possible applications of the aldehyde-producing strain. Overall, by protein engineering of a fatty acyl-CoA reductase to alter its activity and metabolic engineering of S. cerevisiae, we generated strains with the highest reported cytosolic aliphatic aldehyde and alkane/alkene production to date in S. cerevisiae from fatty acyl-CoA.
Collapse
Affiliation(s)
- Jee Loon Foo
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
| | - Bahareh Haji Rasouliha
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
| | - Adelia Vicanatalita Susanto
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
| | - Susanna Su Jan Leong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Singapore Institute of Technology, Singapore, Singapore
| | - Matthew Wook Chang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
| |
Collapse
|
22
|
Biggs BW, Bedore SR, Arvay E, Huang S, Subramanian H, McIntyre EA, Duscent-Maitland CV, Neidle EL, Tyo KEJ. Development of a genetic toolset for the highly engineerable and metabolically versatile Acinetobacter baylyi ADP1. Nucleic Acids Res 2020; 48:5169-5182. [PMID: 32246719 PMCID: PMC7229861 DOI: 10.1093/nar/gkaa167] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/20/2020] [Accepted: 03/04/2020] [Indexed: 01/10/2023] Open
Abstract
One primary objective of synthetic biology is to improve the sustainability of chemical manufacturing. Naturally occurring biological systems can utilize a variety of carbon sources, including waste streams that pose challenges to traditional chemical processing, such as lignin biomass, providing opportunity for remediation and valorization of these materials. Success, however, depends on identifying micro-organisms that are both metabolically versatile and engineerable. Identifying organisms with this combination of traits has been a historic hindrance. Here, we leverage the facile genetics of the metabolically versatile bacterium Acinetobacter baylyi ADP1 to create easy and rapid molecular cloning workflows, including a Cas9-based single-step marker-less and scar-less genomic integration method. In addition, we create a promoter library, ribosomal binding site (RBS) variants and test an unprecedented number of rationally integrated bacterial chromosomal protein expression sites and variants. At last, we demonstrate the utility of these tools by examining ADP1’s catabolic repression regulation, creating a strain with improved potential for lignin bioprocessing. Taken together, this work highlights ADP1 as an ideal host for a variety of sustainability and synthetic biology applications.
Collapse
Affiliation(s)
- Bradley W Biggs
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA.,Biotechnology Training Program, Northwestern University, Evanston, IL 60208, USA
| | - Stacy R Bedore
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Erika Arvay
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA.,Biotechnology Training Program, Northwestern University, Evanston, IL 60208, USA
| | - Shu Huang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Harshith Subramanian
- Master of Science in Biotechnology Program, Northwestern University, Evanston, IL 60208, USA
| | - Emily A McIntyre
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | | | - Ellen L Neidle
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Keith E J Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
23
|
Chandra P, Enespa, Singh R, Arora PK. Microbial lipases and their industrial applications: a comprehensive review. Microb Cell Fact 2020; 19:169. [PMID: 32847584 PMCID: PMC7449042 DOI: 10.1186/s12934-020-01428-8] [Citation(s) in RCA: 328] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Lipases are very versatile enzymes, and produced the attention of the several industrial processes. Lipase can be achieved from several sources, animal, vegetable, and microbiological. The uses of microbial lipase market is estimated to be USD 425.0 Million in 2018 and it is projected to reach USD 590.2 Million by 2023, growing at a CAGR of 6.8% from 2018. Microbial lipases (EC 3.1.1.3) catalyze the hydrolysis of long chain triglycerides. The microbial origins of lipase enzymes are logically dynamic and proficient also have an extensive range of industrial uses with the manufacturing of altered molecules. The unique lipase (triacylglycerol acyl hydrolase) enzymes catalyzed the hydrolysis, esterification and alcoholysis reactions. Immobilization has made the use of microbial lipases accomplish its best performance and hence suitable for several reactions and need to enhance aroma to the immobilization processes. Immobilized enzymes depend on the immobilization technique and the carrier type. The choice of the carrier concerns usually the biocompatibility, chemical and thermal stability, and insolubility under reaction conditions, capability of easy rejuvenation and reusability, as well as cost proficiency. Bacillus spp., Achromobacter spp., Alcaligenes spp., Arthrobacter spp., Pseudomonos spp., of bacteria and Penicillium spp., Fusarium spp., Aspergillus spp., of fungi are screened large scale for lipase production. Lipases as multipurpose biological catalyst has given a favorable vision in meeting the needs for several industries such as biodiesel, foods and drinks, leather, textile, detergents, pharmaceuticals and medicals. This review represents a discussion on microbial sources of lipases, immobilization methods increased productivity at market profitability and reduce logistical liability on the environment and user.
Collapse
Affiliation(s)
- Prem Chandra
- Food Microbiology & Toxicology, Department of Microbiology, School for Biomedical and Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh 226025 India
| | - Enespa
- Department of Plant Pathology, School for Agriculture, SMPDC, University of Lucknow, Lucknow, 226007 U.P. India
| | - Ranjan Singh
- Department of Environmental Science, School for Environmental Science, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, U.P. India
| | - Pankaj Kumar Arora
- Department of Microbiology, School for Biomedical and Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, U.P. India
| |
Collapse
|
24
|
Suárez GA, Dugan KR, Renda BA, Leonard SP, Gangavarapu LS, Barrick JE. Rapid and assured genetic engineering methods applied to Acinetobacter baylyi ADP1 genome streamlining. Nucleic Acids Res 2020; 48:4585-4600. [PMID: 32232367 PMCID: PMC7192602 DOI: 10.1093/nar/gkaa204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 03/15/2020] [Accepted: 03/18/2020] [Indexed: 01/10/2023] Open
Abstract
One goal of synthetic biology is to improve the efficiency and predictability of living cells by removing extraneous genes from their genomes. We demonstrate improved methods for engineering the genome of the metabolically versatile and naturally transformable bacterium Acinetobacter baylyi ADP1 and apply them to a genome streamlining project. In Golden Transformation, linear DNA fragments constructed by Golden Gate Assembly are directly added to cells to create targeted deletions, edits, or additions to the chromosome. We tested the dispensability of 55 regions of the ADP1 chromosome using Golden Transformation. The 18 successful multiple-gene deletions ranged in size from 21 to 183 kb and collectively accounted for 23.4% of its genome. The success of each multiple-gene deletion attempt could only be partially predicted on the basis of an existing collection of viable ADP1 single-gene deletion strains and a new transposon insertion sequencing (Tn-Seq) dataset that we generated. We further show that ADP1’s native CRISPR/Cas locus is active and can be retargeted using Golden Transformation. We reprogrammed it to create a CRISPR-Lock, which validates that a gene has been successfully removed from the chromosome and prevents it from being reacquired. These methods can be used together to implement combinatorial routes to further genome streamlining and for more rapid and assured metabolic engineering of this versatile chassis organism.
Collapse
Affiliation(s)
- Gabriel A Suárez
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kyle R Dugan
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Brian A Renda
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sean P Leonard
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Lakshmi Suryateja Gangavarapu
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
25
|
Luo J, Efimova E, Losoi P, Santala V, Santala S. Wax ester production in nitrogen-rich conditions by metabolically engineered Acinetobacter baylyi ADP1. Metab Eng Commun 2020; 10:e00128. [PMID: 32477866 PMCID: PMC7251950 DOI: 10.1016/j.mec.2020.e00128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 11/29/2022] Open
Abstract
Metabolic engineering can be used as a powerful tool to redirect cell resources towards product synthesis, also in conditions that are not optimal for the production. An example of synthesis strongly dependent on external conditions is the production of storage lipids, which typically requires a high carbon/nitrogen ratio. This requirement also limits the use of abundant nitrogen-rich materials, such as industrial protein by-products, as substrates for lipid production. Acinetobacter baylyi ADP1 is known for its ability to produce industrially interesting storage lipids, namely wax esters (WEs). Here, we engineered A. baylyi ADP1 by deleting the gene aceA encoding for isocitrate lyase and overexpressing fatty acyl-CoA reductase Acr1 in the wax ester production pathway to allow redirection of carbon towards WEs. This strategy led to 3-fold improvement in yield (0.075 g/g glucose) and 3.15-fold improvement in titer (1.82 g/L) and productivity (0.038 g/L/h) by a simple one-stage batch cultivation with glucose as carbon source. The engineered strain accumulated up to 27% WEs of cell dry weight. The titer and cellular WE content are the highest reported to date among microbes. We further showed that the engineering strategy alleviated the inherent requirement for high carbon/nitrogen ratio and demonstrated the production of wax esters using nitrogen-rich substrates including casamino acids, yeast extract, and baker's yeast hydrolysate, which support biomass production but not WE production in wild-type cells. The study demonstrates the power of metabolic engineering in overcoming natural limitations in the production of storage lipids.
Collapse
Affiliation(s)
- Jin Luo
- Faculty of Engineering and Natural Sciences, Hervanta Campus, Tampere University, Korkeakoulunkatu 8, Tampere, 33720, Finland
| | - Elena Efimova
- Faculty of Engineering and Natural Sciences, Hervanta Campus, Tampere University, Korkeakoulunkatu 8, Tampere, 33720, Finland
| | - Pauli Losoi
- Faculty of Engineering and Natural Sciences, Hervanta Campus, Tampere University, Korkeakoulunkatu 8, Tampere, 33720, Finland
| | - Ville Santala
- Faculty of Engineering and Natural Sciences, Hervanta Campus, Tampere University, Korkeakoulunkatu 8, Tampere, 33720, Finland
| | - Suvi Santala
- Faculty of Engineering and Natural Sciences, Hervanta Campus, Tampere University, Korkeakoulunkatu 8, Tampere, 33720, Finland
| |
Collapse
|
26
|
Jaroensuk J, Intasian P, Wattanasuepsin W, Akeratchatapan N, Kesornpun C, Kittipanukul N, Chaiyen P. Enzymatic reactions and pathway engineering for the production of renewable hydrocarbons. J Biotechnol 2020; 309:1-19. [DOI: 10.1016/j.jbiotec.2019.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/14/2019] [Accepted: 12/15/2019] [Indexed: 01/23/2023]
|
27
|
Mangayil R, Efimova E, Konttinen J, Santala V. Co-production of 1,3 propanediol and long-chain alkyl esters from crude glycerol. N Biotechnol 2019; 53:81-89. [DOI: 10.1016/j.nbt.2019.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 06/24/2019] [Accepted: 07/10/2019] [Indexed: 10/26/2022]
|
28
|
Salmela M, Lehtinen T, Efimova E, Santala S, Santala V. Alkane and wax ester production from lignin‐related aromatic compounds. Biotechnol Bioeng 2019; 116:1934-1945. [DOI: 10.1002/bit.27005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/29/2019] [Accepted: 04/18/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Milla Salmela
- Faculty of Engineering and Natural Sciences, Hervanta CampusTampere UniversityTampere Finland
| | - Tapio Lehtinen
- Faculty of Engineering and Natural Sciences, Hervanta CampusTampere UniversityTampere Finland
| | - Elena Efimova
- Faculty of Engineering and Natural Sciences, Hervanta CampusTampere UniversityTampere Finland
| | - Suvi Santala
- Faculty of Engineering and Natural Sciences, Hervanta CampusTampere UniversityTampere Finland
| | - Ville Santala
- Faculty of Engineering and Natural Sciences, Hervanta CampusTampere UniversityTampere Finland
| |
Collapse
|
29
|
Santala S, Efimova E, Santala V. Dynamic decoupling of biomass and wax ester biosynthesis in Acinetobacter baylyi by an autonomously regulated switch. Metab Eng Commun 2018; 7:e00078. [PMID: 30271720 PMCID: PMC6158957 DOI: 10.1016/j.mec.2018.e00078] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/13/2018] [Accepted: 09/16/2018] [Indexed: 01/09/2023] Open
Abstract
For improving the microbial production of fuels and chemicals, gene knock-outs and overexpression are routinely applied to intensify the carbon flow from substrate to product. However, their possibilities in dynamic control of the flux between the biomass and product synthesis are limited, whereas dynamic metabolic switches can be used for optimizing the distribution of carbon and resources. The production of single cell oils is especially challenging, as the synthesis is strictly regulated, competes directly with biomass, and requires defined conditions, such as nitrogen limitation. Here, we engineered a metabolic switch for redirecting carbon flow from biomass to wax ester production in Acinetobacter baylyi ADP1 using acetate as a carbon source. Isocitrate lyase, an essential enzyme for growth on acetate, was expressed under an arabinose inducible promoter. The autonomous downregulation of the expression is based on the gradual oxidation of the arabinose inducer by a glucose dehydrogenase gcd. The depletion of the inducer, occurring simultaneously to acetate consumption, switches the cells from a biomass mode to a lipid synthesis mode, enabling the efficient channelling of carbon to wax esters in a simple batch culture. In the engineered strain, the yield and titer of wax esters were improved by 3.8 and 3.1 folds, respectively, over the control strain. In addition, the engineered strain accumulated wax esters 19% of cell dry weight, being the highest reported among microbes. The study provides important insights into the dynamic engineering of the biomass-dependent synthesis pathways for the improved production of biocompounds from low-cost and sustainable substrates. Efficient conversion of acetate to storage lipids (wax ester) is demonstrated. AraC-pBAD promoter coupled with glucose dehydrogenase was used as a dynamic switch. The autonomous switch allowed dynamic shift from biomass to lipid synthesis mode. Wax ester yield and titer were improved by 3–4 folds over the wild type strain. The highest amount of wax esters produced in microbes, 19% of CDW, was achieved.
Collapse
Affiliation(s)
- Suvi Santala
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology, Korkeakoulunkatu 8, FI-33720, Tampere, Finland
| | - Elena Efimova
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology, Korkeakoulunkatu 8, FI-33720, Tampere, Finland
| | - Ville Santala
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology, Korkeakoulunkatu 8, FI-33720, Tampere, Finland
| |
Collapse
|
30
|
Lehtinen T, Virtanen H, Santala S, Santala V. Production of alkanes from CO 2 by engineered bacteria. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:228. [PMID: 30151056 PMCID: PMC6102805 DOI: 10.1186/s13068-018-1229-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Microbial biosynthesis of alkanes is considered a promising method for the sustainable production of drop-in fuels and chemicals. Carbon dioxide would be an ideal carbon source for these production systems, but efficient production of long carbon chains from CO2 is difficult to achieve in a single organism. A potential solution is to employ acetogenic bacteria for the reduction of CO2 to acetate, and engineer a second organism to convert the acetate into long-chain hydrocarbons. RESULTS In this study, we demonstrate alkane production from CO2 by a system combining the acetogen Acetobacterium woodii and a non-native alkane producer Acinetobacter baylyi ADP1 engineered for alkane production. Nine synthetic two-step alkane biosynthesis pathways consisting of different aldehyde- and alkane-producing enzymes were combinatorically constructed and expressed in A. baylyi. The aldehyde-producing enzymes studied were AAR from Synechococcus elongatus, Acr1 from A. baylyi, and a putative dehydrogenase from Nevskia ramosa. The alkane-producing enzymes were ADOs from S. elongatus and Nostoc punctiforme, and CER1 from Arabidopsis thaliana. The performance of the pathways was evaluated with a twin-layer biosensor, which allowed the monitoring of both the intermediate (fatty aldehyde), and end product (alkane) formation. The highest alkane production, as indicated by the biosensor, was achieved with a pathway consisting of AAR and ADO from S. elongatus. The performance of this pathway was further improved by balancing the relative expression levels of the enzymes to limit the accumulation of the intermediate fatty aldehyde. Finally, the acetogen A. woodii was used to produce acetate from CO2 and H2, and the acetate was used for alkane production by the engineered A. baylyi, thereby leading to the net production of long-chain alkanes from CO2. CONCLUSIONS A modular system for the production of drop-in liquid fuels from CO2 was demonstrated. Among the studied synthetic pathways, the combination of ADO and AAR from S. elongatus was found to be the most efficient in heterologous alkane production in A. baylyi. Furthermore, limiting the accumulation of the fatty aldehyde intermediate was found to be beneficial for the alkane production. Nevertheless, the alkane productivity of the system remained low, representing a major challenge for future research.
Collapse
Affiliation(s)
- Tapio Lehtinen
- Department of Chemistry and Bioengineering, Tampere University of Technology, Korkeakoulunkatu 8, 33720 Tampere, Finland
| | - Henri Virtanen
- Department of Chemistry and Bioengineering, Tampere University of Technology, Korkeakoulunkatu 8, 33720 Tampere, Finland
| | - Suvi Santala
- Department of Chemistry and Bioengineering, Tampere University of Technology, Korkeakoulunkatu 8, 33720 Tampere, Finland
| | - Ville Santala
- Department of Chemistry and Bioengineering, Tampere University of Technology, Korkeakoulunkatu 8, 33720 Tampere, Finland
| |
Collapse
|
31
|
Salmela M, Lehtinen T, Efimova E, Santala S, Mangayil R. Metabolic pairing of aerobic and anaerobic production in a one-pot batch cultivation. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:187. [PMID: 29988745 PMCID: PMC6029424 DOI: 10.1186/s13068-018-1186-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The versatility of microbial metabolic pathways enables their utilization in vast number of applications. However, the electron and carbon recovery rates, essentially constrained by limitations of cell energetics, are often too low in terms of process feasibility. Cocultivation of divergent microbial species in a single process broadens the metabolic landscape, and thus, the possibilities for more complete carbon and energy utilization. RESULTS In this study, we integrated the metabolisms of two bacteria, an obligate anaerobe Clostridium butyricum and an obligate aerobe Acinetobacter baylyi ADP1. In the process, a glucose-negative mutant of A. baylyi ADP1 first deoxidized the culture allowing C. butyricum to grow and produce hydrogen from glucose. In the next phase, ADP1 produced long chain alkyl esters (wax esters) utilizing the by-products of C. butyricum, namely acetate and butyrate. The coculture produced 24.5 ± 0.8 mmol/l hydrogen (1.7 ± 0.1 mol/mol glucose) and 28 mg/l wax esters (10.8 mg/g glucose). CONCLUSIONS The cocultivation of strictly anaerobic and aerobic bacteria allowed the production of both hydrogen gas and long-chain alkyl esters in a simple one-pot batch process. The study demonstrates the potential of 'metabolic pairing' using designed microbial consortia for more optimal electron and carbon recovery.
Collapse
Affiliation(s)
- Milla Salmela
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology, Korkeakoulunkatu 8, Tampere, Finland
| | - Tapio Lehtinen
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology, Korkeakoulunkatu 8, Tampere, Finland
| | - Elena Efimova
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology, Korkeakoulunkatu 8, Tampere, Finland
| | - Suvi Santala
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology, Korkeakoulunkatu 8, Tampere, Finland
| | - Rahul Mangayil
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology, Korkeakoulunkatu 8, Tampere, Finland
| |
Collapse
|