1
|
Mori K, Fukui K, Amatsu R, Ishikawa S, Verrone V, Wipat A, Meijer WJJ, Yoshida KI. A novel method for transforming Geobacillus kaustophilus with a chromosomal segment of Bacillus subtilis transferred via pLS20-dependent conjugation. Microb Cell Fact 2022; 21:34. [PMID: 35260160 PMCID: PMC8903633 DOI: 10.1186/s12934-022-01759-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/19/2022] [Indexed: 12/05/2022] Open
Abstract
Background Geobacillus kaustophilus is a thermophilic Gram-positive bacterium. Methods for its transformation are still under development. Earlier studies have demonstrated that pLS20catΔoriT mobilized the resident mobile plasmids from Bacillus subtilis to G. kaustophilus and transferred long segments of chromosome from one cell to another between B. subtilis. Results In this study, we applied mobilization of the B. subtilis chromosome mediated by pLS20catΔoriT to transform G. kaustophilus. We constructed a gene cassette to be integrated into G. kaustophilus and designed it within the B. subtilis chromosome. The pLS20catΔoriT-mediated conjugation successfully transferred the gene cassette from the B. subtilis chromosome into the G. kaustophilus allowing for the desired genetic transformation. Conclusions This transformation approach described here will provide a new tool to facilitate the flexible genetic manipulation of G. kaustophilus. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01759-8.
Collapse
Affiliation(s)
- Kotaro Mori
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 5801, Japan
| | - Kaho Fukui
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 5801, Japan
| | - Ryotaro Amatsu
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 5801, Japan
| | - Shu Ishikawa
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 5801, Japan
| | - Valeria Verrone
- School of Computing, Newcastle University, 1 Science Square, Science Central, Newcastle upon Tyne, NE4 5TG, UK
| | - Anil Wipat
- School of Computing, Newcastle University, 1 Science Square, Science Central, Newcastle upon Tyne, NE4 5TG, UK
| | - Wilfried J J Meijer
- Centro de Biología Molecular 'Severo Ochoa', CSIC-UAM Universidad Autónoma Madrid, Canto Blanco, 28049, Madrid, Spain
| | - Ken-Ichi Yoshida
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 5801, Japan.
| |
Collapse
|
2
|
Yoshida KI, Shirae Y, Nishimura R, Fukui K, Ishikawa S. Identification of a repressor for the two iol operons required for inositol catabolism in Geobacillus kaustophilus. MICROBIOLOGY-SGM 2020; 167. [PMID: 33320079 DOI: 10.1099/mic.0.001008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Geobacillus kaustophilus HTA426, a thermophilic Gram-positive bacterium, feeds on inositol as its sole carbon source, and an iol gene cluster required for inositol catabolism has been postulated with reference to the iol genes in Bacillus subtilis. The iol gene cluster of G. kaustophilus comprises two tandem operons induced in the presence of inositol; however, the mechanism underlying this induction remains unclear. B. subtilis iolQ is known to be involved in the regulation of iolX encoding scyllo-inositol dehydrogenase, and its homologue in HTA426 was found two genes upstream of the first gene (gk1899) of the iol gene cluster and was termed iolQ in G. kaustophilus. When iolQ was inactivated in G. kaustophilus, not only cellular myo-inositol dehydrogenase activity due to gk1899 expression but also the transcription of the two iol operons became constitutive. IolQ was produced and purified as a C-terminal histidine (His)-tagged fusion protein in Escherichia coli and subjected to an in vitro gel electrophoresis mobility shift assay to examine its DNA-binding property. It was observed that IolQ bound to the DNA fragments containing each of the two iol promoter regions and that DNA binding was antagonized by myo-inositol. Moreover, DNase I footprinting analyses identified two tandem binding sites of IolQ within each of the iol promoter regions. By comparing the sequences of the binding sites, a consensus sequence for IolQ binding was deduced to form a palindrome of 5'-RGWAAGCGCTTSCY-3' (where R=A or G, W=A or T, S=G or C, and Y=C or T). IolQ functions as a transcriptional repressor regulating the induction of the two iol operons responding to myo-inositol.
Collapse
Affiliation(s)
- Ken-Ichi Yoshida
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657 8501, Japan
| | - Yusuke Shirae
- Department of Agrobioscience, Kobe University, 1-1 Rokkodai, Nada, Kobe 657 8501, Japan
| | - Ryo Nishimura
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657 8501, Japan
| | - Kaho Fukui
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657 8501, Japan
| | - Shu Ishikawa
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657 8501, Japan
| |
Collapse
|