1
|
Kutscha R, Uhlir D, Pflügl S. Improving sustainable isopropanol production in engineered Escherichia coli W via oxygen limitation. Microb Cell Fact 2025; 24:94. [PMID: 40287719 PMCID: PMC12032697 DOI: 10.1186/s12934-025-02720-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/13/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Due to ecological concerns, alternative supply lines for fuel and bulk chemicals such as isopropanol are increasingly pursued. By implementing the formation pathways from natural producers like Clostridium beijerinckii and Clostridium aurantibutyricum, isopropanol can be produced in Escherichia coli. However, developing an industrially and economically feasible microbial production process requires a robust and efficient process strategy. Therefore, this study explores microaerobic conditions in combination with lactose and sour whey as sustainable carbon source as a basis for large-scale microbial isopropanol production. RESULTS Different gas-liquid mass transfer regimes (affected by variations of the stirrer speed and ingas oxygen concentration) allowed the implementation of different microaerobic conditions characterized by their specific oxygen uptake rate (qO2) in cultivations with an isopropanol producing E. coli W strain on lactose. Under microaerobic conditions, the specific isopropanol production rate (qp, ipa) exhibited a direct correlation with qO2. Moreover, isopropanol production showed a pseudo growth-coupled behavior. Monitoring of the formation rates of various by-products such as acetone, lactate, acetate, pyruvate, formate and succinate allowed to identify a qO2 of 9.6 mmol g- 1 h- 1 in only slightly microaerobic cultivations as the best conditions for microbial isopropanol production. Additionally, the data suggests that a carbon bottleneck exists at the pyruvate node and the availability of the redox factor NADPH is crucial to shift the product balance from acetone to isopropanol. Finally, confirmation runs prove the effectiveness of the microaerobic production approach by yielding 8.2 g L- 1 (135.8 ± 13.3 mmol L- 1) and 20.6 g L- 1 (342.9 ± 0.4 mmol L- 1) isopropanol on lactose and whey, respectively, reaching a volumetric isopropanol formation rate of up to 2.44 g L- 1 h- 1 (40.6 mmol L- 1 h- 1). CONCLUSIONS This study identifies slightly microaerobic conditions (qO2 ~ 10 mmol g- 1 h- 1) as the currently best conditions for microbial isopropanol production on lactose and whey in E. coli W. In the future, optimizing the carbon flux around the pyruvate node, ensuring sufficient NADPH supply, and establishing a feedback control loop to control process variables affecting oxygen transfer to the culture, could make microbial isopropanol production feasible at an industrial scale.
Collapse
Affiliation(s)
- Regina Kutscha
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, Vienna, 1060, Austria
| | - Dominic Uhlir
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, Vienna, 1060, Austria
| | - Stefan Pflügl
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, Vienna, 1060, Austria.
| |
Collapse
|
2
|
Ricci L, Cen X, Zu Y, Antonicelli G, Chen Z, Fino D, Pirri FC, Stephanopoulos G, Woolston BM, Re A. Metabolic Engineering of E. coli for Enhanced Diols Production from Acetate. ACS Synth Biol 2025; 14:1204-1219. [PMID: 40103233 PMCID: PMC12012870 DOI: 10.1021/acssynbio.4c00839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025]
Abstract
Effective employment of renewable carbon sources is highly demanded to develop sustainable biobased manufacturing. Here, we developed Escherichia coli strains to produce 2,3-butanediol and acetoin (collectively referred to as diols) using acetate as the sole carbon source by stepwise metabolic engineering. When tested in fed-batch experiments, the strain overexpressing the entire acetate utilization pathway was found to consume acetate at a 15% faster rate (0.78 ± 0.05 g/g/h) and to produce a 35% higher diol titer (1.16 ± 0.01 g/L) than the baseline diols-producing strain. Moreover, singularly overexpressing the genes encoding alternative acetate uptake pathways as well as alternative isoforms of genes in the malate-to-pyruvate pathway unveiled that leveraging ackA-pta and maeA is more effective in enhancing acetate consumption and diols production, compared to acs and maeB. Finally, the increased substrate consumption rate and diol production obtained in flask-based experiments were confirmed in bench-scale bioreactors operated in fed-batch mode. Consequently, the highest titer of 1.56 g/L achieved in this configuration increased by over 30% compared to the only other similar effort carried out so far.
Collapse
Affiliation(s)
- Luca Ricci
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02142, United States
- Centre
for Sustainable Future Technologies, Fondazione
Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
- RINA
Consulting S.p.A., Energy Innovation Strategic
Centre, Via Antonio Cecchi,
6, 16129 Genoa, Italy
| | - Xuecong Cen
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02142, United States
- Department
of Chemical Engineering, Key Laboratory of Industrial Biocatalysis
(Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yuexuan Zu
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02142, United States
| | - Giacomo Antonicelli
- Centre
for Sustainable Future Technologies, Fondazione
Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
- Department
of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Zhen Chen
- Department
of Chemical Engineering, Key Laboratory of Industrial Biocatalysis
(Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Debora Fino
- Centre
for Sustainable Future Technologies, Fondazione
Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Fabrizio C. Pirri
- Centre
for Sustainable Future Technologies, Fondazione
Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Gregory Stephanopoulos
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02142, United States
| | - Benjamin M. Woolston
- Department
of Chemical Engineering, Northeastern University, 360 Huntington Avenue, 223 Cullinane, Boston, Massachusetts 02115, United States
| | - Angela Re
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
3
|
Tong CY, Tomita H, Miyazaki K, Derek CJC, Honda K. KEIO knockout collection reveals metabolomic crosstalk in Chlorella spp.-Escherichia coli co-cultures. JOURNAL OF PHYCOLOGY 2025. [PMID: 40074247 DOI: 10.1111/jpy.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/14/2024] [Accepted: 01/28/2025] [Indexed: 03/14/2025]
Abstract
The interdependence between microalgae and bacteria has sparked scientific interest over years, primarily driven by the practical applications of microalgal-bacteria consortia in wastewater treatment and algal biofuel production. Although adequate studies have focused on the broad interactions and general behavior between the two entities, there remains a scarcity of study on the metabolic role of symbiotic bacteria in promoting microalgal growth. Here, we use the KEIO Knockout Collection, an Escherichia coli gene knockout mutant library, to systematically screen for genes involved in the interdependence of Chlorella sorokiniana and E. coli. By co-cultivating C. sorokiniana and E. coli knockout mutants in 96-well microplates (200 μL medium per well) under white light at 25°C, 31 potential algal growth-promoting and 56 growth-inhibiting genes out of 3985 genes were identified that enhanced (≥1.25-fold) and diminished (≤0.8-fold) the production of algal chlorophyll-a content, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) mapping of these growth-regulating genes suggested a metabolic symbiosis involving bacteria-derived cobalamin (cobU, cobC), biotin (bioB, bioF, bioC, bioD, fabF, fabH), riboflavin (fbp, guaB, gnd, guaA, zwf, purA), and 2,3-butanediol (fumB, adhE, mdh, frdB, pta, sdhC). The effects of these metabolites were further validated by supplementing the agents into the axenic algal cultures; Dose-dependent trends were observed for each metabolite, with a maximum four-fold increase in algal biomass productivity over the control. The specific growth rate of algae was increased by ≥1.27-fold and doubling time was shortened by ≥22.5%. The present results, obtained through genome-wide analyses of interdependence between microalgae and bacteria, reveals multiple interactions between organisms via metabolites.
Collapse
Affiliation(s)
- Cheah Yi Tong
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Penang, Malaysia
- International Center for Biotechnology, Osaka University, Osaka, Japan
| | - Hiroya Tomita
- International Center for Biotechnology, Osaka University, Osaka, Japan
| | - Kentaro Miyazaki
- International Center for Biotechnology, Osaka University, Osaka, Japan
| | - Chan Juinn Chieh Derek
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Penang, Malaysia
| | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, Osaka, Japan
| |
Collapse
|
4
|
Gotsmy M, Erian A, Marx H, Pflügl S, Zanghellini J. Predictive dynamic control accurately maps the design space for 2,3-butanediol production. Comput Struct Biotechnol J 2024; 23:3850-3858. [PMID: 39534591 PMCID: PMC11554925 DOI: 10.1016/j.csbj.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
2,3-Butanediol is a valuable raw material for many industries. Compared to its classical production from petroleum, novel fermentation-based manufacturing is an ecologically superior alternative. To be also economically feasible, the production bioprocesses need to be well optimized. Here, we adapted and applied a novel process optimization algorithm, dynamic control flux-balance analysis (dcFBA), for 2,3-butanediol production in E. coli. First, we performed two-stage fed-batch process simulations with varying process lengths. There, we found that the solution space can be separated into a proportionality and a trade-off region. With the information of the simulations we were able to design close-to-optimal production processes for maximizing titer and productivity, respectively. Experimental validations resulted in a titer of Image 1 and a productivity of Image 2. Subsequently, we optimized a continuous two-reactor process setup for 2,3-butanediol productivity. We found that in this mode, it is possible to increase the productivity more than threefold with minor impact on the titer and yield. Biotechnological process optimization is cumbersome, therefore, many processes are run in suboptimal conditions. We are confident that the method presented here, will help to make many biotechnological productions economically feasible in the future.
Collapse
Affiliation(s)
- Mathias Gotsmy
- University of Vienna, Vienna, Austria
- Austrian Centre of Industrial Biotechnology, Graz, Austria
| | | | | | | | | |
Collapse
|
5
|
Hädrich M, Schulze C, Hoff J, Blombach B. Vibrio natriegens: Application of a Fast-Growing Halophilic Bacterium. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024. [PMID: 39527262 DOI: 10.1007/10_2024_271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The fast growth accompanied with high substrate consumption rates and a versatile metabolism paved the way to exploit Vibrio natriegens as unconventional host for biotechnological applications. Meanwhile, a wealth of knowledge on the physiology, the metabolism, and the regulation in this halophilic marine bacterium has been gathered. Sophisticated genetic engineering tools and metabolic models are available and have been applied to engineer production strains and first chassis variants of V. natriegens. In this review, we update the current knowledge on the physiology and the progress in the development of synthetic biology tools and provide an overview of recent advances in metabolic engineering of this promising host. We further discuss future challenges to enhance the application range of V. natriegens.
Collapse
Affiliation(s)
- Maurice Hädrich
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany
| | - Clarissa Schulze
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| | - Josef Hoff
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany
- Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Garching, Germany
| | - Bastian Blombach
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany.
- SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany.
- Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Garching, Germany.
| |
Collapse
|
6
|
Schulz-Mirbach H, Krüsemann JL, Andreadaki T, Nerlich JN, Mavrothalassiti E, Boecker S, Schneider P, Weresow M, Abdelwahab O, Paczia N, Dronsella B, Erb TJ, Bar-Even A, Klamt S, Lindner SN. Engineering new-to-nature biochemical conversions by combining fermentative metabolism with respiratory modules. Nat Commun 2024; 15:6725. [PMID: 39112480 PMCID: PMC11306353 DOI: 10.1038/s41467-024-51029-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 07/28/2024] [Indexed: 08/10/2024] Open
Abstract
Anaerobic microbial fermentations provide high product yields and are a cornerstone of industrial bio-based processes. However, the need for redox balancing limits the array of fermentable substrate-product combinations. To overcome this limitation, here we design an aerobic fermentative metabolism that allows the introduction of selected respiratory modules. These can use oxygen to re-balance otherwise unbalanced fermentations, hence achieving controlled respiro-fermentative growth. Following this design, we engineer and characterize an obligate fermentative Escherichia coli strain that aerobically ferments glucose to stoichiometric amounts of lactate. We then re-integrate the quinone-dependent glycerol 3-phosphate dehydrogenase and demonstrate glycerol fermentation to lactate while selectively transferring the surplus of electrons to the respiratory chain. To showcase the potential of this fermentation mode, we direct fermentative flux from glycerol towards isobutanol production. In summary, our design permits using oxygen to selectively re-balance fermentations. This concept is an advance freeing highly efficient microbial fermentation from the limitations imposed by traditional redox balancing.
Collapse
Affiliation(s)
- Helena Schulz-Mirbach
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Jan Lukas Krüsemann
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Department of Biochemistry, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Charitéplatz 1, 10117, Berlin, Germany
| | - Theofania Andreadaki
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Jana Natalie Nerlich
- Department of Biochemistry, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Charitéplatz 1, 10117, Berlin, Germany
| | - Eleni Mavrothalassiti
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Simon Boecker
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
- Berliner Hochschule für Technik (BHT), Seestr. 64, 13347, Berlin, Germany
| | - Philipp Schneider
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Moritz Weresow
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Omar Abdelwahab
- Department of Biochemistry, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Charitéplatz 1, 10117, Berlin, Germany
| | - Nicole Paczia
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Beau Dronsella
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Tobias J Erb
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Straße 14, 35043, Marburg, Germany
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Steffen Klamt
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Steffen N Lindner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
- Department of Biochemistry, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
7
|
Kutscha R, Tomin T, Birner-Gruenberger R, Bekiaris PS, Klamt S, Pflügl S. Efficiency of acetate-based isopropanol synthesis in Escherichia coli W is controlled by ATP demand. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:110. [PMID: 39103876 DOI: 10.1186/s13068-024-02534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/18/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Due to increasing ecological concerns, microbial production of biochemicals from sustainable carbon sources like acetate is rapidly gaining importance. However, to successfully establish large-scale production scenarios, a solid understanding of metabolic driving forces is required to inform bioprocess design. To generate such knowledge, we constructed isopropanol-producing Escherichia coli W strains. RESULTS Based on strain screening and metabolic considerations, a 2-stage process was designed, incorporating a growth phase followed by a nitrogen-starvation phase. This process design yielded the highest isopropanol titers on acetate to date (13.3 g L-1). Additionally, we performed shotgun and acetylated proteomics, and identified several stress conditions in the bioreactor scenarios, such as acid stress and impaired sulfur uptake. Metabolic modeling allowed for an in-depth characterization of intracellular flux distributions, uncovering cellular demand for ATP and acetyl-CoA as limiting factors for routing carbon toward the isopropanol pathway. Moreover, we asserted the importance of a balance between fluxes of the NADPH-providing isocitrate dehydrogenase (ICDH) and the product pathway. CONCLUSIONS Using the newly gained system-level understanding for isopropanol production from acetate, we assessed possible engineering approaches and propose process designs to maximize production. Collectively, our work contributes to the establishment and optimization of acetate-based bioproduction systems.
Collapse
Affiliation(s)
- Regina Kutscha
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Tamara Tomin
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, Vienna, Austria
| | - Ruth Birner-Gruenberger
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, Vienna, Austria
| | - Pavlos Stephanos Bekiaris
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
| | - Steffen Klamt
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
| | - Stefan Pflügl
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
| |
Collapse
|
8
|
Rajpurohit H, Eiteman MA. Citrate synthase variants improve yield of acetyl-CoA derived 3-hydroxybutyrate in Escherichia coli. Microb Cell Fact 2024; 23:173. [PMID: 38867236 PMCID: PMC11167817 DOI: 10.1186/s12934-024-02444-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND The microbial chiral product (R)-3-hydroxybutyrate (3-HB) is a gateway to several industrial and medical compounds. Acetyl-CoA is the key precursor for 3-HB, and several native pathways compete with 3-HB production. The principal competing pathway in wild-type Escherichia coli for acetyl-CoA is mediated by citrate synthase (coded by gltA), which directs over 60% of the acetyl-CoA into the tricarboxylic acid cycle. Eliminating citrate synthase activity (deletion of gltA) prevents growth on glucose as the sole carbon source. In this study, an alternative approach is used to generate an increased yield of 3-HB: citrate synthase activity is reduced but not eliminated by targeted substitutions in the chromosomally expressed enzyme. RESULTS Five E. coli GltA variants were examined for 3-HB production via heterologous overexpression of a thiolase (phaA) and NADPH-dependent acetoacetyl-CoA reductase (phaB) from Cupriavidus necator. In shake flask studies, four variants showed nearly 5-fold greater 3-HB yield compared to the wild-type, although pyruvate accumulated. Overexpression of either native thioesterases TesB or YciA eliminated pyruvate formation, but diverted acetyl-CoA towards acetate formation. Overexpression of pantothenate kinase similarly decreased pyruvate formation but did not improve 3-HB yield. Controlled batch studies at the 1.25 L scale demonstrated that the GltA[A267T] variant produced the greatest 3-HB titer of 4.9 g/L with a yield of 0.17 g/g. In a phosphate-starved repeated batch process, E. coli ldhA poxB pta-ackA gltA::gltA[A267T] generated 15.9 g/L 3-HB (effective concentration of 21.3 g/L with dilution) with yield of 0.16 g/g from glucose as the sole carbon source. CONCLUSIONS This study demonstrates that GltA variants offer a means to affect the generation of acetyl-CoA derived products. This approach should benefit a wide range of acetyl-CoA derived biochemical products in E. coli and other microbes. Enhancing substrate affinity of the introduced pathway genes like thiolase towards acetyl-CoA will likely further increase the flux towards 3-HB while reducing pyruvate and acetate accumulation.
Collapse
Affiliation(s)
| | - Mark A Eiteman
- School of Chemical, Materials and Biomedical Engineering, Athens, GA, USA.
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
9
|
Gonzales JN, Treece TR, Mayfield SP, Simkovsky R, Atsumi S. Utilization of lignocellulosic hydrolysates for photomixotrophic chemical production in Synechococcus elongatus PCC 7942. Commun Biol 2023; 6:1022. [PMID: 37813969 PMCID: PMC10562401 DOI: 10.1038/s42003-023-05394-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023] Open
Abstract
To meet the need for environmentally friendly commodity chemicals, feedstocks for biological chemical production must be diversified. Lignocellulosic biomass are an carbon source with the potential for effective use in a large scale and cost-effective production systems. Although the use of lignocellulosic biomass lysates for heterotrophic chemical production has been advancing, there are challenges to overcome. Here we aim to investigate the obligate photoautotroph cyanobacterium Synechococcus elongatus PCC 7942 as a chassis organism for lignocellulosic chemical production. When modified to import monosaccharides, this cyanobacterium is an excellent candidate for lysates-based chemical production as it grows well at high lysate concentrations and can fix CO2 to enhance carbon efficiency. This study is an important step forward in enabling the simultaneous use of two sugars as well as lignocellulosic lysate. Incremental genetic modifications enable catabolism of both sugars concurrently without experiencing carbon catabolite repression. Production of 2,3-butanediol is demonstrated to characterize chemical production from the sugars in lignocellulosic hydrolysates. The engineered strain achieves a titer of 13.5 g L-1 of 2,3-butanediol over 12 days under shake-flask conditions. This study can be used as a foundation for industrial scale production of commodity chemicals from a combination of sunlight, CO2, and lignocellulosic sugars.
Collapse
Affiliation(s)
- Jake N Gonzales
- Plant Biology Graduate Group, University of California, Davis, Davis, CA, 95616, USA
| | - Tanner R Treece
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | - Stephen P Mayfield
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- California Center for Algae Biotechnology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ryan Simkovsky
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- California Center for Algae Biotechnology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Shota Atsumi
- Plant Biology Graduate Group, University of California, Davis, Davis, CA, 95616, USA.
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
10
|
Boecker S, Schulze P, Klamt S. Growth-coupled anaerobic production of isobutanol from glucose in minimal medium with Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:148. [PMID: 37789464 PMCID: PMC10548627 DOI: 10.1186/s13068-023-02395-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND The microbial production of isobutanol holds promise to become a sustainable alternative to fossil-based synthesis routes for this important chemical. Escherichia coli has been considered as one production host, however, due to redox imbalance, growth-coupled anaerobic production of isobutanol from glucose in E. coli is only possible if complex media additives or small amounts of oxygen are provided. These strategies have a negative impact on product yield, productivity, reproducibility, and production costs. RESULTS In this study, we propose a strategy based on acetate as co-substrate for resolving the redox imbalance. We constructed the E. coli background strain SB001 (ΔldhA ΔfrdA ΔpflB) with blocked pathways from glucose to alternative fermentation products but with an enabled pathway for acetate uptake and subsequent conversion to ethanol via acetyl-CoA. This strain, if equipped with the isobutanol production plasmid pIBA4, showed robust exponential growth (µ = 0.05 h-1) under anaerobic conditions in minimal glucose medium supplemented with small amounts of acetate. In small-scale batch cultivations, the strain reached a glucose uptake rate of 4.8 mmol gDW-1 h-1, a titer of 74 mM and 89% of the theoretical maximal isobutanol/glucose yield, while secreting only small amounts of ethanol synthesized from acetate. Furthermore, we show that the strain keeps a high metabolic activity also in a pulsed fed-batch bioreactor cultivation, even if cell growth is impaired by the accumulation of isobutanol in the medium. CONCLUSIONS This study showcases the beneficial utilization of acetate as a co-substrate and redox sink to facilitate growth-coupled production of isobutanol under anaerobic conditions. This approach holds potential for other applications with different production hosts and/or substrate-product combinations.
Collapse
Affiliation(s)
- Simon Boecker
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
- University of Applied Sciences Berlin, Seestr. 64, 13347, Berlin, Germany
| | - Peter Schulze
- Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Steffen Klamt
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany.
| |
Collapse
|
11
|
Carranza-Saavedra D, Torres-Bacete J, Blázquez B, Sánchez Henao CP, Zapata Montoya JE, Nogales J. System metabolic engineering of Escherichia coli W for the production of 2-ketoisovalerate using unconventional feedstock. Front Bioeng Biotechnol 2023; 11:1176445. [PMID: 37152640 PMCID: PMC10158823 DOI: 10.3389/fbioe.2023.1176445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
Replacing traditional substrates in industrial bioprocesses to advance the sustainable production of chemicals is an urgent need in the context of the circular economy. However, since the limited degradability of non-conventional carbon sources often returns lower yields, effective exploitation of such substrates requires a multi-layer optimization which includes not only the provision of a suitable feedstock but the use of highly robust and metabolically versatile microbial biocatalysts. We tackled this challenge by means of systems metabolic engineering and validated Escherichia coli W as a promising cell factory for the production of the key building block chemical 2-ketoisovalerate (2-KIV) using whey as carbon source, a widely available and low-cost agro-industrial waste. First, we assessed the growth performance of Escherichia coli W on mono and disaccharides and demonstrated that using whey as carbon source enhances it significantly. Second, we searched the available literature and used metabolic modeling approaches to scrutinize the metabolic space of E. coli and explore its potential for overproduction of 2-KIV identifying as basic strategies the block of pyruvate depletion and the modulation of NAD/NADP ratio. We then used our model predictions to construct a suitable microbial chassis capable of overproducing 2-KIV with minimal genetic perturbations, i.e., deleting the pyruvate dehydrogenase and malate dehydrogenase. Finally, we used modular cloning to construct a synthetic 2-KIV pathway that was not sensitive to negative feedback, which effectively resulted in a rerouting of pyruvate towards 2-KIV. The resulting strain shows titers of up to 3.22 ± 0.07 g/L of 2-KIV and 1.40 ± 0.04 g/L of L-valine in 24 h using whey in batch cultures. Additionally, we obtained yields of up to 0.81 g 2-KIV/g substrate. The optimal microbial chassis we present here has minimal genetic modifications and is free of nutritional autotrophies to deliver high 2-KIV production rates using whey as a non-conventional substrate.
Collapse
Affiliation(s)
- Darwin Carranza-Saavedra
- Faculty of Pharmaceutical and Food Sciences, Nutrition and Food Technology Group, University of Antioquia, Medellín, Colombia
- Department of Systems Biology, National Centre for Biotechnology (CSIC), Systems Biotechnology Group, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy‐Spanish National Research Council (SusPlast‐CSIC), Madrid, Spain
| | - Jesús Torres-Bacete
- Department of Systems Biology, National Centre for Biotechnology (CSIC), Systems Biotechnology Group, Madrid, Spain
| | - Blas Blázquez
- Department of Systems Biology, National Centre for Biotechnology (CSIC), Systems Biotechnology Group, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy‐Spanish National Research Council (SusPlast‐CSIC), Madrid, Spain
| | - Claudia Patricia Sánchez Henao
- Faculty of Pharmaceutical and Food Sciences, Nutrition and Food Technology Group, University of Antioquia, Medellín, Colombia
| | - José Edgar Zapata Montoya
- Faculty of Pharmaceutical and Food Sciences, Nutrition and Food Technology Group, University of Antioquia, Medellín, Colombia
| | - Juan Nogales
- Department of Systems Biology, National Centre for Biotechnology (CSIC), Systems Biotechnology Group, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy‐Spanish National Research Council (SusPlast‐CSIC), Madrid, Spain
| |
Collapse
|
12
|
Moxley WC, Brown RE, Eiteman MA. Escherichia coli aceE variants coding pyruvate dehydrogenase improve the generation of pyruvate-derived acetoin. Eng Life Sci 2023; 23:e2200054. [PMID: 36874610 PMCID: PMC9978916 DOI: 10.1002/elsc.202200054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/23/2022] [Accepted: 01/07/2023] [Indexed: 02/04/2023] Open
Abstract
Several chromosomally expressed AceE variants were constructed in Escherichia coli ΔldhA ΔpoxB ΔppsA and compared using glucose as the sole carbon source. These variants were examined in shake flask cultures for growth rate, pyruvate accumulation, and acetoin production via heterologous expression of the budA and budB genes from Enterobacter cloacae ssp. dissolvens. The best acetoin-producing strains were subsequently studied in controlled batch culture at the one-liter scale. PDH variant strains attained up to four-fold greater acetoin than the strain expressing the wild-type PDH. In a repeated batch process, the H106V PDH variant strain attained over 43 g/L of pyruvate-derived products, acetoin (38.5 g/L) and 2R,3R-butanediol (5.0 g/L), corresponding to an effective concentration of 59 g/L considering the dilution. The acetoin yield from glucose was 0.29 g/g with a volumetric productivity of 0.9 g/L·h (0.34 g/g and 1.0 g/L·h total products). The results demonstrate a new tool in pathway engineering, the modification of a key metabolic enzyme to improve the formation of a product via a kinetically slow, introduced pathway. Direct modification of the pathway enzyme offers an alternative to promoter engineering in cases where the promoter is involved in a complex regulatory network.
Collapse
Affiliation(s)
- W. Chris Moxley
- Department of MicrobiologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Rachel E. Brown
- School of ChemicalMaterials and Biomedical EngineeringUniversity of GeorgiaAthensGeorgiaUSA
| | - Mark A. Eiteman
- Department of MicrobiologyUniversity of GeorgiaAthensGeorgiaUSA
- School of ChemicalMaterials and Biomedical EngineeringUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
13
|
Laboratory evolution reveals general and specific tolerance mechanisms for commodity chemicals. Metab Eng 2023; 76:179-192. [PMID: 36738854 DOI: 10.1016/j.ymben.2023.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/06/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Although strain tolerance to high product concentrations is a barrier to the economically viable biomanufacturing of industrial chemicals, chemical tolerance mechanisms are often unknown. To reveal tolerance mechanisms, an automated platform was utilized to evolve Escherichia coli to grow optimally in the presence of 11 industrial chemicals (1,2-propanediol, 2,3-butanediol, glutarate, adipate, putrescine, hexamethylenediamine, butanol, isobutyrate, coumarate, octanoate, hexanoate), reaching tolerance at concentrations 60%-400% higher than initial toxic levels. Sequencing genomes of 223 isolates from 89 populations, reverse engineering, and cross-compound tolerance profiling were employed to uncover tolerance mechanisms. We show that: 1) cells are tolerized via frequent mutation of membrane transporters or cell wall-associated proteins (e.g., ProV, KgtP, SapB, NagA, NagC, MreB), transcription and translation machineries (e.g., RpoA, RpoB, RpoC, RpsA, RpsG, NusA, Rho), stress signaling proteins (e.g., RelA, SspA, SpoT, YobF), and for certain chemicals, regulators and enzymes in metabolism (e.g., MetJ, NadR, GudD, PurT); 2) osmotic stress plays a significant role in tolerance when chemical concentrations exceed a general threshold and mutated genes frequently overlap with those enabling chemical tolerance in membrane transporters and cell wall-associated proteins; 3) tolerization to a specific chemical generally improves tolerance to structurally similar compounds whereas a tradeoff can occur on dissimilar chemicals, and 4) using pre-tolerized starting isolates can hugely enhance the subsequent production of chemicals when a production pathway is inserted in many, but not all, evolved tolerized host strains, underpinning the need for evolving multiple parallel populations. Taken as a whole, this study provides a comprehensive genotype-phenotype map based on identified mutations and growth phenotypes for 223 chemical tolerant isolates.
Collapse
|
14
|
Metabolic Engineering of Microorganisms to Produce Pyruvate and Derived Compounds. Molecules 2023; 28:molecules28031418. [PMID: 36771084 PMCID: PMC9919917 DOI: 10.3390/molecules28031418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Pyruvate is a hub of various endogenous metabolic pathways, including glycolysis, TCA cycle, amino acid, and fatty acid biosynthesis. It has also been used as a precursor for pyruvate-derived compounds such as acetoin, 2,3-butanediol (2,3-BD), butanol, butyrate, and L-alanine biosynthesis. Pyruvate and derivatives are widely utilized in food, pharmaceuticals, pesticides, feed additives, and bioenergy industries. However, compounds such as pyruvate, acetoin, and butanol are often chemically synthesized from fossil feedstocks, resulting in declining fossil fuels and increasing environmental pollution. Metabolic engineering is a powerful tool for producing eco-friendly chemicals from renewable biomass resources through microbial fermentation. Here, we review and systematically summarize recent advances in the biosynthesis pathways, regulatory mechanisms, and metabolic engineering strategies for pyruvate and derivatives. Furthermore, the establishment of sustainable industrial synthesis platforms based on alternative substrates and new tools to produce these compounds is elaborated. Finally, we discuss the potential difficulties in the current metabolic engineering of pyruvate and derivatives and promising strategies for constructing efficient producers.
Collapse
|
15
|
Sheng L, Madika A, Lau MSH, Zhang Y, Minton NP. Metabolic engineering for the production of acetoin and 2,3-butanediol at elevated temperature in Parageobacillus thermoglucosidasius NCIMB 11955. Front Bioeng Biotechnol 2023; 11:1191079. [PMID: 37200846 PMCID: PMC10185769 DOI: 10.3389/fbioe.2023.1191079] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/20/2023] [Indexed: 05/20/2023] Open
Abstract
The current climate crisis has emphasised the need to achieve global net-zero by 2050, with countries being urged to set considerable emission reduction targets by 2030. Exploitation of a fermentative process that uses a thermophilic chassis can represent a way to manufacture chemicals and fuels through more environmentally friendly routes with a net reduction in greenhouse gas emissions. In this study, the industrially relevant thermophile Parageobacillus thermoglucosidasius NCIMB 11955 was engineered to produce 3-hydroxybutanone (acetoin) and 2,3-butanediol (2,3-BDO), organic compounds with commercial applications. Using heterologous acetolactate synthase (ALS) and acetolactate decarboxylase (ALD) enzymes, a functional 2,3-BDO biosynthetic pathway was constructed. The formation of by-products was minimized by the deletion of competing pathways surrounding the pyruvate node. Redox imbalance was addressed through autonomous overexpression of the butanediol dehydrogenase and by investigating appropriate aeration levels. Through this, we were able to produce 2,3-BDO as the predominant fermentation metabolite, with up to 6.6 g/L 2,3-BDO (0.33 g/g glucose) representing 66% of the theoretical maximum at 50°C. In addition, the identification and subsequent deletion of a previously unreported thermophilic acetoin degradation gene (acoB1) resulted in enhanced acetoin production under aerobic conditions, producing 7.6 g/L (0.38 g/g glucose) representing 78% of the theoretical maximum. Furthermore, through the generation of a ΔacoB1 mutant and by testing the effect of glucose concentration on 2,3-BDO production, we were able to produce 15.6 g/L of 2,3-BDO in media supplemented with 5% glucose, the highest titre of 2,3-BDO produced in Parageobacillus and Geobacillus species to date.
Collapse
Affiliation(s)
- Lili Sheng
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, United Kingdom
| | - Abubakar Madika
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, United Kingdom
- Department of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Matthew S. H. Lau
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, United Kingdom
| | - Ying Zhang
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, United Kingdom
| | - Nigel P. Minton
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, The University of Nottingham, Nottingham, United Kingdom
- *Correspondence: Nigel P. Minton,
| |
Collapse
|
16
|
Hazeena SH, Shurpali NJ, Siljanen H, Lappalainen R, Anoop P, Adarsh VP, Sindhu R, Pandey A, Binod P. Bioprocess development of 2, 3-butanediol production using agro-industrial residues. Bioprocess Biosyst Eng 2022; 45:1527-1537. [PMID: 35960335 PMCID: PMC9399043 DOI: 10.1007/s00449-022-02761-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022]
Abstract
The valorization of agricultural and industrial wastes for fuel and chemical production benefits environmental sustainability. 2, 3-Butanediol (2,3-BDO) is a value-added platform chemical covering many industrial applications. Since the global market is increasing drastically, production rates have to increase. In order to replace the current petroleum-based 2,3-BDO production, renewable feedstock's ability has been studied for the past few decades. This study aims to find an improved bioprocess for producing 2,3-BDO from agricultural and industrial residues, consequently resulting in a low CO2 emission bioprocess. For this, screening of 13 different biomass samples for hydrolyzable sugars has been done. Alkali pretreatment has been performed with the processed biomass and enzyme hydrolysis performed using commercial cellulase. Among all biomass hydrolysate oat hull and spruce bark biomass could produce the maximum amount of total reducing sugars. Later oat hull and spruce bark biomass with maximum hydrolyzable sugars have been selected for submerged fermentation studies using Enterobacter cloacae SG1. After fermentation, 37.59 and 26.74 g/L of 2,3-BDO was obtained with oat hull and spruce bark biomass, respectively. The compositional analysis of each step of biomass processing has been performed and changes in each component have been evaluated. The compositional analysis has revealed that biomass composition has changed significantly after pretreatment and hydrolysis leading to a remarkable release of sugars which can be utilized by bacteria for 2,3-BDO production. The results have been found to be promising, showing the potential of waste biomass residues as a low-cost raw material for 2,3-BDO production and thus a new lead in an efficient waste management approach for less CO2 emission.
Collapse
Affiliation(s)
- Sulfath Hakkim Hazeena
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Narasinha J Shurpali
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio campus, Kuopio, Finland.
- Natural Resources Institute Finland (Luke), Halolantie 31 A, 71750, Maaninka, FI, Finland.
| | - Henri Siljanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio campus, Kuopio, Finland
| | - Reijo Lappalainen
- Biomaterials Technology, Dept. of Applied Physics & SIB-Labs, University of Eastern Finland (Kuopio Campus), Yliopistonranta 1 F, 70211, Kuopio, FI, Finland
| | - Puthiyamdam Anoop
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, Kerala, India
| | - Velayudhanpillai Prasannakumari Adarsh
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, Kerala, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, Kerala, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, 248 007, Dehradun, India
- Centre for Energy and Environmental Sustainability, Lucknow, 226 029, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
17
|
Narisetty V, Zhang L, Zhang J, Sze Ki Lin C, Wah Tong Y, Loke Show P, Kant Bhatia S, Misra A, Kumar V. Fermentative production of 2,3-Butanediol using bread waste - A green approach for sustainable management of food waste. BIORESOURCE TECHNOLOGY 2022; 358:127381. [PMID: 35644452 DOI: 10.1016/j.biortech.2022.127381] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Bread is Europe's most wasted food, and the second most wasted food after potatoes in UK. Bread waste (BW) is a clean source of high-quality fermentable sugars. In this study, the potential of Enterobacter ludwigii to accumulate 2,3-butanediol (BDO) from BW was evaluated. Initially, the optimal inoculum size and yeast extract concentration were determined, followed by extraction of sugars from BW using acid and enzymatic hydrolysis. A glucose yield of 330-530 g/kg BW was obtained, and the sugars released were utilised for BDO production by E. ludwigii. The fed-batch cultivation using pure glucose and glucose rich hydrolysates from acid and enzymatic hydrolysis resulted in BDO titres of 144.5, 135.4, and 138.8 g/L, after 96 h, with yield of 0.47, 0.42 and 0.48 g/g yield, respectively. The innovation of the work is valorisation of BW to BDO with a circular biorefining approach and thus, reducing BW disposal and associated environmental burden.
Collapse
Affiliation(s)
- Vivek Narisetty
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Le Zhang
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 117585, Singapore
| | - Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yen Wah Tong
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 117585, Singapore
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea
| | - Ashish Misra
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK; Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
18
|
Vees CA, Herwig C, Pflügl S. Mixotrophic co-utilization of glucose and carbon monoxide boosts ethanol and butanol productivity of continuous Clostridium carboxidivorans cultures. BIORESOURCE TECHNOLOGY 2022; 353:127138. [PMID: 35405210 DOI: 10.1016/j.biortech.2022.127138] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
In this study, continuous cultivations of C.carboxidivorans to study heterotrophic and mixotrophic conversion of glucose and H2, CO2, and CO were established. Glucose fermentations at pH 6 showed a high ratio of alcohol-to-acid production of 2.79 mol mol-1. While H2 or CO2 were not utilized together with glucose, CO feeding drastically increased the combined alcohol titer to 9.1 g l-1. Specifically, CO enhanced acetate (1.9-fold) and ethanol (1.7-fold) production and triggered chain elongation to butanol (1.5-fold) production but did not change the alcohol:acid ratio. Flux balance analysis showed that CO served both as a carbon and energy source, and CO mixotrophy displayed a carbon and energy efficiency of 45 and 77%, respectively. This study expands the knowledge on physiology and metabolism of C.carboxidivorans and can serve as the starting point for rational engineering and process intensification to establish efficient production of alcohols and acids from carbon waste.
Collapse
Affiliation(s)
- Charlotte Anne Vees
- Technische Universität Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060 Vienna, Austria.
| | - Christoph Herwig
- Technische Universität Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060 Vienna, Austria; Competence Center CHASE GmbH, Altenbergerstraße 69, 4040 Linz, Austria.
| | - Stefan Pflügl
- Technische Universität Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060 Vienna, Austria.
| |
Collapse
|
19
|
Optimized Operating Conditions for a Biological Treatment Process of Industrial Residual Process Brine Using a Halophilic Mixed Culture. FERMENTATION 2022. [DOI: 10.3390/fermentation8060246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Residual process brine is a sustainable raw material for chlor-alkali electrolysis processes. This study investigates the influence of critical process parameters on the performance of a continuous treatment process for residual process brine using halophilic microorganisms. The goal of the bioprocess is an efficient degradation of the organic impurities formate, aniline, phenol, and 4,4′-methylenedianline from this residual stream. It was shown that formate could be degraded with high efficiencies (89–98%) during the treatment process. It was observed that formate degradation was influenced by the co-substrate glycerol. The lowest residual formate concentrations were achieved with specific glycerol uptake rates of 8.0–16.0 × 10−3 g L−1 h−1 OD600−1. Moreover, a triple-nutrient limitation for glycerol, ammonium, and phosphate was successfully applied for continuous cultivations. Furthermore, it was shown that all aromatic impurities were degraded with an efficiency of 100%. Ultimately, this study proposed optimized operating conditions, allowing the efficient degradation of organics in the residual process brine under various process conditions. Future optimization steps will require a strategy to prevent the accumulation of potential intermediate degradation products formed at high aniline feed concentrations and increase the liquid dilution rates of the system to achieve a higher throughput of brines.
Collapse
|
20
|
Metabolic Engineering and Regulation of Diol Biosynthesis from Renewable Biomass in Escherichia coli. Biomolecules 2022; 12:biom12050715. [PMID: 35625642 PMCID: PMC9138338 DOI: 10.3390/biom12050715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
As bulk chemicals, diols have wide applications in many fields, such as clothing, biofuels, food, surfactant and cosmetics. The traditional chemical synthesis of diols consumes numerous non-renewable energy resources and leads to environmental pollution. Green biosynthesis has emerged as an alternative method to produce diols. Escherichia coli as an ideal microbial factory has been engineered to biosynthesize diols from carbon sources. Here, we comprehensively summarized the biosynthetic pathways of diols from renewable biomass in E. coli and discussed the metabolic-engineering strategies that could enhance the production of diols, including the optimization of biosynthetic pathways, improvement of cofactor supplementation, and reprogramming of the metabolic network. We then investigated the dynamic regulation by multiple control modules to balance the growth and production, so as to direct carbon sources for diol production. Finally, we proposed the challenges in the diol-biosynthesis process and suggested some potential methods to improve the diol-producing ability of the host.
Collapse
|
21
|
Mainka T, Herwig C, Pflügl S. Reducing Organic Load From Industrial Residual Process Brine With a Novel Halophilic Mixed Culture: Scale-Up and Long-Term Piloting of an Integrated Bioprocess. Front Bioeng Biotechnol 2022; 10:896576. [PMID: 35519624 PMCID: PMC9062027 DOI: 10.3389/fbioe.2022.896576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Integrating bioprocess solutions for treatment and subsequent reuse of saline residual process brine into industrial processes could increase the sustainability of production chains. However, such bioprocesses require large-scales and a robust operation over a prolonged period. Consequently, the aim of this study was to analyze scale-up equivalence as well as continuous and stable process performance of a previously established lab scale process for the degradation of organic contaminants (formate and aromatic compounds) in an industrial context. To that end, a pilot-scale bubble column bioreactor system equipped with a membrane-based cell retention system for process intensification was integrated at an industrial production site. The process was successfully scaled-up and continuously operated for more than 210 days. Overall, the process proved to be robust towards changing compositions of the residual process brine stream and degradation rates for organic contaminants were close to 100%. Interestingly, due to the unsterile process conditions, the original Haloferax mediterranei culture was replaced by a novel halophilic bacterial community consisting of three bacterial genera. To further improve process economics and productivity, an optimization of the co-substrate feeding strategy for glycerol is required, as results indicated a potential correlation between glycerol feeding and formate degradation rates. To that end, decoupling of the glycerol feeding from the residual process brine feed is a potential way to increase process control options and allow for easy adaptation of the process to changing residual process brine compositions. Ultimately, the process described here could be a promising alternative for chemical or physical methods of treating residual process brine and once more underlines the potential to exploit natural microbial diversity for industrial purposes.
Collapse
Affiliation(s)
- Thomas Mainka
- Institute for Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Christoph Herwig
- Institute for Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
- Competence Center CHASE GmbH, Linz, Austria
| | - Stefan Pflügl
- Institute for Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| |
Collapse
|
22
|
Neuendorf CS, Vignolle GA, Derntl C, Tomin T, Novak K, Mach RL, Birner-Grünberger R, Pflügl S. A quantitative metabolic analysis reveals Acetobacterium woodii as a flexible and robust host for formate-based bioproduction. Metab Eng 2021; 68:68-85. [PMID: 34537366 DOI: 10.1016/j.ymben.2021.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/30/2021] [Accepted: 09/15/2021] [Indexed: 11/24/2022]
Abstract
Cheap and renewable feedstocks such as the one-carbon substrate formate are emerging for sustainable production in a growing chemical industry. We investigated the acetogen Acetobacterium woodii as a potential host for bioproduction from formate alone and together with autotrophic and heterotrophic co-substrates by quantitatively analyzing physiology, transcriptome, and proteome in chemostat cultivations in combination with computational analyses. Continuous cultivations with a specific growth rate of 0.05 h-1 on formate showed high specific substrate uptake rates (47 mmol g-1 h-1). Co-utilization of formate with H2, CO, CO2 or fructose was achieved without catabolite repression and with acetate as the sole metabolic product. A transcriptomic comparison of all growth conditions revealed a distinct adaptation of A. woodii to growth on formate as 570 genes were changed in their transcript level. Transcriptome and proteome showed higher expression of the Wood-Ljungdahl pathway during growth on formate and gaseous substrates, underlining its function during utilization of one-carbon substrates. Flux balance analysis showed varying flux levels for the WLP (0.7-16.4 mmol g-1 h-1) and major differences in redox and energy metabolism. Growth on formate, H2/CO2, and formate + H2/CO2 resulted in low energy availability (0.20-0.22 ATP/acetate) which was increased during co-utilization with CO or fructose (0.31 ATP/acetate for formate + H2/CO/CO2, 0.75 ATP/acetate for formate + fructose). Unitrophic and mixotrophic conversion of all substrates was further characterized by high energetic efficiencies. In silico analysis of bioproduction of ethanol and lactate from formate and autotrophic and heterotrophic co-substrates showed promising energetic efficiencies (70-92%). Collectively, our findings reveal A. woodii as a promising host for flexible and simultaneous bioconversion of multiple substrates, underline the potential of substrate co-utilization to improve the energy availability of acetogens and encourage metabolic engineering of acetogenic bacteria for the efficient synthesis of bulk chemicals and fuels from sustainable one carbon substrates.
Collapse
Affiliation(s)
- Christian Simon Neuendorf
- Technische Universität Wien, Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
| | - Gabriel A Vignolle
- Technische Universität Wien, Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
| | - Christian Derntl
- Technische Universität Wien, Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
| | - Tamara Tomin
- Technische Universität Wien, Institute for Chemical Technologies and Analytics, Research Group Bioanalytics, Getreidemarkt 9, 1060, Vienna, Austria.
| | - Katharina Novak
- Technische Universität Wien, Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
| | - Robert L Mach
- Technische Universität Wien, Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
| | - Ruth Birner-Grünberger
- Technische Universität Wien, Institute for Chemical Technologies and Analytics, Research Group Bioanalytics, Getreidemarkt 9, 1060, Vienna, Austria; Medical University of Graz, Diagnostic and Research Institute of Pathology, Center for Medical Research, Stiftingtalstrasse 24, 8036, Graz, Austria.
| | - Stefan Pflügl
- Technische Universität Wien, Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
| |
Collapse
|
23
|
Chu W, Jiang K, Lu P, Xu Y, Yang J, Wei X, Li L, Liu S, Wu Y, Wang S, Zhao H, Zhao H. Metabolic regulation and optimization of oxygen supply enhance the 2,3-butanediol yield of the novel Klebsiella sp. isolate FSoil 024. Biotechnol J 2021; 16:e2100279. [PMID: 34390606 DOI: 10.1002/biot.202100279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Biogenic 2,3-butanediol (2,3-BDO) is a high-value-added compound that can be used as a liquid fuel and a platform chemical. Bioproduction of 2,3-BDO is an environmentally friendly choice. METHOD AND RESULTS Three recombinant derivatives of the novel Klebsiella sp. isolate FSoil 024 (WT) were constructed via different strategies including deletion of lactate dehydrogenase by λ-Red homologous recombination technology, overexpression of the small-noncoding RNA RyhB and a combination of both. The 2,3-BDO productivity of the mutants increased by 61.3-79%, and WT-Δldh/ryhB displayed the highest 2,3-BDO yield of 42.36 mM after 24 h of shake-flask fermentation. Glucose was shown as the best carbon source for 2,3-BDO production by WT-Δldh/ryhB. In addition, higher oxygenation was favorable for ideal product synthesis. The maximal 2,3-BDO yield of WT and WT-Δldh/ryhB were increased by 23.3 and 52.5% respectively compared to the control group in the presence of 70% oxygen (V:V' = O2 :(O2 +N2 )). CONCLUSION AND IMPLICATIONS According to the present study, deletion of lactate dehydrogenase, RyhB overexpression and manipulation of oxygen supply showed great impacts on cell growth, 2,3-BDO productivity and cellular metabolism of the novel isolated strain Klebsiella sp. FSoil 024. This work would also provide insights for promoting 2,3-BDO biosynthesis for industrial applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wanying Chu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ke Jiang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ping Lu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yudong Xu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiayao Yang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xuan Wei
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Li Li
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Shuxin Liu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yan Wu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Shenghou Wang
- Experimental Teaching Center, College of Life Science, Shenyang Normal University, Shenyang, China
| | - Hongxin Zhao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hongxin Zhao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
24
|
Lee JW, Lee YG, Jin YS, Rao CV. Metabolic engineering of non-pathogenic microorganisms for 2,3-butanediol production. Appl Microbiol Biotechnol 2021; 105:5751-5767. [PMID: 34287658 DOI: 10.1007/s00253-021-11436-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/01/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
2,3-Butanediol (2,3-BDO) is a promising commodity chemical with various industrial applications. While petroleum-based chemical processes currently dominate the industrial production of 2,3-BDO, fermentation-based production of 2,3-BDO provides an attractive alternative to chemical-based processes with regards to economic and environmental sustainability. The achievement of high 2,3-BDO titer, yield, and productivity in microbial fermentation is a prerequisite for the production of 2,3-BDO at large scales. Also, enantiopure production of 2,3-BDO production is desirable because 2,3-BDO stereoisomers have unique physicochemical properties. Pursuant to these goals, many metabolic engineering strategies to improve 2,3-BDO production from inexpensive sugars by Klebsiella oxytoca, Bacillus species, and Saccharomyces cerevisiae have been developed. This review summarizes the recent advances in metabolic engineering of non-pathogenic microorganisms to enable efficient and enantiopure production of 2,3-BDO. KEY POINTS: • K. oxytoca, Bacillus species, and S. cerevisiae have been engineered to achieve efficient 2,3-BDO production. • Metabolic engineering of non-pathogenic microorganisms enabled enantiopure production of 2,3-BDO. • Cost-effective 2,3-BDO production can be feasible by using renewable biomass.
Collapse
Affiliation(s)
- Jae Won Lee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ye-Gi Lee
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Christopher V Rao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
25
|
C4 Bacterial Volatiles Improve Plant Health. Pathogens 2021; 10:pathogens10060682. [PMID: 34072921 PMCID: PMC8227687 DOI: 10.3390/pathogens10060682] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 02/04/2023] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) associated with plant roots can trigger plant growth promotion and induced systemic resistance. Several bacterial determinants including cell-wall components and secreted compounds have been identified to date. Here, we review a group of low-molecular-weight volatile compounds released by PGPR, which improve plant health, mostly by protecting plants against pathogen attack under greenhouse and field conditions. We particularly focus on C4 bacterial volatile compounds (BVCs), such as 2,3-butanediol and acetoin, which have been shown to activate the plant immune response and to promote plant growth at the molecular level as well as in large-scale field applications. We also disc/ uss the potential applications, metabolic engineering, and large-scale fermentation of C4 BVCs. The C4 bacterial volatiles act as airborne signals and therefore represent a new type of biocontrol agent. Further advances in the encapsulation procedure, together with the development of standards and guidelines, will promote the application of C4 volatiles in the field.
Collapse
|
26
|
Mainka T, Weirathmüller D, Herwig C, Pflügl S. Potential applications of halophilic microorganisms for biological treatment of industrial process brines contaminated with aromatics. J Ind Microbiol Biotechnol 2021; 48:kuab015. [PMID: 33928348 PMCID: PMC9113102 DOI: 10.1093/jimb/kuab015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022]
Abstract
Saline wastewater contaminated with aromatic compounds can be frequently found in various industrial sectors. Those compounds need to be degraded before reuse of wastewater in other process steps or release to the environment. Halophiles have been reported to efficiently degrade aromatics, but their application to treat industrial wastewater is rare. Halophilic processes for industrial wastewater treatment need to satisfy certain requirements: a continuous process mode, low operational expenditures, suitable reactor systems and a monitoring and control strategy. The aim of this review is to provide an overview of halophilic microorganisms, principles of aromatic biodegradation, and sources of saline wastewater containing aromatics and other contaminants. Finally, process examples for halophilic wastewater treatment and potential process monitoring strategies are discussed. To further illustrate the significant potential of halophiles for saline wastewater treatment and to facilitate development of ready-to-implement processes, future research should focus on scale-up and innovative process monitoring and control strategies.
Collapse
Affiliation(s)
- Thomas Mainka
- Institute for Chemical, Environmental and Bioscience
Engineering, TU Wien, Gumpendorfer Straße 1a, 1060
Vienna, Austria
- Competence Center CHASE GmbH,
Altenbergerstraße 69, 4040 Linz, Austria
| | - David Weirathmüller
- Institute for Chemical, Environmental and Bioscience
Engineering, TU Wien, Gumpendorfer Straße 1a, 1060
Vienna, Austria
| | - Christoph Herwig
- Institute for Chemical, Environmental and Bioscience
Engineering, TU Wien, Gumpendorfer Straße 1a, 1060
Vienna, Austria
- Competence Center CHASE GmbH,
Altenbergerstraße 69, 4040 Linz, Austria
| | - Stefan Pflügl
- Institute for Chemical, Environmental and Bioscience
Engineering, TU Wien, Gumpendorfer Straße 1a, 1060
Vienna, Austria
| |
Collapse
|
27
|
Boecker S, Harder BJ, Kutscha R, Pflügl S, Klamt S. Increasing ATP turnover boosts productivity of 2,3-butanediol synthesis in Escherichia coli. Microb Cell Fact 2021; 20:63. [PMID: 33750397 PMCID: PMC7941745 DOI: 10.1186/s12934-021-01554-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/25/2021] [Indexed: 12/23/2022] Open
Abstract
Background The alcohol 2,3-butanediol (2,3-BDO) is an important chemical and an Escherichia coli producer strain was recently engineered for bio-based production of 2,3-BDO. However, further improvements are required for realistic applications. Results Here we report that enforced ATP wasting, implemented by overexpressing the genes of the ATP-hydrolyzing F1-part of the ATPase, leads to significant increases of yield and especially of productivity of 2,3-BDO synthesis in an E. coli producer strain under various cultivation conditions. We studied aerobic and microaerobic conditions as well as growth-coupled and growth-decoupled production scenarios. In all these cases, the specific substrate uptake and 2,3-BDO synthesis rate (up to sixfold and tenfold higher, respectively) were markedly improved in the ATPase strain compared to a control strain. However, aerobic conditions generally enable higher productivities only with reduced 2,3-BDO yields while high product yields under microaerobic conditions are accompanied with low productivities. Based on these findings we finally designed and validated a three-stage process for optimal conversion of glucose to 2,3-BDO, which enables a high productivity in combination with relatively high yield. The ATPase strain showed again superior performance and finished the process twice as fast as the control strain and with higher 2,3-BDO yield. Conclusions Our results demonstrate the high potential of enforced ATP wasting as a generic metabolic engineering strategy and we expect more applications to come in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01554-x.
Collapse
Affiliation(s)
- Simon Boecker
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Björn-Johannes Harder
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Regina Kutscha
- Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Stefan Pflügl
- Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Steffen Klamt
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany.
| |
Collapse
|
28
|
Novak K, Neuendorf CS, Kofler I, Kieberger N, Klamt S, Pflügl S. Blending industrial blast furnace gas with H 2 enables Acetobacterium woodii to efficiently co-utilize CO, CO 2 and H 2. BIORESOURCE TECHNOLOGY 2021; 323:124573. [PMID: 33360948 DOI: 10.1016/j.biortech.2020.124573] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
In this study, the impact of gas composition (i.e. CO, CO2 and H2 partial pressures) on CO2 utilization, growth, and acetate production was investigated in batch and continuous cultures of A. woodii. Based on an industrial blast furnace gas, H2 blending was used to study the impact of H2 availability on CO2 fixation alone and together with CO using idealized gas streams. With H2 available as an additional energy source, net CO2 fixation and CO, CO2 and H2 co-utilization was achieved in gas-limited fermentations. Using industrial blast furnace gas, up to 15.1 g l-1 acetate were produced in continuous cultures. Flux balance analysis showed that intracellular fluxes and total ATP production were dependent on the availability of H2 and CO. Overall, H2 blending was shown to be a suitable control strategy for gas fermentations and demonstrated that A. woodii is an interesting host for CO2 fixation from industrial gas streams.
Collapse
Affiliation(s)
- Katharina Novak
- Technische Universität Wien, Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060 Vienna, Austria.
| | - Christian Simon Neuendorf
- Technische Universität Wien, Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060 Vienna, Austria.
| | | | - Nina Kieberger
- voestalpine Stahl GmbH, voestalpine-Straße 3, 4020 Linz, Austria.
| | - Steffen Klamt
- Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany.
| | - Stefan Pflügl
- Technische Universität Wien, Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060 Vienna, Austria.
| |
Collapse
|
29
|
Vivek N, Hazeena SH, Alphy MP, Kumar V, Magdouli S, Sindhu R, Pandey A, Binod P. Recent advances in microbial biosynthesis of C3 - C5 diols: Genetics and process engineering approaches. BIORESOURCE TECHNOLOGY 2021; 322:124527. [PMID: 33340948 DOI: 10.1016/j.biortech.2020.124527] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/01/2020] [Accepted: 12/05/2020] [Indexed: 05/22/2023]
Abstract
Diols derived from renewable feedstocks have significant commercial interest in polymer, pharmaceutical, cosmetics, flavors and fragrances, food and feed industries. In C3-C5 diols biological processes of 1,3-propanediol, 1,2-propanediol and 2,3-butanediol have been commercialized as other isomers are non-natural metabolites and lack natural biosynthetic pathways. However, the developments in the field of systems and synthetic biology paved a new path to learn, build, construct, and test for efficient chassis strains. The current review addresses the recent advancements in metabolic engineering, construction of novel pathways, process developments aimed at enhancing in production of C3-C5 diols. The requisites on developing an efficient and sustainable commercial bioprocess for C3-C5 diols were also discussed.
Collapse
Affiliation(s)
- Narisetty Vivek
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Sulfath Hakkim Hazeena
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Maria Paul Alphy
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Sara Magdouli
- Centre technologique des résidus industriels, University of Quebec in Abitibi Témiscamingue, Quebec, Canada
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 31MG Marg, Lucknow 226 001, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
30
|
Tesfay MA, Wen X, Liu Y, Lin H, Chen L, Lin J, Lin J. Construction of recombinant Escherichia coli expressing xylitol-4-dehydrogenase and optimization for enhanced L-xylulose biotransformation from xylitol. Bioprocess Biosyst Eng 2021; 44:1021-1032. [PMID: 33481075 DOI: 10.1007/s00449-020-02505-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
L-Xylulose is a rare ketopentose which inhibits α-glucosidase and is an indicator of hepatitis or liver cirrhosis. This pentose is also a precursor of other rare sugars such as L-xylose, L-ribose or L-lyxose. Recombinant E. coli expressing xylitol-4-dehydrogenase gene of Pantoea ananatis was constructed. A cost-effective culture media were used for L-xylulose production using the recombinant E. coli strain constructed. Response surface methodology was used to optimize these media components for L-xylulose production. A high conversion rate of 96.5% was achieved under an optimized pH and temperature using 20 g/L xylitol, which is the highest among the reports. The recombinant E. coli cells expressing the xdh gene were immobilized in calcium alginate to improve recycling of cells. Effective immobilization was achieved with 2% (w/v) sodium alginate and 3% (w/v) calcium chloride. The immobilized E. coli cells retained good stability and enzyme activity for 9 batches with conversion between 53 and 92% which would be beneficial for economical production of L-xylulose.
Collapse
Affiliation(s)
- Mesfin Angaw Tesfay
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xin Wen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yujie Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Huibin Lin
- Shandong Academy of Chinese Medicine, Jinan, 250014, China
| | - Linxu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jianqiang Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| | - Jianqun Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| |
Collapse
|
31
|
Microbial production of value-added bioproducts and enzymes from molasses, a by-product of sugar industry. Food Chem 2020; 346:128860. [PMID: 33385915 DOI: 10.1016/j.foodchem.2020.128860] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
Molasses is a major by-product of sugar industry and contains 40-60% (w/w) of sugars. The world's annual yield of molasses reaches 55 million tons. Traditionally, molasses is simply discharged or applied to feed production. Additionally, some low-cost and environmentally friendly bioprocesses have been established for microbial production of value-added bioproducts from molasses. Over the last decade and more, increasing numbers of biofuels, polysaccharides, oligosaccharides, organic acids, and enzymes have been produced from the molasses through microbial conversion that possess an array of important applications in the industries of food, energy, and pharmaceutical. For better application, it is necessary to comprehensively understand the research status of bioconversion of molasses that has not been elaborated in detail so far. In this review, these value-added bioproducts and enzymes obtained through bioconversion of molasses, their potential applications in food and other industries, as well as the future research focus were generalized and discussed.
Collapse
|
32
|
Novak K, Kutscha R, Pflügl S. Microbial upgrading of acetate into 2,3-butanediol and acetoin by E. coli W. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:177. [PMID: 33110446 PMCID: PMC7584085 DOI: 10.1186/s13068-020-01816-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/10/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Acetate is an abundant carbon source and its use as an alternative feedstock has great potential for the production of fuel and platform chemicals. Acetoin and 2,3-butanediol represent two of these potential platform chemicals. RESULTS The aim of this study was to produce 2,3-butanediol and acetoin from acetate in Escherichia coli W. The key strategies to achieve this goal were: strain engineering, in detail the deletion of mixed-acid fermentation pathways E. coli W ΔldhA ΔadhE Δpta ΔfrdA 445_Ediss and the development of a new defined medium containing five amino acids and seven vitamins. Stepwise reduction of the media additives further revealed that diol production from acetate is mediated by the availability of aspartate. Other amino acids or TCA cycle intermediates did not enable growth on acetate. Cultivation under controlled conditions in batch and pulsed fed-batch experiments showed that aspartate was consumed before acetate, indicating that co-utilization is not a prerequisite for diol production. The addition of aspartate gave cultures a start-kick and was not required for feeding. Pulsed fed-batches resulted in the production of 1.43 g l-1 from aspartate and acetate and 1.16 g l-1 diols (2,3-butanediol and acetoin) from acetate alone. The yield reached 0.09 g diols per g acetate, which accounts for 26% of the theoretical maximum. CONCLUSION This study for the first time showed acetoin and 2,3-butanediol production from acetate as well as the use of chemically defined medium for product formation from acetate in E. coli. Hereby, we provide a solid base for process intensification and the investigation of other potential products.
Collapse
Affiliation(s)
- Katharina Novak
- Research Area Biochemical Engineering, Environmental and Bioscience Engineering, Institute for Chemical, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Regina Kutscha
- Research Area Biochemical Engineering, Environmental and Bioscience Engineering, Institute for Chemical, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Stefan Pflügl
- Research Area Biochemical Engineering, Environmental and Bioscience Engineering, Institute for Chemical, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| |
Collapse
|
33
|
Novak K, Baar J, Freitag P, Pflügl S. Metabolic engineering of Escherichia coli W for isobutanol production on chemically defined medium and cheese whey as alternative raw material. J Ind Microbiol Biotechnol 2020; 47:1117-1132. [PMID: 33068182 PMCID: PMC7728641 DOI: 10.1007/s10295-020-02319-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/03/2020] [Indexed: 11/28/2022]
Abstract
The aim of this study was to establish isobutanol production on chemically defined medium in Escherichia coli. By individually expressing each gene of the pathway, we constructed a plasmid library for isobutanol production. Strain screening on chemically defined medium showed successful production in the robust E. coli W strain, and expression vector IB 4 was selected as the most promising construct due to its high isobutanol yields and efficient substrate uptake. The investigation of different aeration strategies in combination with strain improvement and the implementation of a pulsed fed-batch were key for the development of an efficient production process. E. coli W ΔldhA ΔadhE Δpta ΔfrdA enabled aerobic isobutanol production at 38% of the theoretical maximum. Use of cheese whey as raw material resulted in longer process stability, which allowed production of 20 g l−1 isobutanol. Demonstrating isobutanol production on both chemically defined medium and a residual waste stream, this study provides valuable information for further development of industrially relevant isobutanol production processes.
Collapse
Affiliation(s)
- Katharina Novak
- Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Juliane Baar
- Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Philipp Freitag
- Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Stefan Pflügl
- Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
| |
Collapse
|
34
|
Sathesh-Prabu C, Kim D, Lee SK. Metabolic engineering of Escherichia coli for 2,3-butanediol production from cellulosic biomass by using glucose-inducible gene expression system. BIORESOURCE TECHNOLOGY 2020; 309:123361. [PMID: 32305846 DOI: 10.1016/j.biortech.2020.123361] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 05/12/2023]
Abstract
A glucose-inducible gene expression system has been developed using HexR-Pzwf1 of Pseudomonas putida to induce the metabolic pathways. Since the system is controlled by an Entner-Doudoroff pathway (EDP) intermediate, the EDP of Escherichia coli was activated by deleting pfkA and gntR genes. Growth experiment with green fluorescent protein as a reporter indicated that the induction of this system was tightly controlled over a wide range of glucose in E. coli without adding any inducer. 2,3-butanediol (BDO) synthetic pathway genes were expressed by this system in the pfkA-gntR-deleted strain. The resultant engineered strain harbouring this system efficiently produced BDO with a 71% increased titer than the control strain. The strain was also able to produce BDO from a mixture of glucose and xylose which is comparable to glucose alone. Further, the strain produced 11 g/L of BDO at a yield of 0.48 g/g from the hydrolysate of empty palm fruit bunches. This system can also be applied in many other bio-production processes from lignocellulosic biomass.
Collapse
Affiliation(s)
- Chandran Sathesh-Prabu
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Donghyuk Kim
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sung Kuk Lee
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
35
|
Schneider P, von Kamp A, Klamt S. An extended and generalized framework for the calculation of metabolic intervention strategies based on minimal cut sets. PLoS Comput Biol 2020; 16:e1008110. [PMID: 32716928 PMCID: PMC7410339 DOI: 10.1371/journal.pcbi.1008110] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/06/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
The concept of minimal cut sets (MCS) provides a flexible framework for analyzing properties of metabolic networks and for computing metabolic intervention strategies. In particular, it has been used to support the targeted design of microbial strains for bio-based production processes. Herein we present a number of major extensions that generalize the existing MCS approach and broaden its scope for applications in metabolic engineering. We first introduce a modified approach to integrate gene-protein-reaction associations (GPR) in the metabolic network structure for the computation of gene-based intervention strategies. In particular, we present a set of novel compression rules for GPR associations, which effectively speedup the computation of gene-based MCS by a factor of up to one order of magnitude. These rules are not specific for MCS and as well applicable to other computational strain design methods. Second, we enhance the MCS framework by allowing the definition of multiple target (undesired) and multiple protected (desired) regions. This enables precise tailoring of the metabolic solution space of the designed strain with unlimited flexibility. Together with further generalizations such as individual cost factors for each intervention, direct combinations of reaction/gene deletions and additions as well as the possibility to search for substrate co-feeding strategies, the scope of the MCS framework could be broadly extended. We demonstrate the applicability and performance benefits of the described developments by computing (gene-based) Escherichia coli strain designs for the bio-based production of 2,3-butanediol, a chemical, that has recently received much attention in the field of metabolic engineering. With our extended framework, we could identify promising strain designs that were formerly unpredictable, including those based on substrate co-feeding.
Collapse
Affiliation(s)
- Philipp Schneider
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Axel von Kamp
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Steffen Klamt
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
36
|
|
37
|
Hazeena SH, Sindhu R, Pandey A, Binod P. Lignocellulosic bio-refinery approach for microbial 2,3-Butanediol production. BIORESOURCE TECHNOLOGY 2020; 302:122873. [PMID: 32019707 DOI: 10.1016/j.biortech.2020.122873] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Bio-refinery approach using agricultural and industrial waste material as feedstock is becoming a preferred area of interest in biotechnology in the current decades. The reasons for this trend are mainly because of the declining petroleum resources, greenhouse gas emission risks and fluctuating market price of crude oil. Most chemicals synthesized petro chemically, can be produced using microbial biocatalysts. 2,3-Butanediol (BDO) is such an important platform bulk chemical with numerous industrial applications including as a fuel additive. Although microbial production of BDO is well studied, strategies that could successfully upgrade the current lab-scale researches to an industrial level have to be developed. This review presents an overview of the recent trends and developments in the microbial production of BDO from different lignocellulose biomass.
Collapse
Affiliation(s)
- Sulfath Hakkim Hazeena
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695 019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695 019, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow 226 001, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695 019, India.
| |
Collapse
|
38
|
A robust flow cytometry-based biomass monitoring tool enables rapid at-line characterization of S. cerevisiae physiology during continuous bioprocessing of spent sulfite liquor. Anal Bioanal Chem 2020; 412:2137-2149. [PMID: 32034454 PMCID: PMC7072058 DOI: 10.1007/s00216-020-02423-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 01/20/2023]
Abstract
Assessment of viable biomass is challenging in bioprocesses involving complex media with distinct biomass and media particle populations. Biomass monitoring in these circumstances usually requires elaborate offline methods or sophisticated inline sensors. Reliable monitoring tools in an at-line capacity represent a promising alternative but are still scarce to date. In this study, a flow cytometry-based method for biomass monitoring in spent sulfite liquor medium as feedstock for second generation bioethanol production with yeast was developed. The method is capable of (i) yeast cell quantification against medium background, (ii) determination of yeast viability, and (iii) assessment of yeast physiology though morphological analysis of the budding division process. Thus, enhanced insight into physiology and morphology is provided which is not accessible through common online and offline biomass monitoring methods. To demonstrate the capabilities of this method, firstly, a continuous ethanol fermentation process of Saccharomyces cerevisiae with filtered and unfiltered spent sulfite liquor media was analyzed. Subsequently, at-line process monitoring of viability in a retentostat cultivation was conducted. The obtained information was used for a simple control based on addition of essential nutrients in relation to viability. Thereby, inter-dependencies between nutrient supply, physiology, and specific ethanol productivity that are essential for process design could be illuminated. Graphical abstract ![]()
Collapse
|
39
|
Soft Sensor-Based Monitoring and Efficient Control Strategies of Biomass Concentration for Continuous Cultures of Haloferax mediterranei and Their Application to an Industrial Production Chain. Microorganisms 2019; 7:microorganisms7120648. [PMID: 31817128 PMCID: PMC6956367 DOI: 10.3390/microorganisms7120648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/21/2019] [Accepted: 12/03/2019] [Indexed: 11/17/2022] Open
Abstract
Continuous bioprocessing using cell retention allows the achievement of high space-time yields for slow-growing organisms such as halophiles. However, the lack of efficient methods for monitoring and control limits the application of biotechnological processes in the industry. The aim of this study was to implement a control and online monitoring strategy for biomass in continuous cultures. For the first time, a feedforward cultivation strategy in a membrane-based cell retention system allowed to control the biomass concentration of the extreme halophilic Haloferax mediterranei at defined levels. Moreover, soft sensor-based biomass estimation allowed reliable monitoring of biomass online. Application of the combined monitoring and control strategy using industrial process water containing formate, phenol, aniline and 4,4′-methylenedianiline could for the first time demonstrate high throughput degradation in this extremophilic bioremediation process, obtaining degradation efficiencies of up to 100%. This process demonstrates the usefulness of continuous halophilic cultures in a circular economy application.
Collapse
|
40
|
Zhang X, Han R, Bao T, Zhao X, Li X, Zhu M, Yang T, Xu M, Shao M, Zhao Y, Rao Z. Synthetic engineering of Corynebacterium crenatum to selectively produce acetoin or 2,3-butanediol by one step bioconversion method. Microb Cell Fact 2019; 18:128. [PMID: 31387595 PMCID: PMC6683508 DOI: 10.1186/s12934-019-1183-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acetoin (AC) and 2,3-butanediol (2,3-BD) as highly promising bio-based platform chemicals have received more attentions due to their wide range of applications. However, the non-efficient substrate conversion and mutually transition between AC and 2,3-BD in their natural producing strains not only led to a low selectivity but also increase the difficulty of downstream purification. Therefore, synthetic engineering of more suitable strains should be a reliable strategy to selectively produce AC and 2,3-BD, respectively. RESULTS In this study, the respective AC (alsS and alsD) and 2,3-BD biosynthesis pathway genes (alsS, alsD, and bdhA) derived from Bacillus subtilis 168 were successfully expressed in non-natural AC and 2,3-BD producing Corynebacterium crenatum, and generated recombinant strains, C. crenatum SD and C. crenatum SDA, were proved to produce 9.86 g L-1 of AC and 17.08 g L-1 of 2,3-BD, respectively. To further increase AC and 2,3-BD selectivity, the AC reducing gene (butA) and lactic acid dehydrogenase gene (ldh) in C. crenatum were then deleted. Finally, C. crenatumΔbutAΔldh SD produced 76.93 g L-1 AC in one-step biocatalysis with the yield of 0.67 mol mol-1. Meanwhile, after eliminating the lactic acid production and enhancing 2,3-butanediol dehydrogenase activity, C. crenatumΔldh SDA synthesized 88.83 g L-1 of 2,3-BD with the yield of 0.80 mol mol-1. CONCLUSIONS The synthetically engineered C. crenatumΔbutAΔldh SD and C. crenatumΔldh SDA in this study were proved as an efficient microbial cell factory for selective AC and 2,3-BD production. Based on the insights from this study, further synthetic engineering of C. crenatum for AC and 2,3-BD production is suggested.
Collapse
Affiliation(s)
- Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Rumeng Han
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Teng Bao
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Xiaojing Zhao
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210 China
| | - Xiangfei Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Manchi Zhu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Minglong Shao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Youxi Zhao
- Beijing Key Laboratory of Biomass Waste Resource Utilization, College of Biochemical Engineering, Beijing Union University, Beijing, 10023 People’s Republic of China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| |
Collapse
|
41
|
Heyman B, Lamm R, Tulke H, Regestein L, Büchs J. Shake flask methodology for assessing the influence of the maximum oxygen transfer capacity on 2,3-butanediol production. Microb Cell Fact 2019; 18:78. [PMID: 31053124 PMCID: PMC6498610 DOI: 10.1186/s12934-019-1126-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/24/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Production of 2,3-butanediol from renewable resources is a promising measure to decrease the consumption of fossil resources in the chemical industry. One of the most influential parameters on biotechnological 2,3-butanediol production is the oxygen availability during the cultivation. As 2,3-butanediol is produced under microaerobic process conditions, a well-controlled oxygen supply is the key parameter to control biomass formation and 2,3-butanediol production. As biomass is on the one hand not the final product, but on the other hand the essential biocatalyst, the optimal compromise between biomass formation and 2,3-butanediol production has to be defined. RESULTS A shake flask methodology is presented to evaluate the effects of oxygen availability on 2,3-butanediol production with Bacillus licheniformis DSM 8785 by variation of the filling volume. A defined two-stage cultivation strategy was developed to investigate the metabolic response to different defined maximum oxygen transfer capacities at equal initial growth conditions. The respiratory quotient was measured online to determine the point of glucose depletion, as 2,3-butanediol is consumed afterwards. Based on this strategy, comparable results to stirred tank reactors were achieved. The highest space-time yield (1.3 g/L/h) and a 2,3-butanediol concentration of 68 g/L combined with low acetoin concentrations and avoided glycerol formation were achieved at a maximum oxygen transfer capacity of 13 mmol/L/h. The highest overall 2,3-butanediol concentration of 78 g/L was observed at a maximum oxygen transfer capacity of 4 mmol/L/h. CONCLUSIONS The presented shake flask approach reduces the experimental effort and costs providing a fast and reliable methodology to investigate the effects of oxygen availability. This can be applied especially on product and by-product formation under microaerobic conditions. Utilization of the maximum oxygen transfer capacity as measure for the oxygen availability allows for an easy adaption to other bioreactor setups and scales.
Collapse
Affiliation(s)
- Benedikt Heyman
- RWTH Aachen University, AVT-Biochemical Engineering, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Robin Lamm
- RWTH Aachen University, AVT-Biochemical Engineering, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Hannah Tulke
- RWTH Aachen University, AVT-Biochemical Engineering, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Lars Regestein
- RWTH Aachen University, AVT-Biochemical Engineering, Forckenbeckstraße 51, 52074, Aachen, Germany.,Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstraße 11a, 07745, Jena, Germany
| | - Jochen Büchs
- RWTH Aachen University, AVT-Biochemical Engineering, Forckenbeckstraße 51, 52074, Aachen, Germany.
| |
Collapse
|