1
|
Ge Y, Ni X, Li J, Ye M, Jin X. Roles of estrogen receptor α in endometrial carcinoma (Review). Oncol Lett 2023; 26:530. [PMID: 38020303 PMCID: PMC10644365 DOI: 10.3892/ol.2023.14117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Endometrial carcinoma (EC) is a group of endometrial epithelial malignancies, most of which are adenocarcinomas and occur in perimenopausal and postmenopausal women. It is one of the most common carcinomas of the female reproductive system. It has been shown that the occurrence and development of EC is closely associated with the interaction between estrogen (estradiol, E2) and estrogen receptors (ERs), particularly ERα. As a key nuclear transcription factor, ERα is a carcinogenic factor in EC. Its interactions with upstream and downstream effectors and co-regulators have important implications for the proliferation, metastasis, invasion and inhibition of apoptosis of EC. In the present review, the structure of ERα and the regulation of ERα in multiple dimensions are described. In addition, the classical E2/ERα signaling pathway and the crosstalk between ERα and other EC regulators are elucidated, as well as the therapeutic targeting of ERα, which may provide a new direction for clinical applications of ERα in the future.
Collapse
Affiliation(s)
- Yidong Ge
- Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiaoqi Ni
- Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jingyun Li
- Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Meng Ye
- Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiaofeng Jin
- Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
2
|
Cheng X, Shen C, Liao Z. KLF2 transcription suppresses endometrial cancer cell proliferation, invasion, and migration through the inhibition of NPM1. J OBSTET GYNAECOL 2023; 43:2238827. [PMID: 37610103 DOI: 10.1080/01443615.2023.2238827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/16/2023] [Indexed: 08/24/2023]
Abstract
Endometrial cancer (EC) is the most common gynaecologic malignancy. This study was to explore the role of kruppel-like factor 2 (KLF2) in EC cell behaviours. The expression of KLF2 in EC and its correlation with NPM1 were first predicted on the database. Levels of KLF2 and nucleophosmin 1 (NPM1) in EC cell lines were then determined. After transfection of the overexpression vector of KLF2 or NPM1, cell proliferation, invasion, and migration were evaluated. The binding relationship between KLF2 and the NPM1 promoter was analysed. KLF2 was downregulated while NPM1 was upregulated in EC cells. KLF2 overexpression reduced the proliferation potential of EC cells and the number of invaded and migrated cells. KLF2 was enriched in the NPM1 promoter and inhibited NPM1 transcriptional level. NPM1 overexpression neutralised the effects of KLF2 overexpression on suppressing EC cell growth. Collectively, KLF2 was decreased in EC cells and KLF2 overexpression increased the binding to the NPM1 promoter to inhibit NPM1 transcription, thus suppressing EC cell growth.
Collapse
Affiliation(s)
- Xiyun Cheng
- Department of Obstetrics and Gynecology, Department of Gynecomatology, Ganzhou Cancer Hospital, Ganzhou, P.R. China
| | - Changmei Shen
- Department of Obstetrics and Gynecology, Department of Gynecomatology, Ganzhou Cancer Hospital, Ganzhou, P.R. China
| | - Zhenrong Liao
- Department of Obstetrics and Gynecology, Department of Gynecomatology, Ganzhou Cancer Hospital, Ganzhou, P.R. China
| |
Collapse
|
3
|
Patel SS. NPM1-Mutated Acute Myeloid Leukemia: Recent Developments and Open Questions. Pathobiology 2023; 91:18-29. [PMID: 36944324 PMCID: PMC10857804 DOI: 10.1159/000530253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
Somatic mutations in the nucleophosmin (NPM1) gene occur in approximately 30% of de novo acute myeloid leukemias (AMLs) and are relatively enriched in normal karyotype AMLs. Earlier World Health Organization (WHO) classification schema recognized NPM1-mutated AMLs as a unique subtype of AML, while the latest WHO and International Consensus Classification (ICC) now consider NPM1 mutations as AML-defining, albeit at different blast count thresholds. NPM1 mutational load correlates closely with disease status, particularly in the post-therapy setting, and therefore high sensitivity-based methods for detection of the mutant allele have proven useful for minimal/measurable residual disease (MRD) monitoring. MRD status has been conventionally measured by either multiparameter flow cytometry (MFC) and/or molecular diagnostic techniques, although recent data suggest that MFC data may be potentially more challenging to interpret in this AML subtype. Of note, MRD status does not predict patient outcome in all cases, and therefore a deeper understanding of the biological significance of MRD may be required. Recent studies have confirmed that NPM1-mutated cells rely on overexpression of HOX/MEIS1, which is dependent on the presence of the aberrant cytoplasmic localization of mutant NPM1 protein (NPM1c); this biology may explain the promising response to novel agents, including menin inhibitors and second-generation XPO1 inhibitors. In this review, these and other recent developments around NPM1-mutated AML, in addition to open questions warranting further investigation, will be discussed.
Collapse
Affiliation(s)
- Sanjay S Patel
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine/NewYork-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
4
|
Akın G, Esbah O, Eröz R. Could nucleolin and nucleophosmin levels be prognostic indicators in non-small cell lung cancer? ACTA FACULTATIS MEDICAE NAISSENSIS 2022. [DOI: 10.5937/afmnai39-35741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Aim: Lung cancer is the leading cause of mortality from cancer across the world. In this study, the use of serum nucleolin (NCL) and nucleophosmin (NPM1) levels as a marker in the diagnosis, prognosis and treatment response evaluation in lung cancer was investigated. Materials and Method: NCL and NPM1 levels of serum samples taken before chemotherapy and after 3-4 courses of chemotherapy from the control group and the patients diagnosed with lung cancer were studied using ELISA method. Results: Serum NCL and NPM1 levels of the patients were higher than of the controls (p = 0.085 for NCL, p = 0.000 for NPM1). NCL and NPM1 levels by histopathologic type were significantly higher in adenocarcinoma than in squamous cell carcinoma (p < 0.05 for each). In view of the treatment responses to chemotherapeutic agents, there was a statistically insignificant difference between the values before and after chemotherapy (p > 0.05 for each). Conclusion: High serum NCL and NPM1 levels were found to correlate with poor prognosis, poor treatment response and low survival rate. It can be concluded that serum NCL and NPM1 levels in lung cancer can be used as diagnostic and prognostic markers for the disease.
Collapse
|
5
|
Shen J, Yuan Z, Sheng J, Feng X, Wang H, Wang Y, Zhou Y. Long non-coding RNA NNT-AS1 positively regulates NPM1 expression to affect the proliferation of estrogen-mediated endometrial carcinoma by interacting. J Cancer 2022; 13:112-123. [PMID: 34976175 PMCID: PMC8692688 DOI: 10.7150/jca.62630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/23/2021] [Indexed: 11/05/2022] Open
Abstract
Objective: This study aims to investigate the mechanism of long non-coding RNA NNT-AS1 in the proliferation of estrogen-mediated endometrial carcinoma (EC). Materials and methods: NNT-AS1, miR-30c, and Nucleophosmin 1 (NPM1) expressions were measured by quantitative real-time PCR and Western blotting. Cell Counting Kit-8 assay and 5-Ethynyl-2'-deoxyuridine (EdU) assay were used to detect the viability and proliferation of Ishikawa and HEC-1-A cells, respectively. RNA immunoprecipitation assay was used to confirm the interaction between NNT-AS1 and miR-30c. Luciferase reporter assay was performed to confirm the interaction between miR-30c and NPM1. Results: NNT-AS1 and NPM1 expressions in EC tissues and cell lines were higher than in benign endometrium and normal endometrial epithelial cells (EECs). miR-30c expression in EC tissues and cell lines was lower than in benign endometrium and normal EECs. NNT-AS1 interacted with miR-30c, and miR-30c negatively regulated NPM1 expression. Overexpression of NNT-AS1 increased NPM1 expression in EC cells, while overexpression of miR-30c reversed the effect. NNT-AS1 interference inhibited the mRNA level of NPM1, while the miR-30c inhibitor reversed the result. Estradiol (E2) promoted the proliferation of EC cells, small interfering RNA (siRNA) against NNT-AS1 inhibited EC cell proliferation, miR-30c inhibitor promoted cell proliferation, and NPM1 siRNA inhibited cell proliferation. E2 increased tumor volume, and NNT-AS1 interference reduced tumor volume in vivo. Conclusion: NNT-AS1 promoted the proliferation of estrogen-mediated EC by regulating miR-30c/NPM1.
Collapse
Affiliation(s)
- Jie Shen
- Department of Gynecology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhilin Yuan
- Department of Obstetrics and Gynecology, the Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjing Sheng
- Department of Obstetrics and Gynecology, the Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoping Feng
- Department of Gynecology, Yiwu Central Hospital, Yiwu, Zhejiang, China
| | - Hao Wang
- Department of Gynecology, Yiwu Central Hospital, Yiwu, Zhejiang, China
| | - Yanli Wang
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yunxiao Zhou
- Department of Gynecology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Di Carlo A, Beji S, Palmerio S, Picozza M, D’Agostino M, Petrozza V, Melchionna R, Germani A, Magenta A, De Falco E, Avitabile D. The Nucleolar Protein Nucleophosmin Is Physiologically Secreted by Endothelial Cells in Response to Stress Exerting Proangiogenic Activity Both In Vitro and In Vivo. Int J Mol Sci 2021; 22:ijms22073672. [PMID: 33916025 PMCID: PMC8037380 DOI: 10.3390/ijms22073672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 02/07/2023] Open
Abstract
Nucleophosmin (NPM), a nucleolar multifunctional phosphoprotein, acts as a stress sensor in different cell types. NPM can be actively secreted by inflammatory cells, however its biology on endothelium remains unexplored. In this study, we show for the first time that NPM is secreted by human vein endothelial cells (HUVEC) in the early response to serum deprivation and that NPM acts as a pro-inflammatory and angiogenic molecule both in vitro and in vivo. Accordingly, 24 h of serum starvation condition induced NPM relocalization from the nucleus to cytoplasm. Interestingly, NPM was increasingly excreted in HUVEC-derived conditioned media in a time dependent fashion upon stress conditions up to 24 h. The secretion of NPM was unrelated to cell necrosis within 24 h. The treatment with exogenous and recombinant NPM (rNPM) enhanced migration as well as the Intercellular Adhesion Molecule 1 (ICAM-1) but not Vascular cell adhesion protein 1 (VCAM-1) expression and it did not affect cell proliferation. Notably, in vitro tube formation by Matrigel assay was significantly increased in HUVEC treated with rNPM compared to controls. This result was confirmed by the in vivo injection of Matrigel plug assay upon stimulation with rNPM, displaying significant enhanced number of functional capillaries in the plugs. The stimulation with rNPM in HUVEC was also associated to the increased expression of master genes regulating angiogenesis and migration, including Vascular Endothelial Growth Factor-A (VEGF-A), Hepatocyte Growth Factor (HGF), Stromal derived factor-1 (SDF-1), Fibroblast growth factor-2 (FGF-2), Platelet Derived Growth Factor-B (PDGF-B), and Matrix metallopeptidase 9 (MMP9). Our study demonstrates for the first time that NPM is physiologically secreted by somatic cells under stress condition and in the absence of cell necrosis. The analysis of the biological effects induced by NPM mainly related to a pro-angiogenic and inflammatory activity might suggest an important autocrine/paracrine role for NPM in the regulation of both phenomena.
Collapse
Affiliation(s)
- Anna Di Carlo
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.D.C.); (R.M.)
| | - Sara Beji
- Laboratory of Experimental Immunology, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy; (S.B.); (S.P.); (M.D.); (A.G.)
| | - Silvia Palmerio
- Laboratory of Experimental Immunology, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy; (S.B.); (S.P.); (M.D.); (A.G.)
| | - Mario Picozza
- Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, 00143 Rome, Italy;
| | - Marco D’Agostino
- Laboratory of Experimental Immunology, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy; (S.B.); (S.P.); (M.D.); (A.G.)
| | - Vincenzo Petrozza
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy; (V.P.); (E.D.F.)
| | - Roberta Melchionna
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.D.C.); (R.M.)
| | - Antonia Germani
- Laboratory of Experimental Immunology, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy; (S.B.); (S.P.); (M.D.); (A.G.)
| | - Alessandra Magenta
- Institute of Translational Pharmacology (IFT), Consiglio Nazionale delle Ricerche (CNR), 00133 Rome, Italy;
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy; (V.P.); (E.D.F.)
- Mediterranea Cardiocentro, 80122 Naples, Italy
| | - Daniele Avitabile
- Department of Scientifico e Sviluppo, IDI Farmaceutici, Via dei Castelli Romani 73/75, 00071 Pomezia, Italy
- Correspondence: ; Tel.: +06-91092610
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Nucleophosmin (NPM1) mutations are encountered in myeloid neoplasia and are present in ~ 30% of de novo acute myeloid leukemia cases. This review summarizes features of mutant NPM1-related disease, with a particular emphasis on recent discoveries relevant to disease monitoring, prognostication, and therapeutic intervention. RECENT FINDINGS Recent studies have shown that HOX/MEIS gene overexpression is central to the survival of NPM1-mutated cells. Two distinct classes of small molecule drugs, BH3 mimetics and menin-MLL interaction inhibitors, have demonstrated exquisite leukemic cell toxicity in preclinical AML models associated with HOX/MEIS overexpression, and the former of these has shown efficacy in older treatment-naïve NPM1-mutated AML patients. The results of ongoing clinical trials further investigating these compounds will be of particular importance and may alter the clinical management of patients with NPM1-mutated myeloid neoplasms. Significant scientific advancements over the last decade, including improved sequencing and disease monitoring techniques, have fostered a much deeper understanding of mutant NPM1 disease biology, prognostication, and opportunities for therapeutic intervention. These discoveries have led to the development of clinical assays that permit the detection and monitoring of mutant NPM1 and have paved the way for future investigation of targeted therapeutics using emerging cutting-edge techniques.
Collapse
Affiliation(s)
- Sanjay S Patel
- Division of Hematopathology, Weill Cornell Medical College, New York, NY, USA
| | - Michael J Kluk
- Division of Hematopathology, Weill Cornell Medical College, New York, NY, USA
| | - Olga K Weinberg
- Department of Pathology, Boston Children's Hospital, 300 Longwood Avenue, Bader 126.2, Boston, MA, 02115, USA.
| |
Collapse
|
8
|
Liu Y, Chen S, Zong ZH, Guan X, Zhao Y. CircRNA WHSC1 targets the miR-646/NPM1 pathway to promote the development of endometrial cancer. J Cell Mol Med 2020; 24:6898-6907. [PMID: 32378344 PMCID: PMC7299690 DOI: 10.1111/jcmm.15346] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/25/2019] [Accepted: 04/12/2020] [Indexed: 12/16/2022] Open
Abstract
Circular RNAs (circRNAs) play important roles in human cancer progression. Their high stability and tissue specificity make circRNAs important molecular targets for clinical diagnosis, treatment and prognosis. However, the functions and molecular mechanisms of circRNA WHSC1 in endometrial cancer are unknown. CircWHSC1 expression in normal endometrial and endometrial cancer tissues was detected using PCR. Overexpression or knockdown of circWHSC1 in endometrial cancer cell lines HEC‐1B or Ishikawa, respectively, cell function experiments were used to detect the impact of circWHSC1 on endometrial cancer cells. A nude mouse xenograft model was used to detect changes in tumorigenesis of HEC‐1B cells after circWHSC1 overexpression. Bioinformatics and dual luciferase reporter gene technology were used to predict and validate the sponging ability of circWHSC1 on microRNAs. Gene expression changes were detected by using Western blotting. CircWHSC1 expression was increased in endometrial cancer tissues. CircWHSC1 overexpression promoted the proliferation, migration and invasion of endometrial cancer cells and decreased apoptosis. CircWHSC1 knockdown had the opposite effect. CircWHSC1 overexpressed nude mice showed increased tumorigenicity. Bioinformatics predicted that circWHSC1 binds to miR‐646, which was confirmed using luciferase reporter gene assays. High expression of miR‐646 could reverse the effect of circWHSC1 on endometrial cancer cells. Western blotting showed increased or decreased levels of nucleophosmin 1 (NPM1), an miR‐646 downstream target, after circWHSC1 overexpression or knockdown, respectively. CircWHSC1 promotes endometrial cancer development through sponging miR‐646 and targeting NPM1.
Collapse
Affiliation(s)
- Yao Liu
- Department of Gynecologic Oncology Research Office, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institute in Guangdong Province, Guangzhou, China
| | - Shuo Chen
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhi-Hong Zong
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xue Guan
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yang Zhao
- Department of Gynecologic Oncology Research Office, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institute in Guangdong Province, Guangzhou, China
| |
Collapse
|
9
|
Turi Z, Lacey M, Mistrik M, Moudry P. Impaired ribosome biogenesis: mechanisms and relevance to cancer and aging. Aging (Albany NY) 2019; 11:2512-2540. [PMID: 31026227 PMCID: PMC6520011 DOI: 10.18632/aging.101922] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/04/2019] [Indexed: 02/06/2023]
Abstract
The biosynthesis of ribosomes is a complex process that requires the coordinated action of many factors and a huge energy investment from the cell. Ribosomes are essential for protein production, and thus for cellular survival, growth and proliferation. Ribosome biogenesis is initiated in the nucleolus and includes: the synthesis and processing of ribosomal RNAs, assembly of ribosomal proteins, transport to the cytoplasm and association of ribosomal subunits. The disruption of ribosome biogenesis at various steps, with either increased or decreased expression of different ribosomal components, can promote cell cycle arrest, senescence or apoptosis. Additionally, interference with ribosomal biogenesis is often associated with cancer, aging and age-related degenerative diseases. Here, we review current knowledge on impaired ribosome biogenesis, discuss the main factors involved in stress responses under such circumstances and focus on examples with clinical relevance.
Collapse
Affiliation(s)
- Zsofia Turi
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Matthew Lacey
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Pavel Moudry
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| |
Collapse
|
10
|
Chen S, He H, Wang Y, Liu L, Liu Y, You H, Dong Y, Lyu J. Poor prognosis of nucleophosmin overexpression in solid tumors: a meta-analysis. BMC Cancer 2018; 18:838. [PMID: 30126359 PMCID: PMC6102940 DOI: 10.1186/s12885-018-4718-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 08/02/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Nucleophosmin is a non-ribosomal nucleolar phosphoprotein that is found primarily in the nucleolus region of cell nucleus, plays multiple important roles in tumor processes. Accumulated previous studies have reported a potential value of NPM acted as a biomarker for prognosis in various solid tumors, but the results were more inconsistency. We performed this meta-analysis to precisely evaluate the prognostic significance of NPM in solid tumors. METHODS Clinical data were collected from a comprehensive literature search in PubMed, Web of Science, Embase, and China National Knowledge Infrastructure databases (up to October, 2017). A total of 11 studied with 997 patients were used to assess the association of NPM expression and patients' overall survival (OS). The hazard ratio (HR) or odds ratio (OR) with its 95% confidence intervals (CI) were calculated to estimate the effect. RESULTS The pooled results indicated that higher expression of NPM was observably correlated with poor OS in solid tumor (HR = 1.85, 95% CI: 1.44-2.38, P < 0.001). Furthermore, high expression of NPM was associated with some phenotypes of tumor aggressiveness, such as tumor stage (4 studies, III/IV vs. I/II, OR = 5.21, 95% CI: 2.72-9.56, P < 0.001), differentiation grade (poor vs. well/moderate, OR = 1.82, 95% CI: 1.01-3.27, P = 0.046). CONCLUSION This meta-analysis indicated that NPM may act as a valuable prognosis biomarker and a potential therapeutic target in human solid tumors.
Collapse
Affiliation(s)
- Siying Chen
- Department of Pharmacy, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 of Yanta west road, Xi'an, 710061, Shaanxi, China
| | - Hairong He
- Clinical Research Center, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 of Yanta west road, Xi'an, 710061, Shaanxi, China
| | - Yan Wang
- Department of Pharmacy, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 of Yanta west road, Xi'an, 710061, Shaanxi, China
| | - Leichao Liu
- Department of Pharmacy, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 of Yanta west road, Xi'an, 710061, Shaanxi, China
| | - Yang Liu
- Department of Pharmacy, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 of Yanta west road, Xi'an, 710061, Shaanxi, China
| | - Haisheng You
- Department of Pharmacy, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 of Yanta west road, Xi'an, 710061, Shaanxi, China
| | - Yalin Dong
- Department of Pharmacy, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 of Yanta west road, Xi'an, 710061, Shaanxi, China.
| | - Jun Lyu
- Clinical Research Center, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 of Yanta west road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
11
|
Zhao XZ, Wu XH. A small compound spindlactone A sensitizes human endometrial cancer cells to TRAIL-induced apoptosis via the inhibition of NAD(P)H dehydrogenase quinone 1. Onco Targets Ther 2018; 11:3609-3617. [PMID: 29950865 PMCID: PMC6016593 DOI: 10.2147/ott.s165723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Introduction Spindlactone A (SPL-A) is a novel small molecule inhibitor of TACC3 that selectively
inhibits the nucleation of centrosome microtubules and induces mitotic arrest in ovarian
cancer cells. SPL-A is derived from dicoumarol which inhibits the activity of NAD(P)H
dehydrogenase quinone oxidoreductase 1 (NQO1). This study aimed to investigate the
mechanism by which SPL-A enhances TRAIL-induced apoptosis in endometrial carcinoma
cells. Materials and methods Endometrial carcinoma cells were treated with SPL-A and/or TRAIL, and the apoptosis and
protein expression in the treated cells were examined. Results Combined treatment with SPL-A and TRAIL significantly induced apoptosis in various
human endometrial carcinoma cells, but not in normal human endometrial stromal cells and
endometrial epithelial cells. Notably, both NQO1 inhibitor ES936 and NQO1 siRNA enhanced
TRAIL-induced apoptosis of endometrial carcinoma cells. Furthermore, SPL-A downregulated
the expression of c-FLIP, Bcl-2, Bcl-xl, and Mcl-1, while increasing p53 expression. Conclusion In particular, luciferase assay showed that SPL-A inhibited Bcl-2 promoter activity,
and p53 inhibitor PFT-α could reverse the effect of SPL-A on Bcl-2 expression.
Moreover, Bcl-2 overexpression inhibited the apoptosis induced by SPL-A and TRAIL. Taken
together, our results suggest that SPL-A sensitizes endometrial cancer cells to
TRAIL-induced apoptosis via the regulation of apoptosis-related proteins and the
inhibition of NQO1 activity.
Collapse
Affiliation(s)
- Xiang-Zhai Zhao
- Department of Gynecology and Obstetrics, The Third Hospital of Hebei Medical University, Hebei 050051, People's Republic of China
| | - Xiao-Hua Wu
- Department of Gynecology and Obstetrics, Hebei Medical University, Hebei 050017, People’s Republic of China.,Department of Gynecology and Obstetrics, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Medical University, Hebei 050000, People's Republic of China
| |
Collapse
|
12
|
Parl FF, Crooke PS, Plummer WD, Dupont WD. Genomic-Epidemiologic Evidence That Estrogens Promote Breast Cancer Development. Cancer Epidemiol Biomarkers Prev 2018; 27:899-907. [PMID: 29789325 DOI: 10.1158/1055-9965.epi-17-1174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/23/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022] Open
Abstract
Background: Estrogens are a prime risk factor for breast cancer, yet their causal relation to tumor formation remains uncertain. A recent study of 560 breast cancers identified 82 genes with 916 point mutations as drivers in the genesis of this malignancy. Because estrogens play a major role in breast cancer development and are also known to regulate the expression of numerous genes, we hypothesize that the 82 driver genes are likely to be influenced by estrogens, such as 17ß-estradiol (E2), and the estrogen receptor ESR1 (ERα). Because different types of tumors are characterized by unique sets of cancer driver genes, we also argue that the fraction of driver genes regulated by E2-ESR1 is lower in malignancies not associated with estrogens, e.g., acute myeloid leukemia (AML).Methods: We performed a literature search of each driver gene to determine its E2-ESR1 regulation.Results: Fifty-three of the 82 driver genes (64.6%) identified in breast cancers showed evidence of E2-ESR1 regulation. In contrast, only 19 of 54 mutated driver genes (35.2%) identified in AML were linked to E2-ESR1. Among the 916 driver mutations found in breast cancers, 813 (88.8%) were linked to E2-ESR1 compared with 2,046 of 3,833 in AML (53.4%).Conclusions: Risk assessment revealed that mutations in estrogen-regulated genes are much more likely to be associated with elevated breast cancer risk, while mutations in unregulated genes are more likely to be associated with AML.Impact: These results increase the plausibility that estrogens promote breast cancer development. Cancer Epidemiol Biomarkers Prev; 27(8); 899-907. ©2018 AACR.
Collapse
Affiliation(s)
- Fritz F Parl
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee.
| | - Philip S Crooke
- Department of Mathematics, Vanderbilt University, Nashville, Tennessee
| | - W Dale Plummer
- Department of Health Policy, Vanderbilt University, Nashville, Tennessee
| | - William D Dupont
- Department of Health Policy, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
13
|
Zhou YX, Wang C, Mao LW, Wang YL, Xia LQ, Zhao W, Shen J, Chen J. Long noncoding RNA HOTAIR mediates the estrogen-induced metastasis of endometrial cancer cells via the miR-646/NPM1 axis. Am J Physiol Cell Physiol 2018; 314:C690-C701. [PMID: 29466670 DOI: 10.1152/ajpcell.00222.2017] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
LncRNA homeobox (HOX) transcript antisense intergenic RNA (HOTAIR) has been confirmed to be involved in the tumorigenic progression of endometrial carcinoma (EC). However, the molecular mechanisms of HOTAIR in EC are not fully elucidated. The expression of HOTAIR and miR-646 in human EC tissues was determined by qRT-PCR. The effect of miR-646 on EC cells was assessed by the cell viability, migration, and invasion using CCK-8 assays and transwell assays. RNA-binding protein immunoprecipitation assays and RNA pull-down assays were performed to explore the interaction between HOTAIR and miR-646. The regulation of miR-646 on nucleophosmin 1 (NPM1) was tested using luciferase reporter assays. MiR-646 expression was significantly decreased both in human EC tissues ( n = 23) and cell lines (Ishikawa and HEC-1-A) compared with the control. Moreover, miR-646 expression was negatively related to HOTAIR in human EC tissues ( n = 23). Our results also showed that miR-646 overexpression considerably attenuated the E2-promoted viability, migration, and invasion of Ishikawa and HEC-1-A cells in vitro. In addition, HOTAIR was confirmed to regulate the viability, migration, and invasion of EC cells through negative regulating miR-646. More importantly, we also demonstrated that NPM1 was the target of miR-646, and HOTAIR promoted NPM1 expression through interacting with miR-646 in EC cells. Taken together, our findings presented that HOTAIR could regulate NPM1 via interacting with miR-646, thereby governing the viability, migration, and invasion of EC cells.
Collapse
Affiliation(s)
- Yun-Xiao Zhou
- Department of Gynaecology, The First Affiliated Hospital of Zhejiang University Medical College , Zhejiang , China
| | - Chuan Wang
- Department of Gynaecology, JinYun County People's Hospital , Zhejiang , China
| | - Li-Wei Mao
- Department of Obstetrics and Gynaecology, Jingning County People's Hospital , Zhejiang , China
| | - Yan-Li Wang
- Department of Pathology, The First Affiliated Hospital of Zhejiang University Medical College , Zhejiang , China
| | - Li-Qun Xia
- Department of Gynaecology, The First Affiliated Hospital of Zhejiang University Medical College , Zhejiang , China
| | - Wei Zhao
- Department of Gynaecology, The First Affiliated Hospital of Zhejiang University Medical College , Zhejiang , China
| | - Jie Shen
- Department of Gynaecology, The First Affiliated Hospital of Zhejiang University Medical College , Zhejiang , China
| | - Jun Chen
- Department of Urology, The First Affiliated Hospital of Zhejiang University Medical College , Zhejiang , China
| |
Collapse
|
14
|
Destouches D, Sader M, Terry S, Marchand C, Maillé P, Soyeux P, Carpentier G, Semprez F, Céraline J, Allory Y, Courty J, De La Taille A, Vacherot F. Implication of NPM1 phosphorylation and preclinical evaluation of the nucleoprotein antagonist N6L in prostate cancer. Oncotarget 2016; 7:69397-69411. [PMID: 26993766 PMCID: PMC5342486 DOI: 10.18632/oncotarget.8043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/29/2016] [Indexed: 01/03/2023] Open
Abstract
Despite the advent of several new treatment options over the past years, advanced/metastatic prostate carcinoma (PCa) still remains incurable, which justifies the search for novel targets and therapeutic molecules. Nucleophosmin (NPM1) is a shuttling nucleoprotein involved in tumor growth and its targeting could be a potential approach for cancer therapy. We previously demonstrated that the multivalent pseudopeptide N6L binds to NPM1 potently affecting in vitro and in vivo tumor cell growth of various tumor types as well as angiogenesis. Furthermore, NPM1 binds to androgen receptor (AR) and modulate its activity. In this study, we first investigated the implication of the NPM1 and its Thr199 and Thr234/237 phosphorylated forms in PCa. We showed that phosphorylated forms of NPM1 interact with androgen receptor (AR) in nucleoplasm. N6L treatment of prostate tumor cells led to inhibition of NPM1 phosphorylation in conjunction with inhibition of AR activity. We also found that total and phosphorylated NPM1 were overexpressed in castration-resistant PCa. Assessment of the potential therapeutic role of N6L in PCa indicated that N6L inhibited tumor growth both in vitro and in vivo when used either alone or in combination with the standard-of-care first- (hormonotherapy) and second-line (docetaxel) treatments for advanced PCa. Our findings reveal the role of Thr199 and Thr234/237 phosphorylated NPM1 in PCa progression and define N6L as a new drug candidate for PCa therapy.
Collapse
Affiliation(s)
- Damien Destouches
- Université Paris-Est, UPEC, Créteil, F-94000, France
- INSERM, U955, Equipe 7, Créteil, F-94000, France
- CNRS, ERL 9215, Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), Créteil, F-94000, France
| | - Maha Sader
- Université Paris-Est, UPEC, Créteil, F-94000, France
- CNRS, ERL 9215, Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), Créteil, F-94000, France
| | - Stéphane Terry
- INSERM, U1186, Gustave Roussy Cancer Campus, Villejuif, F-94805, France
| | - Charles Marchand
- Université Paris-Est, UPEC, Créteil, F-94000, France
- INSERM, U955, Equipe 7, Créteil, F-94000, France
| | - Pascale Maillé
- Université Paris-Est, UPEC, Créteil, F-94000, France
- INSERM, U955, Equipe 7, Créteil, F-94000, France
- AP-HP, Hôpital H. Mondor – A. Chenevier, Département de Pathologie, Créteil, F-94000, France
| | - Pascale Soyeux
- Université Paris-Est, UPEC, Créteil, F-94000, France
- INSERM, U955, Equipe 7, Créteil, F-94000, France
| | - Gilles Carpentier
- Université Paris-Est, UPEC, Créteil, F-94000, France
- CNRS, ERL 9215, Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), Créteil, F-94000, France
| | - Fannie Semprez
- Université Paris-Est, UPEC, Créteil, F-94000, France
- INSERM, U955, Equipe 7, Créteil, F-94000, France
| | - Jocelyn Céraline
- INSERM, U1113, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, F-67000, France
| | - Yves Allory
- Université Paris-Est, UPEC, Créteil, F-94000, France
- INSERM, U955, Equipe 7, Créteil, F-94000, France
- AP-HP, Hôpital H. Mondor – A. Chenevier, Département de Pathologie, Créteil, F-94000, France
| | - José Courty
- Université Paris-Est, UPEC, Créteil, F-94000, France
- CNRS, ERL 9215, Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), Créteil, F-94000, France
| | - Alexandre De La Taille
- Université Paris-Est, UPEC, Créteil, F-94000, France
- INSERM, U955, Equipe 7, Créteil, F-94000, France
- AP-HP, Hôpital H. Mondor – A. Chenevier, Département d'Urologie, Créteil, F-94000, France
| | - Francis Vacherot
- Université Paris-Est, UPEC, Créteil, F-94000, France
- INSERM, U955, Equipe 7, Créteil, F-94000, France
| |
Collapse
|
15
|
Box JK, Paquet N, Adams MN, Boucher D, Bolderson E, O'Byrne KJ, Richard DJ. Nucleophosmin: from structure and function to disease development. BMC Mol Biol 2016; 17:19. [PMID: 27553022 PMCID: PMC4995807 DOI: 10.1186/s12867-016-0073-9] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/16/2016] [Indexed: 12/11/2022] Open
Abstract
Nucleophosmin (NPM1) is a critical cellular protein that has been implicated in a number of pathways including mRNA transport, chromatin remodeling, apoptosis and genome stability. NPM1 function is a critical requirement for normal cellular biology as is underlined in cancer where NPM1 is commonly overexpressed, mutated, rearranged and sporadically deleted. Consistent with a multifunctional role within the cell, NPM1 can function not only as a proto-oncogene but also as a tumor suppressor. The aim of this review is to look at the less well-described role of NPM1 in the DNA repair pathways as well as the role of NPM1 in the regulation of apoptosis and its mutation in cancers.
Collapse
Affiliation(s)
- Joseph K Box
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Nicolas Paquet
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia.
| | - Mark N Adams
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Didier Boucher
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Emma Bolderson
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kenneth J O'Byrne
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Derek J Richard
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
16
|
Makker A, Goel MM. Tumor progression, metastasis, and modulators of epithelial-mesenchymal transition in endometrioid endometrial carcinoma: an update. Endocr Relat Cancer 2016; 23:R85-R111. [PMID: 26538531 DOI: 10.1530/erc-15-0218] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2015] [Indexed: 12/17/2022]
Abstract
Endometrioid endometrial carcinoma (EEC), also known as type 1 endometrial cancer (EC), accounts for over 70-80% of all cases that are usually associated with estrogen stimulation and often develops in a background of atypical endometrial hyperplasia. The increased incidence of EC is mainly confined to this type of cancer. Most EEC patients present at an early stage and generally have a favorable prognosis; however, up to 30% of EEC present as high risk tumors, which have invaded deep into the myometrium at diagnosis and progressively lead to local or extra pelvic metastasis. The poor survival of advanced EC is related to the lack of effective therapies, which can be attributed to poor understanding of the molecular mechanisms underlying the progression of disease toward invasion and metastasis. Multiple lines of evidence illustrate that epithelial-mesenchymal transition (EMT)-like events are central to tumor progression and malignant transformation, endowing the incipient cancer cell with invasive and metastatic properties. The aim of this review is to summarize the current knowledge on molecular events associated with EMT in progression, invasion, and metastasis of EEC. Further, the role of epigenetic modifications and microRNA regulation, tumor microenvironment, and microcystic elongated and fragmented glands like invasion pattern have been discussed. We believe this article may perhaps stimulate further research in this field that may aid in identifying high risk patients within this clinically challenging patient group and also lead to the recognition of novel targets for the prevention of metastasis - the most fatal consequence of endometrial carcinogenesis.
Collapse
Affiliation(s)
- Annu Makker
- Post Graduate Department of PathologyKing George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Madhu Mati Goel
- Post Graduate Department of PathologyKing George's Medical University, Lucknow 226003, Uttar Pradesh, India
| |
Collapse
|