1
|
Zhao Y, Li Q, Li J, Cui Y, Lu Z. Expression and clinical significance of FANCI gene in pan-cancer: a comprehensive analysis based on multi-omics data. Front Genet 2025; 16:1542888. [PMID: 40417238 PMCID: PMC12098372 DOI: 10.3389/fgene.2025.1542888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/07/2025] [Indexed: 05/27/2025] Open
Abstract
Introduction The FANCI gene, an essential element of the Fanconi anemia pathway, has been associated with a variety of cancer types. This investigation seeks to clarify the expression profiles, prognostic relevance, and diagnostic capabilities of FANCI across multiple malignancies, along with its links to immune cell infiltration, genetic alterations, protein-protein interactions, and functional roles. Methods By utilizing data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases, we conducted a comprehensive analysis of FANCI mRNA expression using R software and visualized the results with the ggplot2 package. Prognostic and diagnostic evaluations were conducted using Xiantao tools to produce survival and receiver operating characteristic (ROC) curves. The examination of genetic variation was facilitated through cBioPortal, while DNA methylation and mRNA modifications were analyzed utilizing UALCAN and SangerBox 3.0. Correlations with immune responses were assessed via the EPIC platform and SangerBox 3.0. Additionally, we constructed protein-protein interaction networks employing the STRING database and Cytoscape software. Functional enrichment analyses encompassed Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA). The CancerSEA database was also utilized for single-cell level investigation of FANCI's association with the functional states of cancer. Results Our findings reveal that FANCI is significantly upregulated in the majority of tumor types when compared to normal tissues, with increased protein levels observed in several cancers, including colorectal adenocarcinoma (COAD) and pancreatic adenocarcinoma (PAAD). Elevated FANCI expression is associated with unfavorable prognoses in cancers such as adrenocortical carcinoma (ACC) and liver hepatocellular carcinoma (LIHC). Methylation assessments demonstrated a robust inverse correlation between FANCI promoter methylation and its expression in LIHC. Moreover, FANCI expression was found to be connected to immune cell infiltration and tumor mutation burden in select cancers. Discussion In summary, FANCI presents as a promising biomarker for cancer prognosis and diagnosis, with potential implications for therapeutic interventions. Subsequent investigations should concentrate on elucidating the mechanistic functions of FANCI in cancer development and assessing its viability as a therapeutic target.
Collapse
Affiliation(s)
- Yunzheng Zhao
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingyu Li
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiajun Li
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - YiFeng Cui
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaoyang Lu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
Kaplan Ö, Gökşen Tosun N. Molecular pathway of anticancer effect of next-generation HSP90 inhibitors XL-888 and Debio0932 in neuroblastoma cell line. Med Oncol 2024; 41:194. [PMID: 38958814 PMCID: PMC11222184 DOI: 10.1007/s12032-024-02428-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Neuroblastoma is a common nervous system tumor in childhood, and current treatments are not adequate. HSP90 is a molecular chaperone protein that plays a critical role in the regulation of cancer-related proteins. HSP90 inhibition may exert anticancer effects by targeting cancer-related processes such as tumor growth, cell proliferation, metastasis, and apoptosis. Therefore, HSP90 inhibition is a promising strategy in the treatment of various types of cancer, and the development of next-generation inhibitors could potentially lead to more effective and safer treatments. XL-888 and Debio0932 is a next-generation HSP90 inhibitor and can inhibit the correct folding and stabilization of client proteins that cancer-associated HSP90 helps to fold correctly. In this study, we aimed to investigate the comprehensive molecular pathways of the anticancer activity of XL-888 and Debio0932 in human neuroblastoma cells SH-SY5Y. The cytotoxic effects of XL-888 and Debio0932 on the neuroblastoma cell line SH-SY5Y cells were evaluated by MTT assay. Then, the effect of these HSP90 inhibitors on the expression of important genes in cancer was revealed by Quantitative Real Time Polymerase Chain Reaction (qRT-PCR) method. The qRT-PCR data were evaluated using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) biological process tools. Finally, the effect of HSP90 inhibitors on HSP27, HSP70 and HSP90 protein expression was investigated by Western blotting analysis. The results revealed that XL-888 and Debio0932 had a role in regulating many cancer-related pathways such as migration, invasion, metastasis, angiogenesis, and apoptosis in SH-SY5Y cells. In conclusion, it shows that HSP90 inhibitors can be considered as a promising candidate in the treatment of neuroblastoma and resistance to chemotherapy.
Collapse
Affiliation(s)
- Özlem Kaplan
- Department of Genetics and Bioengineering, Rafet Kayış Faculty of Engineering, Alanya Alaaddin Keykubat University, Antalya, Türkiye.
| | - Nazan Gökşen Tosun
- Department of Medical Services and Techniques, Tokat Gaziosmanpaşa University, Tokat Vocational School of Health Services, Tokat, Türkiye.
| |
Collapse
|
3
|
Zornić S, Simović Marković B, Franich AA, Janjić GV, Jadranin MB, Avdalović J, Rajković S, Živković MD, Arsenijević NN, Radosavljević GD, Pantić J. Characterization, modes of interactions with DNA/BSA biomolecules and anti-tumor activity of newly synthesized dinuclear platinum(II) complexes with pyridazine bridging ligand. J Biol Inorg Chem 2024; 29:51-73. [PMID: 38099936 DOI: 10.1007/s00775-023-02030-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/10/2023] [Indexed: 04/10/2024]
Abstract
Platinum-based drugs are widely recognized efficient anti-tumor agents, but faced with multiple undesirable effects. Here, four dinuclear platinum(II) complexes, [{Pt(1,2-pn)Cl}2(μ-pydz)]Cl2 (C1), [{Pt(ibn)Cl}2(μ-pydz)]Cl2 (C2), [{Pt(1,3-pn)Cl}2(μ-pydz)]Cl2 (C3) and [{Pt(1,3-pnd)Cl}2(μ-pydz)]Cl2 (C4), were designed (pydz is pyridazine, 1,2-pn is ( ±)-1,2-propylenediamine, ibn is 1,2-diamino-2-methylpropane, 1,3-pn is 1,3-propylenediamine, and 1,3-pnd is 1,3-pentanediamine). Interactions and binding ability of C1-C4 complexes with calf thymus DNA (CT-DNA) has been monitored by viscosity measurements, UV-Vis, fluorescence emission spectroscopy and molecular docking. Binding affinities of C1-C4 complexes to the bovine serum albumin (BSA) has been monitored by fluorescence emission spectroscopy. The tested complexes exhibit variable cytotoxicity toward different mouse and human tumor cell lines. C2 shows the most potent cytotoxicity, especially against mouse (4T1) and human (MDA-MD468) breast cancer cells in the dose- and time-dependent manner. C2 induces 4T1 and MDA-MD468 cells apoptosis, further documented by the accumulation of cells at sub-G1 phase of cell cycle and increase of executive caspase 3 and caspase 9 levels in 4T1 cells. C2 exhibits anti-proliferative effect through the reduction of cyclin D3 and cyclin E expression and elevation of inhibitor p27 level. Also, C2 downregulates c-Myc and phosphorylated AKT, oncogenes involved in the control of tumor cell proliferation and death. In order to measure the amount of platinum(II) complexes taken up by the cells, the cellular platinum content were quantified. However, C2 failed to inhibit mouse breast cancer growth in vivo. Chemical modifications of tested platinum(II) complexes might be a valuable approach for the improvement of their anti-tumor activity, especially effects in vivo.
Collapse
Affiliation(s)
- Sanja Zornić
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia
- Department of Microbiology, University Clinical Center Kragujevac, Zmaj Jovina 30, 34000, Kragujevac, Serbia
| | - Bojana Simović Marković
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia
| | - Andjela A Franich
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Goran V Janjić
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia
| | - Milka B Jadranin
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia
| | - Jelena Avdalović
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia
| | - Snežana Rajković
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Marija D Živković
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia
| | - Nebojša N Arsenijević
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia
| | - Gordana D Radosavljević
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia.
| | - Jelena Pantić
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia.
| |
Collapse
|
4
|
Głód P, Borski N, Gogola-Mruk J, Opydo M, Ptak A. Bisphenol S and F affect cell cycle distribution and steroidogenic activity of human ovarian granulosa cells, but not primary granulosa tumour cells. Toxicol In Vitro 2023; 93:105697. [PMID: 37717640 DOI: 10.1016/j.tiv.2023.105697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Bisphenol S (BPS) and F (BPF), a new generation of bisphenols (BPs), are the main substitutes for bisphenol A (BPA). Both have been detected in human body fluids. Importantly, bisphenols are structurally similar to oestrogen, the main sex hormone in females. Because bisphenols bind to nuclear oestrogen receptors (ESR1 and ESR2) and to membrane G-coupled receptor 30 (GPR30), they can disrupt ovarian function. Here, we reveal the molecular mechanism underlying the effects of BPS and BPF on the cell cycle and steroidogenesis in the human ovarian granulosa cell (GC) line HGrC1. We show that BPS and BPF arrest GCs at the G0/G1 phase by inducing expression of cyclin D2, an important event that triggers maximal steroid synthesis in response to the BPS and BPF. We used pharmacological inhibitors to show that BPS and BPF, despite acting via already described pathways, also stimulate steroid secretion via IGF1R pathways in HGrC1 cells. Moreover, we identified differences critical to bisphenols response between normal (HGrC1) and primary tumour granulosa (COV434) cells, that enable COV434 cells to be more resistant to bisphenols. Overall, the data suggest that BPS and BPF drive steroidogenesis in human ovarian GCs by affecting the cell cycle. Furthermore, the results indicate that BPS and BPF act not only via the classical and non-classical ESR pathways, but also via the IGF1R pathway.
Collapse
Affiliation(s)
- Paulina Głód
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland; Doctoral School of Exact and Natural Sciences, Faculty of Biology, Institute of Zoology and Biomedical Sciences, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Norbert Borski
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Justyna Gogola-Mruk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Małgorzata Opydo
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Anna Ptak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| |
Collapse
|
5
|
Marynowicz W, Borski N, Flis Z, Ptak A, Molik E. Orotic acid induces apoptotic death in ovarian adult granulosa tumour cells and increases mitochondrial activity in normal ovarian granulosa cells. Reprod Biol 2023; 23:100790. [PMID: 37478515 DOI: 10.1016/j.repbio.2023.100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Orotic acid (OA) is a natural product that acts as a precursor in the pyrimidine nucleotide biosynthesis pathway. Most studies concerning administration of OA focus on its therapeutic effects; however, its effect on tumours is unclear. We aimed to determine whether treatment with OA influences the viability and apoptosis of normal (HGrC1) and tumour-derived (KGN) human ovarian granulosa cells. The effects of OA (10-250 μM) on viability and apoptosis of both cell lines were determined by using alamarBlue and assessing caspase-3/7 activity, respectively. Annexin V binding and loss of membrane integrity were evaluated in KGN cells. The cell cycle and proliferation of HGrC1 cells were assessed by performing flow cytometric and DNA content analyses, respectively. The influence of OA (10 and 100 μM) on cell cycle- and apoptosis-related gene expression was assessed by RT-qPCR in both cell lines. Mitochondrial activity was analysed by JC-1 staining in HGrC1 cells. In KGN cells, OA reduced viability and increased caspase-3/7 activity, but did not affect mRNA expression of Caspase 3, BAX, and BCL2. OA enhanced proliferation and mitochondrial activity in HGrC1 cells without activating apoptosis. This study demonstrates that the anti-cancer properties of OA in ovarian granulosa tumour cells are not related to changes in apoptosis-associated gene expression, but to increased caspase-3/7 activity. Thus, OA is a promising therapeutic agent for ovarian granulosa tumours. Further, our results suggest that differences in basal expression of cell cycle- and apoptosis-related genes between the two cell lines are responsible for their different responses to OA.
Collapse
Affiliation(s)
- Weronika Marynowicz
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Norbert Borski
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Zuzanna Flis
- Department of Animal Nutrition and Biotechnology, and Fisheries, Faculty of Animal Science, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland
| | - Anna Ptak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Edyta Molik
- Department of Animal Nutrition and Biotechnology, and Fisheries, Faculty of Animal Science, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland.
| |
Collapse
|
6
|
Silconi ZB, Rosic V, Benazic S, Radosavljevic G, Mijajlovic M, Pantic J, Ratkovic ZR, Radic G, Arsenijevic A, Milovanovic M, Arsenijevic N, Milovanovic J. The Pt(S-pr-thiosal)2 and BCL1 Leukemia Lymphoma: Antitumor Activity In Vitro and In Vivo. Int J Mol Sci 2022; 23:ijms23158161. [PMID: 35897737 PMCID: PMC9332548 DOI: 10.3390/ijms23158161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
B cell malignancies are, despite the development of targeted therapy in a certain percentage of the patients still a chronic disease with relapses, requiring multiple lines of therapy. Regimens that include platinum-based drugs provide high response rates in different B cell lymphomas, high-risk chronic lymphocytic leukemia (CLL), and devastating complication of CLL, Richter’s syndrome. The aim of this study was to explore the potential antitumor activity of previously synthetized platinum(IV) complex with alkyl derivatives of thyosalicilc acid, PtCl2(S-pr-thiosal)2, toward murine BCL1 cells and to delineate possible mechanisms of action. The PtCl2(S-pr-thiosal)2 reduced the viability of BCL1 cells in vitro but also reduced the growth of metastases in the leukemia lymphoma model in BALB/c mice. PtCl2(S-pr-thiosal)2 induced apoptosis, inhibited proliferation of BCL1 cells, and induced cell cycle disturbance. Treatment of BCL1 cells with PtCl2(S-pr-thiosal)2 inhibited expression of cyclin D3 and cyclin E and enhanced expression of cyclin-dependent kinase inhibitors p16, p21, and p27 resulting in cell cycle arrest in the G1 phase, reduced the percentage of BCL1 cells in the S phase, and decreased expression of Ki-67. PtCl2(S-pr-thiosal)2 treatment reduced expression of phosphorylated STAT3 and downstream-regulated molecules associated with cancer stemness and proliferation, NANOG, cyclin D3, and c-Myc, and expression of phosphorylated NFκB in vitro and in vivo. In conclusion, PtCl2(S-pr-thiosal)2 reduces STAT3 and NFκB phosphorylation resulting in inhibition of BCL1 cell proliferation and the triggering of apoptotic cell death.
Collapse
Affiliation(s)
| | - Vesna Rosic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Sasa Benazic
- Department of Transfusiology, Pula General Hospital, 52100 Pula, Croatia;
| | - Gordana Radosavljevic
- Center for Molecular Medicine & Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (G.R.); (J.P.); (A.A.); (M.M.); (N.A.)
| | - Marina Mijajlovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.M.); (G.R.)
| | - Jelena Pantic
- Center for Molecular Medicine & Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (G.R.); (J.P.); (A.A.); (M.M.); (N.A.)
| | - Zoran R. Ratkovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Gordana Radic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.M.); (G.R.)
| | - Aleksandar Arsenijevic
- Center for Molecular Medicine & Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (G.R.); (J.P.); (A.A.); (M.M.); (N.A.)
| | - Marija Milovanovic
- Center for Molecular Medicine & Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (G.R.); (J.P.); (A.A.); (M.M.); (N.A.)
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine & Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (G.R.); (J.P.); (A.A.); (M.M.); (N.A.)
| | - Jelena Milovanovic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
- Center for Molecular Medicine & Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (G.R.); (J.P.); (A.A.); (M.M.); (N.A.)
- Correspondence: ; Tel.: +381-3430-6800
| |
Collapse
|
7
|
Valdez L, Cheng B, Gonzalez D, Rodriguez R, Campano P, Tsin A, Fang X. Combined treatment with niclosamide and camptothecin enhances anticancer effect in U87 MG human glioblastoma cells. Oncotarget 2022; 13:642-658. [PMID: 35548329 PMCID: PMC9084225 DOI: 10.18632/oncotarget.28227] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Laura Valdez
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
- These authors contributed equally to this work
| | - Benxu Cheng
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
- These authors contributed equally to this work
| | - Daniela Gonzalez
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Reanna Rodriguez
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Paola Campano
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Andrew Tsin
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Xiaoqian Fang
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| |
Collapse
|
8
|
Sharma P, Tiufekchiev S, Lising V, Chung SW, Suk JS, Chung BM. Keratin 19 interacts with GSK3β to regulate its nuclear accumulation and degradation of cyclin D3. Mol Biol Cell 2021; 32:ar21. [PMID: 34406791 PMCID: PMC8693971 DOI: 10.1091/mbc.e21-05-0255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cyclin D3 regulates the G1/S transition and is frequently overexpressed in several cancer types including breast cancer, where it promotes tumor progression. Here we show that a cytoskeletal protein keratin 19 (K19) physically interacts with a serine/threonine kinase GSK3β and prevents GSK3β-dependent degradation of cyclin D3. The absence of K19 allowed active GSK3β to accumulate in the nucleus and degrade cyclin D3. Specifically, the head (H) domain of K19 was required to sustain inhibitory phosphorylation of GSK3β Ser9, prevent nuclear accumulation of GSK3β, and maintain cyclin D3 levels and cell proliferation. K19 was found to interact with GSK3β and K19–GSK3β interaction was mapped out to require Ser10 and Ser35 residues on the H domain of K19. Unlike wildtype K19, S10A and S35A mutants failed to maintain total and nuclear cyclin D3 levels and induce cell proliferation. Finally, we show that the K19–GSK3β-cyclin D3 pathway affected sensitivity of cells toward inhibitors to cyclin-dependent kinase 4 and 6 (CDK4/6). Overall, these findings establish a role for K19 in the regulation of GSK3β-cyclin D3 pathway and demonstrate a potential strategy for overcoming resistance to CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Sarah Tiufekchiev
- Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Victoria Lising
- Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Seung Woo Chung
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231
| | - Jung Soo Suk
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231
| | - Byung Min Chung
- Department of Biology, The Catholic University of America, Washington, DC 20064
| |
Collapse
|
9
|
Agahozo MC, Smid M, van Marion R, Hammerl D, van den Bosch TPP, Timmermans MAM, Heijerman CJ, Westenend PJ, Debets R, Martens JWM, van Deurzen CHM. Transcriptomic Properties of HER2+ Ductal Carcinoma In Situ of the Breast Associate with Absence of Immune Cells. BIOLOGY 2021; 10:768. [PMID: 34440000 PMCID: PMC8389698 DOI: 10.3390/biology10080768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022]
Abstract
The identification of transcriptomic alterations of HER2+ ductal carcinoma in situ (DCIS) that are associated with the density of tumor-infiltrating lymphocytes (TILs) could contribute to optimizing choices regarding the potential benefit of immune therapy. We compared the gene expression profile of TIL-poor HER2+ DCIS to that of TIL-rich HER2+ DCIS. Tumor cells from 11 TIL-rich and 12 TIL-poor DCIS cases were micro-dissected for RNA isolation. The Ion AmpliSeq Transcriptome Human Gene Expression Kit was used for RNA sequencing. After normalization, a Mann-Whitney rank sum test was used to analyze differentially expressed genes between TIL-poor and TIL-rich HER2+ DCIS. Whole tissue sections were immunostained for validation of protein expression. We identified a 29-gene expression profile that differentiated TIL-rich from TIL-poor HER2+ DCIS. These genes included CCND3, DUSP10 and RAP1GAP, which were previously described in breast cancer and cancer immunity and were more highly expressed in TIL-rich DCIS. Using immunohistochemistry, we found lower protein expression in TIL-rich DCIS. This suggests regulation of protein expression at the posttranslational level. We identified a gene expression profile of HER2+ DCIS cells that was associated with the density of TILs. This classifier may guide towards more rationalized choices regarding immune-mediated therapy in HER2+ DCIS, such as targeted vaccine therapy.
Collapse
Affiliation(s)
- Marie Colombe Agahozo
- Department of Pathology, Erasmus MC Cancer Institute, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (M.C.A.); (R.v.M.); (T.P.P.v.d.B.)
| | - Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (M.S.); (D.H.); (M.A.M.T.); (C.J.H.); (R.D.); (J.W.M.M.)
| | - Ronald van Marion
- Department of Pathology, Erasmus MC Cancer Institute, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (M.C.A.); (R.v.M.); (T.P.P.v.d.B.)
| | - Dora Hammerl
- Department of Medical Oncology, Erasmus MC Cancer Institute, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (M.S.); (D.H.); (M.A.M.T.); (C.J.H.); (R.D.); (J.W.M.M.)
| | - Thierry P. P. van den Bosch
- Department of Pathology, Erasmus MC Cancer Institute, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (M.C.A.); (R.v.M.); (T.P.P.v.d.B.)
| | - Mieke A. M. Timmermans
- Department of Medical Oncology, Erasmus MC Cancer Institute, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (M.S.); (D.H.); (M.A.M.T.); (C.J.H.); (R.D.); (J.W.M.M.)
| | - Chayenne J. Heijerman
- Department of Medical Oncology, Erasmus MC Cancer Institute, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (M.S.); (D.H.); (M.A.M.T.); (C.J.H.); (R.D.); (J.W.M.M.)
| | | | - Reno Debets
- Department of Medical Oncology, Erasmus MC Cancer Institute, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (M.S.); (D.H.); (M.A.M.T.); (C.J.H.); (R.D.); (J.W.M.M.)
| | - John W. M. Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (M.S.); (D.H.); (M.A.M.T.); (C.J.H.); (R.D.); (J.W.M.M.)
| | - Carolien H. M. van Deurzen
- Department of Pathology, Erasmus MC Cancer Institute, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (M.C.A.); (R.v.M.); (T.P.P.v.d.B.)
| |
Collapse
|
10
|
Zhang L, Lu SY, Guo R, Ma JX, Tang LY, Wang JJ, Shen CL, Lu LM, Liu J, Wang ZG, Zhang HX. STK10 knockout inhibits cell migration and promotes cell proliferation via modulating the activity of ERM and p38 MAPK in prostate cancer cells. Exp Ther Med 2021; 22:851. [PMID: 34149897 PMCID: PMC8210223 DOI: 10.3892/etm.2021.10283] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/25/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common types of cancer and is a serious threat to men's health due to the high rate of incidence and metastasis. However, the exact underlying pathology of this malignant disease has yet to be fully elucidated. The ezrin-radixin-moesin (ERM) family of proteins are associated with the development and metastasis of various types of cancer. Serine threonine kinase 10 (STK10) is an ERM kinase that is involved in the activation of ERM proteins and serves essential roles in the aggregation and adhesion of lymphocytes. To evaluate the functional roles of STK10 in the pathogenesis of PCa, a STK10-knockout (KO) DU145 PCa cell line was generated using the CRISPR-Cas9 gene editing system, and the effects of STK10 deletion on tumor biological behaviors were further analyzed. The present data suggested that STK10 KO promoted PCa cell proliferation by inhibiting p38 MAPK activation and suppressed migration primarily via the inhibition of p38 MAPK signaling and ERM protein activation. To the best of our knowledge, this is the first study to provide evidence that STK10 plays important roles in the proliferation and migration of PCa cells, which will be useful for further investigation into the pathogenesis of this disease.
Collapse
Affiliation(s)
- Lu Zhang
- Research Center for Experimental Medicine, State Key Laboratory of Medical Genomics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Shun-Yuan Lu
- Research Center for Experimental Medicine, State Key Laboratory of Medical Genomics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Rui Guo
- Research Center for Experimental Medicine, State Key Laboratory of Medical Genomics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Jin-Xia Ma
- Research Center for Experimental Medicine, State Key Laboratory of Medical Genomics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Ling-Yun Tang
- Research Center for Experimental Medicine, State Key Laboratory of Medical Genomics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Jin-Jin Wang
- Shanghai Model Organisms Center, Shanghai 201321, P.R. China
| | - Chun-Ling Shen
- Research Center for Experimental Medicine, State Key Laboratory of Medical Genomics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Li-Ming Lu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Jie Liu
- Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Zhu-Gang Wang
- Research Center for Experimental Medicine, State Key Laboratory of Medical Genomics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Hong-Xin Zhang
- Research Center for Experimental Medicine, State Key Laboratory of Medical Genomics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
11
|
Bömer M, Pérez‐Salamó I, Florance HV, Salmon D, Dudenhoffer J, Finch P, Cinar A, Smirnoff N, Harvey A, Devoto A. Jasmonates induce Arabidopsis bioactivities selectively inhibiting the growth of breast cancer cells through CDC6 and mTOR. THE NEW PHYTOLOGIST 2021; 229:2120-2134. [PMID: 33124043 PMCID: PMC8022592 DOI: 10.1111/nph.17031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
Phytochemicals are used often in vitro and in vivo in cancer research. The plant hormones jasmonates (JAs) control the synthesis of specialized metabolites through complex regulatory networks. JAs possess selective cytotoxicity in mixed populations of cancer and normal cells. Here, direct incubation of leaf explants from the non-medicinal plant Arabidopsis thaliana with human breast cancer cells, selectively suppresses cancer cell growth. High-throughput LC-MS identified Arabidopsis metabolites. Protein and transcript levels of cell cycle regulators were examined in breast cancer cells. A synergistic effect by methyljasmonate (MeJA) and by compounds upregulated in the metabolome of MeJA-treated Arabidopsis leaves, on the breast cancer cell cycle, is associated with Cell Division Cycle 6 (CDC6), Cyclin-dependent kinase 2 (CDK2), Cyclins D1 and D3, indicating that key cell cycle components mediate cell viability reduction. Bioactives such as indoles, quinolines and cis-(+)-12-oxophytodienoic acid, in synergy, could act as anticancer compounds. Our work suggests a universal role for MeJA-treatment of Arabidopsis in altering the DNA replication regulator CDC6, supporting conservation, across kingdoms, of cell cycle regulation, through the crosstalk between the mechanistic target of rapamycin, mTOR and JAs. This study has important implications for the identification of metabolites with anti-cancer bioactivities in plants with no known medicinal pedigree and it will have applications in developing disease treatments.
Collapse
Affiliation(s)
- Moritz Bömer
- Department of Biological SciencesPlant Molecular Science and Centre of Systems and Synthetic BiologyRoyal Holloway University of LondonEghamTW20 0EXUK
- Natural Resources InstituteUniversity of GreenwichCentral AvenueChatham MaritimeME4 4TBUK
| | - Imma Pérez‐Salamó
- Department of Biological SciencesPlant Molecular Science and Centre of Systems and Synthetic BiologyRoyal Holloway University of LondonEghamTW20 0EXUK
| | - Hannah V. Florance
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterGeoffrey Pope Building, Stocker RoadExeterEX4 4QDUK
| | - Deborah Salmon
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterGeoffrey Pope Building, Stocker RoadExeterEX4 4QDUK
| | | | - Paul Finch
- Department of Biological SciencesPlant Molecular Science and Centre of Systems and Synthetic BiologyRoyal Holloway University of LondonEghamTW20 0EXUK
| | - Aycan Cinar
- Institute of Environment, Health and SocietiesBrunel University LondonKingston LaneUxbridgeUB8 3PHUK
| | - Nicholas Smirnoff
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterGeoffrey Pope Building, Stocker RoadExeterEX4 4QDUK
| | - Amanda Harvey
- Institute of Environment, Health and SocietiesBrunel University LondonKingston LaneUxbridgeUB8 3PHUK
| | - Alessandra Devoto
- Department of Biological SciencesPlant Molecular Science and Centre of Systems and Synthetic BiologyRoyal Holloway University of LondonEghamTW20 0EXUK
| |
Collapse
|