1
|
Fan Z, Pan H, Qu N, Wang X, Cao L, Chen L, Liu M. LncRNA taurine upregulated gene 1 in liver disease. Clin Chim Acta 2024; 560:119752. [PMID: 38821337 DOI: 10.1016/j.cca.2024.119752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Long non-coding RNAs (lncRNAs) are RNA sequences exceeding 200 nucleotides in length that lack protein-coding capacity and participate in diverse biological processes in the human body, particularly exerting a pivotal role in disease surveillance, diagnosis, and progression. Taurine upregulated gene 1 (TUG1) is a versatile lncRNA, and recent studies have revealed that the aberrant expression or function of TUG1 is intricately linked to the pathogenesis of liver diseases. Consequently, we have summarized the current understanding of the mechanism of TUG1 in liver diseases such as liver fibrosis, fatty liver, cirrhosis, liver injury, hepatitis, and liver cancer. Moreover, mounting evidence suggests that interventions targeting TUG1 or its downstream pathways may hold therapeutic promise for liver diseases. This review elucidates the characteristics, mechanisms, and targets of TUG1 in liver diseases, offering a theoretical basis for the prevention, diagnosis, treatment, and prognostic biomarkers of liver diseases.
Collapse
Affiliation(s)
- Zihao Fan
- School of Pharmaceutical Sciences, Liaoning University, No. 66, Chongshan Mid Road, Shenyang 110036, China
| | - Hao Pan
- School of Pharmaceutical Sciences, Liaoning University, No. 66, Chongshan Mid Road, Shenyang 110036, China
| | - Na Qu
- School of Pharmaceutical Sciences, Liaoning University, No. 66, Chongshan Mid Road, Shenyang 110036, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Liaoning University, No. 66, Chongshan Mid Road, Shenyang 110036, China
| | - Lianrui Cao
- School of Pharmaceutical Sciences, Liaoning University, No. 66, Chongshan Mid Road, Shenyang 110036, China
| | - Lijiang Chen
- School of Pharmaceutical Sciences, Liaoning University, No. 66, Chongshan Mid Road, Shenyang 110036, China.
| | - Mingxia Liu
- School of Pharmaceutical Sciences, Liaoning University, No. 66, Chongshan Mid Road, Shenyang 110036, China.
| |
Collapse
|
2
|
Wu R, Liu W, Yang Q, Zhang J, Hou P, Xiong J, Wu L, Li E. LncTUG1 promotes hepatocellular carcinoma immune evasion via upregulating PD-L1 expression. Sci Rep 2023; 13:16998. [PMID: 37813900 PMCID: PMC10562488 DOI: 10.1038/s41598-023-42948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/16/2023] [Indexed: 10/11/2023] Open
Abstract
HCC is one of the most common malignant tumors worldwide. Although traditional treatment methods have been improved in recent years, the survival rate of HCC patients has not been significantly improved. Immunotherapy has shown extremely high clinical value in a variety of tumors. In this study, we found that TUG1 could regulate the expression of PD-L1 through JAK2/STAT3 to mediate immunosuppression. Here, The expression of TUG1 and PD-L1 in HCC tissues was evaluated through analysis of databases and verified in HCC tissue and HCC cancer cells by qRT-PCR. The effect of TUG1 on tumor immune escape was detected by coculture, and cell viability was detected with a CCK8 assay. The results demonstrated that TUG1 was closely associated with anticancer immunity. TUG1 and PD-L1 were highly expressed in HCC tissues and HCC cancer cells, and high expression of TUG1 and PD-L1 was related to the poor prognosis of HCC patients. In addition, knocking down TUG1 expression could reduce PD-L1 expression and enhance the cancer cell-killing capability of T cells. Downregulating TUG1 expression could also decrease the mRNA and protein expression of JAK2 and STAT3. To sum up, TUG1 and PD-L1 are overexpressed in patients with liver cancer and are related to the poor prognosis of these patients. Silencing TUG1 expression reduced the mRNA and protein expression of PD-L1 by affecting the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Rongshou Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Weiwei Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, 83 Xinqiao Main Street, Chongqing, 400000, People's Republic of China
| | - Qingping Yang
- Department of Assisted Reproductive, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jingling Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Ping Hou
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jianghui Xiong
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Linquan Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Enliang Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
3
|
Eun JW, Cheong JY, Jeong JY, Kim HS. A New Understanding of Long Non-Coding RNA in Hepatocellular Carcinoma-From m 6A Modification to Blood Biomarkers. Cells 2023; 12:2272. [PMID: 37759495 PMCID: PMC10528438 DOI: 10.3390/cells12182272] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
With recent advancements in biological research, long non-coding RNAs (lncRNAs) with lengths exceeding 200 nucleotides have emerged as pivotal regulators of gene expression and cellular phenotypic modulation. Despite initial skepticism due to their low sequence conservation and expression levels, their significance in various biological processes has become increasingly apparent. We provided an overview of lncRNAs and discussed their defining features and modes of operation. We then explored their crucial function in the hepatocarcinogenesis process, elucidating their complex involvement in hepatocellular carcinoma (HCC). The influential role of lncRNAs within the HCC tumor microenvironment is emphasized, illustrating their potential as key modulators of disease dynamics. We also investigated the significant influence of N6-methyladenosine (m6A) modification on lncRNA function in HCC, enhancing our understanding of both their roles and their upstream regulators. Additionally, the potential of lncRNAs as promising biomarkers was discussed in liver cancer diagnosis, suggesting a novel avenue for future research and clinical application. Finally, our work underscored the dual potential of lncRNAs as both contributors to HCC pathogenesis and innovative tools for its diagnosis. Existing challenges and prospective trajectories in lncRNA research are also discussed, emphasizing their potential in advancing liver cancer research.
Collapse
Affiliation(s)
- Jung Woo Eun
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea; (J.W.E.); (J.Y.C.)
| | - Jae Youn Cheong
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea; (J.W.E.); (J.Y.C.)
| | - Jee-Yeong Jeong
- Department of Biochemistry, College of Medicine, Kosin University, Seo-gu, Busan 49267, Republic of Korea;
- Institute for Medical Science, College of Medicine, Kosin University, Seo-gu, Busan 49267, Republic of Korea
| | - Hyung Seok Kim
- Department of Biochemistry, College of Medicine, Kosin University, Seo-gu, Busan 49267, Republic of Korea;
| |
Collapse
|
4
|
Hashemi M, Mirzaei S, Zandieh MA, Rezaei S, Amirabbas Kakavand, Dehghanpour A, Esmaeili N, Ghahremanzade A, Saebfar H, Heidari H, Salimimoghadam S, Taheriazam A, Entezari M, Ahn KS. Long non-coding RNAs (lncRNAs) in hepatocellular carcinoma progression: Biological functions and new therapeutic targets. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:207-228. [PMID: 36584761 DOI: 10.1016/j.pbiomolbio.2022.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/29/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Liver is an important organ in body that performs vital functions such as detoxification. Liver is susceptible to development of cancers, and hepatocellular carcinoma (HCC) is among them. 75-85% of liver cancer cases are related to HCC. Therefore, much attention has been directed towards understanding factors mediating HCC progression. LncRNAs are epigenetic factors with more than 200 nucleotides in length located in both nucleus and cytoplasm and they are promising candidates in cancer therapy. Directing studies towards understanding function of lncRNAs in HCC is of importance. LncRNAs regulate cell cycle progression and growth of HCC cells, and they can also induce/inhibit apoptosis in tumor cells. LncRNAs affect invasion and metastasis in HCC mainly by epithelial-mesenchymal transition (EMT) mechanism. Revealing the association between lncRNAs and downstream signaling pathways in HCC is discussed in the current manuscript. Infectious diseases can affect lncRNA expression in mediating HCC development and then, altered expression level of lncRNA is associated with drug resistance and radio-resistance. Biomarker application of lncRNAs and their role in prognosis and diagnosis of HCC are also discussed to pave the way for treatment of HCC patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sahar Rezaei
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esmaeili
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azin Ghahremanzade
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, University of Milan, Italy
| | - Hajar Heidari
- Department of Biomedical Sciences, School of Public Health University at Albany State University of New York, Albany, NY, 12208, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
SHI WEI, LIN JIANXIA, JIN RONG, XIE XIANJING, LIANG YAN. Expression and function of long non-coding RNA DLX6-AS1 in endometrial cancer. BIOCELL 2023. [DOI: 10.32604/biocell.2023.026037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
6
|
Yip CW, Hon CC, Yasuzawa K, Sivaraman DM, Ramilowski JA, Shibayama Y, Agrawal S, Prabhu AV, Parr C, Severin J, Lan YJ, Dostie J, Petri A, Nishiyori-Sueki H, Tagami M, Itoh M, López-Redondo F, Kouno T, Chang JC, Luginbühl J, Kato M, Murata M, Yip WH, Shu X, Abugessaisa I, Hasegawa A, Suzuki H, Kauppinen S, Yagi K, Okazaki Y, Kasukawa T, de Hoon M, Carninci P, Shin JW. Antisense-oligonucleotide-mediated perturbation of long non-coding RNA reveals functional features in stem cells and across cell types. Cell Rep 2022; 41:111893. [PMID: 36577377 DOI: 10.1016/j.celrep.2022.111893] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/30/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022] Open
Abstract
Within the scope of the FANTOM6 consortium, we perform a large-scale knockdown of 200 long non-coding RNAs (lncRNAs) in human induced pluripotent stem cells (iPSCs) and systematically characterize their roles in self-renewal and pluripotency. We find 36 lncRNAs (18%) exhibiting cell growth inhibition. From the knockdown of 123 lncRNAs with transcriptome profiling, 36 lncRNAs (29.3%) show molecular phenotypes. Integrating the molecular phenotypes with chromatin-interaction assays further reveals cis- and trans-interacting partners as potential primary targets. Additionally, cell-type enrichment analysis identifies lncRNAs associated with pluripotency, while the knockdown of LINC02595, CATG00000090305.1, and RP11-148B6.2 modulates colony formation of iPSCs. We compare our results with previously published fibroblasts phenotyping data and find that 2.9% of the lncRNAs exhibit a consistent cell growth phenotype, whereas we observe 58.3% agreement in molecular phenotypes. This highlights that molecular phenotyping is more comprehensive in revealing affected pathways.
Collapse
Affiliation(s)
- Chi Wai Yip
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Chung-Chau Hon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Kayoko Yasuzawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Divya M Sivaraman
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India
| | - Jordan A Ramilowski
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa 236-0004, Japan
| | - Youtaro Shibayama
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Saumya Agrawal
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Anika V Prabhu
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Callum Parr
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Jessica Severin
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yan Jun Lan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Josée Dostie
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, QC, Canada
| | - Andreas Petri
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen 2450, Denmark
| | | | - Michihira Tagami
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Masayoshi Itoh
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | | | - Tsukasa Kouno
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Jen-Chien Chang
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Joachim Luginbühl
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Masaki Kato
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Mitsuyoshi Murata
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Wing Hin Yip
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Xufeng Shu
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Imad Abugessaisa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Akira Hasegawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Harukazu Suzuki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen 2450, Denmark
| | - Ken Yagi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yasushi Okazaki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Takeya Kasukawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Michiel de Hoon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Human Technopole, via Rita Levi Montalcini 1, Milan, Italy
| | - Jay W Shin
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore.
| |
Collapse
|
7
|
Farzaneh M, Ghasemian M, Ghaedrahmati F, Poodineh J, Najafi S, Masoodi T, Kurniawan D, Uddin S, Azizidoost S. Functional roles of lncRNA-TUG1 in hepatocellular carcinoma. Life Sci 2022; 308:120974. [PMID: 36126725 DOI: 10.1016/j.lfs.2022.120974] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
Hepatocellular carcinoma (HCC) or hepatoma is malignant cancer that starts from the main liver cells. Although various classical methods have been used for patients with HCC, various molecular mechanisms involved in HCC progression should be invested. Previous studies demonstrated that abnormal expression of long non-coding RNAs (lncRNAs) presented important roles in the pathogenesis of HCC cells. LncRNA TUG1 was found to mediate HCC cell growth, EMT, and metastasis. Therefore, targeting TUG1 and its downstream genes may be a suitable approach for patients with HCC. In this review, we summarized the potential roles of TUG1 in HCC.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Ghasemian
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jafar Poodineh
- Department of Clinical Biochemistry, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tariq Masoodi
- Cancer Research Department, Sidra Medicine, Doha 26999, Qatar
| | - Dedy Kurniawan
- Laboratory Animal and Stem Cells, PT Bio Farma (Persero), Bandung 40161, West Java, Indonesia
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
8
|
Guo Z, Zhu Z. Comprehensive analysis to identify noncoding RNAs mediated upregulation of maternal embryonic leucine zipper kinase (MELK) correlated with poor prognosis in hepatocellular. Aging (Albany NY) 2022; 14:3973-3988. [PMID: 35511171 PMCID: PMC9134958 DOI: 10.18632/aging.204059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 04/22/2022] [Indexed: 12/09/2022]
Abstract
Object: Maternal embryonic leucine zipper kinase (MELK) is involved in the development and progression of various cancers. This work investigated the usefulness of MELK in the prediction of hepatocellular carcinoma (HCC) prognosis. Methods: Information on MELK expression was obtained by pan-cancer analysis using The Cancer Genome Atlas (TCGA) database. The TCGA-liver hepatic cancer (TCGA-LIHC), Oncomine datasets, International Cancer Genome Consortium (ICGC) datasets were used to investigate MELK expression in HCC. The prognostic roles of MELK in HCC were assessed by univariate and multivariate survival analyses. The underlying mechanism for noncoding RNAs (ncRNAs) involved in MELK expression was investigated by in silico studies, correlation, methylation, and survival analyses. The relationships between MELK expression and immune cells, immune markers, and checkpoint markers were also analyzed. Results: (1) MELK was identified as an independent predictor of overall survival (OS) in HCC patients (MELK high vs. low expression, HR 2.469; 95% CI 1.217–5.008; p = 0.012) in a multivariate Cox analysis, with a concordance index (C-index) value of 0.727 (95% CI 0.750–0.704). (2) The noncoding RNA miR3142HG and the LINC00265/has-miR-101-3p axis were found to regulate MELK expression in HCC tissue. (3) MELK levels were linked to various immune functions, including tumor infiltration and the expression of immune checkpoints and biomarkers in HCC. Conclusion: MELK may have an oncogenic function in HCC and was found to be up-regulated by ncRNAs and associated with immune cell infiltration and unfavorable prognosis.
Collapse
Affiliation(s)
- ZiYi Guo
- Department of Radiology, The First Affiliated Hospital of JinZhou Medical University, Jinzhou, China
| | - Zhitu Zhu
- Department of Clinical Trial, Institute of Clinical Bioinformatics, Cancer Center of Jinzhou Medical University, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
9
|
LncRNA HOTTIP facilitates osteogenic differentiation in bone marrow mesenchymal stem cells and induces angiogenesis via interacting with TAF15 to stabilize DLX2. Exp Cell Res 2022; 417:113226. [DOI: 10.1016/j.yexcr.2022.113226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/24/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022]
|
10
|
Long Noncoding RNA TFAP2A-AS1 Suppressed Hepatitis B Virus Replication by Modulating miR-933/HDAC11. DISEASE MARKERS 2022; 2022:7733390. [PMID: 35478990 PMCID: PMC9038435 DOI: 10.1155/2022/7733390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/29/2022] [Indexed: 01/21/2023]
Abstract
Objective Studies have shown that long noncoding RNAs (lncRNAs) play crucial roles in multiple tumor types and regulate various biological processes. The present study tried to study lncRNA TFAP2A-AS1 in HBV infection hepatocellular carcinoma. Methods The level of TFAP2A-AS1 and miR-933 in HCC cell and samples were detected by qRT-PCR assay. Luciferase reporter gene assay was carried out to study the mechanism of TFAP2A-AS1 and miR-933. Cell proliferation was measured by CCK-8 assay. HBV DNA replication was detected by RT-qPCR. Results We firstly demonstrated that TFAP2A-AS1 was downregulated in HCC cell lines and HBV-infected HCC samples compared with nontumor tissues. However, miR-933 was upregulated in HCC cell lines and HBV-infected HCC samples compared with nontumor tissues, and miR-933 was negatively associated with the expression of TFAP2A-AS1 in HBV-correlated HCC samples. TFAP2A-AS1 and HDAC11 expression was decreased and miR-933 was upregulated in the HBV-infected cell HepG2.2.15. TFAP2A-AS1 acted as a sponge for miR-933 and HDAC11 was one direct target gene for miR-933. Overexpression of TFAP2A-AS1 suppressed cell growth, HBV DNA replication, HbeAg, and HbsAg expression, while knockdown of TFAP2A-AS1 enhanced cell proliferation, HBV DNA replication, HbeAg, and HbsAg expression in HepG2.2.15 cell. In addition, ectopic expression of miR-933 promoted cell growth, HBV DNA replication, HbeAg, and HbsAg expression in HepG2.2.15 cell. TFAP2A-AS1 suppressed HBV replication and infection through regulating HDAC11. Conclusion These data demonstrated that TFAP2A-AS1 acted crucial roles in the modulation of HbeAg and HbsAg expression and HBV replication and may be one potential target for HBV infection treatment.
Collapse
|
11
|
Wang P, Ke L, Cai C, Dong F. LINC01578 affects the radiation resistance of lung cancer cells through regulating microRNA-216b-5p/TBL1XR1 axis. Bioengineered 2022; 13:10721-10733. [PMID: 35475502 PMCID: PMC9208508 DOI: 10.1080/21655979.2022.2051881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/28/2022] [Accepted: 03/06/2022] [Indexed: 11/13/2022] Open
Abstract
Radiation resistance largely limits the survival of patients with non-small-cell lung cancer (NSCLC). To understand the mechanism underlying radiation resistance, we explored the influence of LINC01578 in radiation-resistant NSCLC cells. LINC01578, miR-216b-5p and Transducin (beta)-like 1 X-linked receptor 1 (TBL1XR1) expression was evaluated in patients with NSCLC, and their correlation with patients' prognosis was examined. Radiation-resistant NSCLC cell line (A549-RR) was induced and treated with oligonucleotide or plasmid transfection, and cell biological functions were captured. The interplay between LINC01578, miR-216b-5p and TBL1XR1 was clarified. NSCLC patients showed high LINC01578 and TBL1XR1 expression, and low miR-216b-5p expression, which was correlated to shorter patients' prognosis, respectively. LINC01578 or TBL1XR1 deficiency or miR-216b-5p elevation suppressed the functional activities of A549-RR cells. LINC01578 suppression elevated miR-216b-5p expression, consequently leading to the down-regulation of TBL1XR1. miR-216b-5p silencing or TBL1XR1 overexpression compromised LINC01578 knockdown's effects on radiation resistance of A549-RR cells. In brief, LINC01578 suppresses miR-216b-5p and enhances TBL1XR1 expression, thus to promote biological functions of radiation-resistant NSCLC cells.
Collapse
Affiliation(s)
- Peirong Wang
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Linchun Ke
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Chuanshu Cai
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Feng Dong
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
12
|
Lu L, Huang J, Mo J, Da X, Li Q, Fan M, Lu H. Exosomal lncRNA TUG1 from cancer-associated fibroblasts promotes liver cancer cell migration, invasion, and glycolysis by regulating the miR-524-5p/SIX1 axis. Cell Mol Biol Lett 2022; 27:17. [PMID: 35193488 PMCID: PMC8903597 DOI: 10.1186/s11658-022-00309-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Background Increasing evidence suggests that taurine upregulated gene 1 (TUG1) is crucial for tumor progression; however, its role in hepatocellular carcinoma (HCC) and the underlying mechanisms are not well characterized. Methods The expression levels of TUG1, miR-524-5p, and sine oculis homeobox homolog 1 (SIX1) were determined using quantitative real-time PCR. The regulatory relationships were confirmed by dual-luciferase reporter assay. Cell proliferation and invasion were assessed using Cell Counting Kit 8 and transwell assays. Glucose uptake, cellular levels of lactate, lactate dehydrogenase (LDH), and adenosine triphosphate (ATP) were detected using commercially available kits. Silencing of TUG1 or SIX1 was performed by lentivirus transduction. Protein levels were measured by immunoblotting. Results Cancer-associated fibroblasts (CAFs)-secreted exosomes promoted migration, invasion, and glycolysis in HepG2 cells by releasing TUG1. The promotive effects of CAFs-secreted exosomes were attenuated by silencing of TUG1. TUG1 and SIX1 are targets of miR-524-5p. SIX1 knockdown inhibited the promotive effects of miR-524-5p inhibitor. Silencing of TUG1 suppressed tumor growth and lung metastasis and therefore increased survival of xenograft model mice. We also found that TUG1 and SIX1 were increased in HCC patients with metastasis while miR-524-5p was decreased in HCC patients with metastasis. Conclusions CAFs-derived exosomal TUG1 promoted migration, invasion, and glycolysis in HCC cells via the miR-524-5p/SIX1 axis. These findings may help establish the foundation for the development of therapeutics strategies and clinical management for HCC in future. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00309-9.
Collapse
Affiliation(s)
- Le Lu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, 710004, China
| | - Jingjing Huang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, 710004, China
| | - Jiantao Mo
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, 710004, China
| | - Xuanbo Da
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, 710004, China
| | - Qiaoxin Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, 710004, China
| | - Meng Fan
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, 710004, China
| | - Hongwei Lu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, 710004, China.
| |
Collapse
|
13
|
KRAS-related long noncoding RNAs in human cancers. Cancer Gene Ther 2022; 29:418-427. [PMID: 34489556 PMCID: PMC9113938 DOI: 10.1038/s41417-021-00381-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/29/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023]
Abstract
KRAS is one of the most widely prevalent proto-oncogenes in human cancers. The constitutively active KRAS oncoprotein contributes to both tumor onset and cancer development by promoting cell proliferation and anchorage-independent growth in a MAPK pathway-dependent manner. The expression of microRNAs (miRNAs) and the KRAS oncogene are known to be dysregulated in various cancers, while long noncoding RNAs (lncRNAs) can act as regulators of the miRNAs targeting KRAS oncogene in different cancers and have gradually become a focus of research in recent years. In this review article, we summarize recent advances in the research on lncRNAs that have sponging effects on KRAS-targeting miRNAs as crucial mediators of KRAS expression in different cell types and organs. A deeper understanding of lncRNA function in KRAS-driven cancers is of major fundamental importance and will provide a valuable clinical tool for the diagnosis, prognosis, and eventual treatment of cancers.
Collapse
|
14
|
Silencing of LINC01963 enhances the chemosensitivity of prostate cancer cells to docetaxel by targeting the miR-216b-5p/TrkB axis. J Transl Med 2022; 102:602-612. [PMID: 35152275 PMCID: PMC9162921 DOI: 10.1038/s41374-022-00736-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 01/12/2023] Open
Abstract
Docetaxel (DTX) treatment effectively prolongs the overall survival of patients with prostate cancer. However, most patients eventually develop resistance to chemotherapy and experience tumor progression or even death. Long noncoding RNAs (lncRNAs) affect docetaxel chemosensitivity. However, the biological role and regulatory mechanisms of lncRNAs in docetaxel-resistant prostate cancer remain unclear. Differences in lncRNAs were evaluated by lncRNA sequencing and evaluated using quantitative real-time polymerase chain reaction, and TrkB expression was measured through western blot analysis. Proliferation was measured using the MTS, while apoptosis and cell cycle were measured using flow cytometry. In addition, migration and invasion were measured using transwell assays. Forty-eight female BALB/c nude mice were used for subcutaneous tumorigenicity and lung metastasis assays. We found that LINC01963 was overexpressed in the PC3-DR cells. LINC01963 silencing enhanced the chemosensitivity of PC3-DR to docetaxel and inhibited tumorigenicity and lung metastasis, while LINC01963 overexpression enhanced the chemoresistance of PC3 cells to docetaxel. It was found that LINC01963 bind to miR-216b-5p. The miR-216b-5p inhibitor reversed the suppressive effect of sh-LINC01963 on PC3-DR cell proliferation, migration, and invasion. Furthermore, miR-216b-5p can bind to the 3'-UTR of NTRK2 and inhibit TrkB protein levels. TrkB enhances docetaxel resistance in prostate cancer and reverses the effects of LINC01963 silencing and miR-216b-5p overexpression. In conclusion, silencing LINC01963 inhibited TrkB protein level to enhance the chemosensitivity of PC3-DR to docetaxel by means of competitively binding to miR-216b-5p. This study illustrates that LINC01963 is a novel therapeutic target for treating prostate cancer patients with DTX resistance.
Collapse
|
15
|
Shi Y, Liu JB, Deng J, Zou DZ, Wu JJ, Cao YH, Yin J, Ma YS, Da F, Li W. The role of ceRNA-mediated diagnosis and therapy in hepatocellular carcinoma. Hereditas 2021; 158:44. [PMID: 34758879 PMCID: PMC8582193 DOI: 10.1186/s41065-021-00208-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/12/2021] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide due to its high degree of malignancy, high incidence, and low survival rate. However, the underlying mechanisms of hepatocarcinogenesis remain unclear. Long non coding RNA (lncRNA) has been shown as a novel type of RNA. lncRNA by acting as ceRNA can participate in various biological processes of HCC cells, such as tumor cell proliferation, migration, invasion, apoptosis and drug resistance by regulating downstream target gene expression and cancer-related signaling pathways. Meanwhile, lncRNA can predict the efficacy of treatment strategies for HCC and serve as a potential target for the diagnosis and treatment of HCC. Therefore, lncRNA serving as ceRNA may become a vital candidate biomarker for clinical diagnosis and treatment. In this review, the epidemiology of HCC, including morbidity, mortality, regional distribution, risk factors, and current treatment advances, was briefly discussed, and some biological functions of lncRNA in HCC were summarized with emphasis on the molecular mechanism and clinical application of lncRNA-mediated ceRNA regulatory network in HCC. This paper can contribute to the better understanding of the mechanism of the influence of lncRNA-mediated ceRNA networks (ceRNETs) on HCC and provide directions and strategies for future studies.
Collapse
Affiliation(s)
- Yi Shi
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, Hunan, China.,Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China.,National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Ji-Bin Liu
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China
| | - Jing Deng
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Da-Zhi Zou
- Department of Spine Surgery, Longhui County People's Hospital, Longhui, 422200, Hunan, China
| | - Jian-Jun Wu
- Nantong Haimen Yuelai Health Centre, Haimen, 226100, China
| | - Ya-Hong Cao
- Department of Respiratory, Nantong Traditional Chinese Medicine Hospital, Nantong, 226019, Jiangsu Province, China
| | - Jie Yin
- Department of General Surgery, Haian people's Hospital, Haian, 226600, Jiangsu, China
| | - Yu-Shui Ma
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China.
| | - Fu Da
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China. .,National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Wen Li
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, Hunan, China. .,National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| |
Collapse
|
16
|
Zhao J, Wang Y, Su H, Su L. Non-coding RNAs as biomarkers for hepatocellular carcinoma-A systematic review. Clin Res Hepatol Gastroenterol 2021; 45:101736. [PMID: 34146723 DOI: 10.1016/j.clinre.2021.101736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/09/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common malignancy in the world and the fourth leading cause of cancer-related death, and its incidence is increasing globally. Despite significant advances in treatment strategies for HCC, the prognosis is still poor due to its high recurrence rate. Therefore, there is an urgent need to understand the pathogenesis of HCC and further develop new therapies to improve the prognosis and quality of life of HCC patients. MicroRNAs (miRNAs, miRs) are small non-coding RNAs involved in post-transcriptional regulation of gene expression that is abnormally expressed in cancer-associated genomic regions or vulnerable sites. More and more findings have shown that miRNAs are important regulatory factors of mRNA expression in HCC, and they are receiving more and more attention as a possible key biomarker of HCC. This review mainly summarizes the potential applied value on miRNAs as diagnostic, drug resistant, prognostic, and therapeutic biomarkers in the diagnosis, therapy, and prognosis of HCC. Also, we summarize the research value of long non-coding RNA (lncRNAs), circular RNAs (circRNAs), and miRNAs network in HCC as novel biomarkers, aiming at providing some references for the therapy of HCC.
Collapse
Affiliation(s)
- Jinying Zhao
- The Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine (Approved by State Administration of Traditional Chinese Medicine), China Three Gorges University, Yichang, China
| | - Yanhua Wang
- Department of Morphology, Medical College of China Three Gorges University, Yichang, China.
| | - Huahua Su
- The Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine (Approved by State Administration of Traditional Chinese Medicine), China Three Gorges University, Yichang, China
| | - Lijia Su
- The Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine (Approved by State Administration of Traditional Chinese Medicine), China Three Gorges University, Yichang, China
| |
Collapse
|
17
|
Saliani M, Mirzaiebadizi A, Mosaddeghzadeh N, Ahmadian MR. RHO GTPase-Related Long Noncoding RNAs in Human Cancers. Cancers (Basel) 2021; 13:5386. [PMID: 34771549 PMCID: PMC8582479 DOI: 10.3390/cancers13215386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/27/2022] Open
Abstract
RHO GTPases are critical signal transducers that regulate cell adhesion, polarity, and migration through multiple signaling pathways. While all these cellular processes are crucial for the maintenance of normal cell homeostasis, disturbances in RHO GTPase-associated signaling pathways contribute to different human diseases, including many malignancies. Several members of the RHO GTPase family are frequently upregulated in human tumors. Abnormal gene regulation confirms the pivotal role of lncRNAs as critical gene regulators, and thus, they could potentially act as oncogenes or tumor suppressors. lncRNAs most likely act as sponges for miRNAs, which are known to be dysregulated in various cancers. In this regard, the significant role of miRNAs targeting RHO GTPases supports the view that the aberrant expression of lncRNAs may reciprocally change the intensity of RHO GTPase-associated signaling pathways. In this review article, we summarize recent advances in lncRNA research, with a specific focus on their sponge effects on RHO GTPase-targeting miRNAs to crucially mediate gene expression in different cancer cell types and tissues. We will focus in particular on five members of the RHO GTPase family, including RHOA, RHOB, RHOC, RAC1, and CDC42, to illustrate the role of lncRNAs in cancer progression. A deeper understanding of the widespread dysregulation of lncRNAs is of fundamental importance for confirmation of their contribution to RHO GTPase-dependent carcinogenesis.
Collapse
Affiliation(s)
- Mahsa Saliani
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Amin Mirzaiebadizi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Niloufar Mosaddeghzadeh
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
18
|
The Effect of miR-520b on Macrophage Polarization and T Cell Immunity by Targeting PTEN in Breast Cancer. JOURNAL OF ONCOLOGY 2021; 2021:5170496. [PMID: 34659411 PMCID: PMC8514911 DOI: 10.1155/2021/5170496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023]
Abstract
Background Breast cancer is the most common cancer in women. miR-520b had binding sites with PTEN through the bioinformatics prediction. But few studies have been conducted on miR-520b and PTEN in breast cancer. We aimed to explore the effect of miR-520b and PTEN on breast cancer and the mechanisms involved. Methods Clinical samples of breast cancer were collected. Bioinformatics analysis was performed to screen the differentially expressed miRNAs. CD4 T cells and CD8 T cells were cocultured with MCF-7 cells in the Transwell system. Moreover, MCF-7 cells and M0 macrophage cocultured cell lines were constructed. qRT-PCR, IF, western blot, flow cytometry, and ELISA were performed to detect related factors expression. Starbase and dual-luciferase reporter assay verified the binding of miR-520b to PTEN. The tumor formation model was established to study miR-520b and PTEN effects in vivo. Results The differentially expressed miR-520b was screened via miRNAs sequencing and cell verification. miR-520b expression was high, PTEN was low in tumor tissues, T cells and NK cells were inhibited, and macrophages were transformed into M2 type, promoting immune escape. In addition, miR-520b bound to PTEN. Then, splenic CD4 T cells and CD8 T cells were successfully sorted. During CD4 T cell differentiation to Th1 and Treg, Th1 was inhibited, and Treg was activated. We found the polarization of macrophages was related to breast cancer. The proportion of CD206 cells increased and CD68 cells decreased in the miR-520b mimics group compared with the mimic NC group. Compared with the inhibitor NC group, the proportion of CD206 cells decreased, and CD68 cells increased in the miR-520b inhibitor group. In vivo experiments showed that miR-520b inhibitor inhibited tumor growth and promoted PTEN expression. The proportion of CD3, CD4, CD8, NK1.1, CD4+IFNγ, and CD68 cells increased, while FOXP3 and CD206 cells decreased in the miR-520b inhibitor group compared with the inhibitor NC group. However, the proportion of CD3, CD4, CD8, NK1.1, CD4+IFNγ, and CD68 cells decreased, while FOXP3 and CD206 cells increased after the addition of siPTEN. Conclusions miR-520b inhibited PTEN and aggravated breast tumors. miR-520b inhibitor enhanced CD4 and CD8 cell populations in the tumor immune microenvironment and inhibited tumor growth.
Collapse
|
19
|
Liu W, Feng Q, Liao W, Li E, Wu L. TUG1 promotes the expression of IFITM3 in hepatocellular carcinoma by competitively binding to miR-29a. J Cancer 2021; 12:6905-6920. [PMID: 34659578 PMCID: PMC8517998 DOI: 10.7150/jca.57477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
Purpose: Numerous studies have demonstrated the important relationship of TUG1 with tumorigenesis. The present study investigated the role of TUG1 and its downstream genes miR-29a and IFITM3 in the occurrence and development of hepatocellular carcinoma (HCC). We found that both TUG1 and IFITM3 genes are highly expressed in HCC, whereas the expression of miR-29a is low in HCC. Downregulation of TUG1 reduces cell invasion, metastasis, and cell proliferation ability and promotes cell apoptosis. Simultaneous downregulation of miR-29a reverses this effect. Moreover, IFITM3, as the target gene of miR-29a, is positively regulated by TUG1. However, the adjustment relationship between these three components is still unknown and thus warrants further investigation. The objective of this study was to investigate the regulatory relationship between TUG1, miR-29a, and IFITM3 in human liver cancer. Patients and methods: The expression of TUG1 and miR-29a in tumor tissues and adjacent non-tumor tissues of 65 patients with HCC was detected by real-time quantitative polymerase chain reaction (RT-qPCR). The migration and invasion of liver cancer cells were studied by the wound healing assay and the Transwell method, respectively. The apoptosis rate of HCC cells was detected by flow cytometry, and the proliferation rate of hepatoma cells was detected by the 5-ethynyl-2'-deoxyuridine (EdU) method. Immunofluorescence was used to detect the expression of TUG1 and IFITM3 in HCC-LM3 and HL-7702 cell lines. The relationship between TUG1 and miR-29a was detected using a double luciferase reporter assay and fluorescence in situ hybridization (FISH). Tumors were established in vivo by subcutaneous injection of HCC cells into nude mice and injection of these cells into the tail vein. Western blotting was used to quantify the biomarkers. Results: The expression of TUG1 increased significantly in tumor tissues and HCC cells. Moreover, the expression of miR-29a in liver cancer tissues was significantly lower than that in normal human liver tissues. The expression of TUG1 in liver cancer tissue was negatively correlated with miR-29a. Knockdown of TUG1 weakened the invasion, migration, and proliferation of HCC cells, and enhanced their apoptosis. A simultaneous knockdown of miR-29a enhanced cell invasion, metastasis, and cell proliferation, whereas the apoptosis ability decreased. As a target gene of miR-29a, IFITM3 is not only negatively regulated by miR-29a, but also positively regulated by TUG1. Therefore, TUG1 regulates IFITM3 in HCC cells by competitively binding to miR-29a, thus affecting cell invasion, migration, proliferation, and apoptosis. Conclusion: As a CeRNA, TUG1 competitively binds to miR-29a to regulate IFITM3 and promote the development of liver cancer. Downregulation of TUG1 can significantly inhibit the migration, invasion, and proliferation of liver cancer cells. Based on these results, we conclude that TUG1 could serve as a key gene to improve the prognosis of patients with HCC.
Collapse
Affiliation(s)
| | | | | | - Enliang Li
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Nanchang University, 1 Mindle Road, Nanchang Jiangxi 330006, P.R. China
| | - Linquan Wu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Nanchang University, 1 Mindle Road, Nanchang Jiangxi 330006, P.R. China
| |
Collapse
|
20
|
lncRNA MAGI2-AS3 Exerts Antioncogenic Roles in Hepatocellular Carcinoma via Regulating the miR-519c-3p/TXNIP Axis. JOURNAL OF ONCOLOGY 2021; 2021:5547345. [PMID: 34484334 PMCID: PMC8416383 DOI: 10.1155/2021/5547345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/13/2021] [Indexed: 01/10/2023]
Abstract
Introduction Our work was aimed to explore the mechanisms of MAGI2 antisense RNA 3 (MAGI2-AS3) in regulating hepatocellular carcinoma (HCC) carcinogenesis. Methods MAGI2-AS3, microRNA-519c-3p (miR-519c-3p), and thioredoxin interacting protein (TXNIP) levels in HCC were detected by the RT-qPCR method. Cell proliferation and apoptosis rate were measured using Cell Counting Kit-8 assay and flow cytometry assay. Relationship between MAGI2-AS3, TXNIP, and miR-519c-3p were analyzed via luciferase activity assay, RNA pull-down assay, and RNA immunoprecipitation assay. Mouse xenograft models of HCC were conducted to explore the roles of MAGI2-AS3 in vivo. Results MAGI2-AS3 levels were elevated, and miR-519c-3p decreased in HCC. MAGI2-AS3 overexpression inhibits while its knockdown stimulates HCC cell growth through miR-519c-3p. Moreover, miR-519c-3p overexpression stimulates HCC cell growth. MAGI2-AS3 serves as competing endogenous RNA (ceRNA) of miR-519c-3p to regulate TXNIP in HCC. And, TXNIP upregulation weakened the influence of MAGI2-AS3 knockdown on HCC cell behaviors. Additionally, MAGI2-AS3 overexpression suppressed HCC tumor growth in vivo. Conclusion MAGI2-AS3 inhibits HCC tumorigenesis through miR-519c-3p/TXNIP axis in vitro and in vivo, indicating MAGI2-AS3 plays a crucial role in HCC development.
Collapse
|
21
|
Huang PS, Chang CC, Wang CS, Lin KH. Functional roles of non-coding RNAs regulated by thyroid hormones in liver cancer. Biomed J 2021; 44:272-284. [PMID: 33077406 PMCID: PMC8358202 DOI: 10.1016/j.bj.2020.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Recent reports have shown the important role of the non-coding part of human genome RNA (ncRNA) in cancer formation and progression. Among several kinds of ncRNAs, microRNAs (miRNA) play a pivotal role in cancer biology. Accumulating researches have been focused on the importance of non-coding genes in various diseases. In addition to miRNAs, long non-coding RNAs (lncRNAs) have also been extensively documented. Recently, the study of human liver cancer has gradually shifted to these non-coding RNAs that were originally considered "junk". Notably, dysregulated ncRNAs maybe influence on cell proliferation, angiogenesis, anti-apoptosis, and metastasis. Thyroid hormones play critical roles in human development and abnormalities in thyroid hormone levels are associated with various diseases, such as liver cancer. Thyroid hormone receptors (TR) act as ligand-activated nuclear transcription factors to affect multiple functions through the gene-level regulation in the cells and several studies have revealed that thyroid hormone associated with ncRNAs expression. TR actions are complex and tissue- and time-specific, aberrant expression of the various TR isoforms have different effects and are associated with different types of tumor or stages of development. In this review, we discuss various aspects of the research on the thyroid hormones modulated ncRNAs to affect the functions of human liver cells.
Collapse
Affiliation(s)
- Po-Shuan Huang
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Chih Chang
- Department of General Surgery, Chang Gung Memorial Hospital at Chia yi, Chia yi, Taiwan
| | - Chia-Siu Wang
- Department of General Surgery, Chang Gung Memorial Hospital at Chia yi, Chia yi, Taiwan
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
22
|
Da M, Zhuang J, Zhou Y, Qi Q, Han S. Role of long noncoding RNA taurine-upregulated gene 1 in cancers. Mol Med 2021; 27:51. [PMID: 34039257 PMCID: PMC8157665 DOI: 10.1186/s10020-021-00312-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a group of non-protein coding RNAs with a length of more than 200 bp. The lncRNA taurine up-regulated gene 1 (TUG1) is abnormally expressed in many human malignant cancers, where it acts as a competitive endogenous RNA (ceRNA), regulating gene expression by specifically sponging its corresponding microRNAs. In the present review, we summarised the current understanding of the role of lncRNA TUG1 in cancer cell proliferation, metastasis, angiogenesis, chemotherapeutic drug resistance, radiosensitivity, cell regulation, and cell glycolysis, as well as highlighting its potential application as a clinical biomarker or therapeutic target for malignant cancer. This review provides the basis for new research directions for lncRNA TUG1 in cancer prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Miao Da
- Department of Nursing, Huzhou Third Municipal Hospital, 2088 East Tiaoxi Rd, Huzhou, Zhejiang, People's Republic of China
| | - Jing Zhuang
- Medical College of Nursing, Huzhou University, No. 759 Erhuan East Road, Huzhou, 313000, Zhejiang, China
| | - Yani Zhou
- Graduate School of Medicine Faculty, Zhejiang University, No. 866 Yuhangtang Road, Xihu, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Quan Qi
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing, Huzhou, 313000, Zhejiang, China
| | - Shuwen Han
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing, Huzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
23
|
Li K, Niu H, Wang Y, Li R, Zhao Y, Liu C, Cao H, Chen H, Xie R, Zhuang L. LncRNA TUG1 contributes to the tumorigenesis of lung adenocarcinoma by regulating miR-138-5p-HIF1A axis. Int J Immunopathol Pharmacol 2021; 35:20587384211048265. [PMID: 34608813 PMCID: PMC8495526 DOI: 10.1177/20587384211048265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/06/2021] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Increasing evidence indicates that lncRNA TUG1 represents an oncogenic factor in cancer. But, the mechanisms by which lncRNA TUG1 contributes to lung adenocarcinoma (LAC) remain undocumented. METHODS The relationship between lncRNA TUG1/miR-138-5p expression and clinical outcomes in patients with LAC was indicated by qPCR, FISH, and TCGA cohort. Gain- or loss-of-function experiments and in vivo tumorigenesis were used to assess the role of lncRNA TUG1 in LAC. The interplay between TUG1 and miR-138-5p was validated by luciferase gene report and RIP assays. qPCR and Western blot analyses were used to investigate the effects of TUG1 on miR-138-5p/HIF1A axis in LAC cells. RESULTS We found that upregulation of TUG1 or downregulation of miR-138-5p was associated with lymph node or distant metastasis and indicated a poor survival in LAC. Reduced expression of TUG1 restrained the growth of LAC cells, while restored expression of TUG1 had the opposite effects. TUG1 was identified to negatively regulate miR-138-5p expression, and miR-138-5p reversed TUG1-induced cell proliferation by targeting HIF1A. Elevated expression of HIF1A predicted a poor survival in LAC. CONCLUSION Our findings demonstrate that lncRNA TUG1 promotes the growth of LAC by regulating miR-138-5p-HIF1A axis.
Collapse
Affiliation(s)
- Ke Li
- Department of Cancer Biotherapy Center, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Huatao Niu
- Department of Neurosurgery, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Ying Wang
- Department of Cancer Biotherapy Center, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Ruilei Li
- Department of Cancer Biotherapy Center, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Yuan Zhao
- The Department of Vasculocardiology, The People’s Hospital of Lijiang City, Lijiang, Yunnan, China
| | - Chao Liu
- Department of Nuclear Medicine, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Honghua Cao
- Department of Hematology, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Haitao Chen
- Department of Ultrasonography, Yunnan Cancer Hospital, Kunming 650118, Yunnan, China
| | - Ran Xie
- Department of PET/CT, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Li Zhuang
- Department of Palliative Medicine, Yunnan Cancer Hospital, Kunming, Yunnan, China
| |
Collapse
|
24
|
Identification and validation of a miRNA-based prognostic signature for cervical cancer through an integrated bioinformatics approach. Sci Rep 2020; 10:22270. [PMID: 33335254 PMCID: PMC7747620 DOI: 10.1038/s41598-020-79337-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
Cervical cancer is the fourth most common cancer in women worldwide. Increasing evidence has shown that miRNAs are related to the progression of cervical cancer. However, the mechanisms that affect the prognosis of cancer are still largely unknown. In the present study, we sought to identify miRNAs associated with poor prognosis of patient with cervical cancer, as well as the possible mechanisms regulated by them. The miRNA expression profiles and relevant clinical information of patients with cervical cancer were obtained from The Cancer Genome Atlas (TCGA). The selection of prognostic miRNAs was carried out through an integrated bioinformatics approach. The most effective miRNAs with synergistic and additive effects were selected for validation through in vitro experiments. Three miRNAs (miR-216b-5p, miR-585-5p, and miR-7641) were identified as exhibiting good performance in predicting poor prognosis through additive effects analysis. The functional enrichment analysis suggested that not only pathways traditionally involved in cancer but also immune system pathways might be important in regulating the outcome of the disease. Our findings demonstrated that a synergistic combination of three miRNAs may be associated, through their regulation of specific pathways, with very poor survival rates for patients with cervical cancer.
Collapse
|
25
|
He D, Zhang X, Zhu X, Maharjan N, Wang Y, Luo P, Liang C, Tu J. Identify and Validate the Transcriptomic, Functional Network, and Predictive Validity of FBXL19-AS1 in Hepatocellular Carcinoma. Front Oncol 2020; 10:609601. [PMID: 33344260 PMCID: PMC7744744 DOI: 10.3389/fonc.2020.609601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common neoplastic diseases worldwide. Available biomarkers are not sensitive enough for the diagnosis of HCC, hence seeking new biomarkers of HCC is urgent and challenging. The purpose of this study was to investigate the role of F-box and leucine-rich repeat protein 19-antisense RNA 1 (FBXL19-AS1) through a functional network and inquire into its diagnostic and prognostic value in HCC. A comprehensive strategy of genomic data mining, bioinformatics and experimental validation was used to evaluate the clinical value of FBXL19-AS1 in the diagnosis and prognosis of HCC and to identify the pathways in which FBXL19-AS1 might be involved. FBXL19-AS1 was up-regulated in HCC tissues, and its high expression was associated with TNM stage and poor prognosis of HCC patients. The combination of FBXL19-AS1 and alpha-fetoprotein (AFP) in plasma could prominently improve the diagnostic validity for HCC. FBXL19-AS1 might stabilize FBXL19 to reduce the amount of macrophage M1, and then promote the occurrence and development of HCC. Meanwhile, FBXL19-AS1 might participate in regulating HCC related pathways through FBXL19-AS1-miRNA-mRNA network. Our findings indicated that FBXL19-AS1 not only serves as a potential biomarker for HCC diagnosis and prognosis, but also might be functionally carcinogenic.
Collapse
Affiliation(s)
- Dingdong He
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaokang Zhang
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinyu Zhu
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Narayani Maharjan
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yingchao Wang
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Luo
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chunzi Liang
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiancheng Tu
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
26
|
Ren Y, Zhu H, Han S. LINC00518 Interference Inhibits Non-Small Cell Lung Cancer by Upregulating miR216b-5p Expression. Cancer Manag Res 2020; 12:11041-11050. [PMID: 33173337 PMCID: PMC7646473 DOI: 10.2147/cmar.s270087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/03/2020] [Indexed: 12/26/2022] Open
Abstract
Introduction Non–small cell lung cancer (NSCLC) accounts for the majority of lung cancer cases, and effective treatment for this disease is still lacking. This study aimed to explore the potential role of LINC00518 and miR216b-5p on cell proliferation and tumor growth in NSCLC. Methods The expression of LINC00518, miR216b-5p, MMP7, and MMP9 in NSCLC cell lines was determined by RT-qPCR analysis, which was also used to confirm the transfection effects. After transfection, proliferation, clone-formation ability, migration, and invasion of NSCLC cells were detected by CCK8, clone-formation, wound-healing, and transwell assays, respectively. Western blot analysis was used to detect the expression of MMP7, MMP9, Ki67, and PCNA. A xenograft model was constructed by subcutaneous injection of transfected NSCLC cells into nude mice. Results The results indicated that LINC00518 expression was increased and miR216b-5p expression decreased in NSCLC cell lines, and A549 cells were chosen for the next experiments. LINC00518 interference inhibited proliferation, invasion, and migration of A549 cells, together with the progression of NSCLC in vivo. In addition, LINC00518 directly targeted miR216b-5p. Downregulation of miR216b-5p weakened the inhibitory effect of LINC00518 interference on proliferation, invasion, and migration of A549 cells, as well as progression of NSCLC in vivo. Discussion In conclusion, LINC00518 interference inhibits NSCLC, which is partially reversed by downregulation of miR216b-5p expression.
Collapse
Affiliation(s)
- Yuanyuan Ren
- Department of Oncology, People's Hospital of Taizhou, Taizhou, Jiangsu Province 225300, China.,Department of Oncology, Hospital 5, affiliated with Nantong University, Taizhou 225300, China
| | - Huadong Zhu
- School of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Song Han
- Department of Cardiothoracic Surgery, Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, China
| |
Collapse
|
27
|
Bhattacharjee S, Li J, Dashwood RH. Emerging crosstalk between long non-coding RNAs and Nrf2 signaling. Cancer Lett 2020; 490:154-164. [DOI: 10.1016/j.canlet.2020.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/08/2020] [Accepted: 07/11/2020] [Indexed: 12/17/2022]
|
28
|
Baliou S, Kyriakopoulos AM, Spandidos DA, Zoumpourlis V. Role of taurine, its haloamines and its lncRNA TUG1 in both inflammation and cancer progression. On the road to therapeutics? (Review). Int J Oncol 2020; 57:631-664. [PMID: 32705269 PMCID: PMC7384849 DOI: 10.3892/ijo.2020.5100] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
For one century, taurine is considered as an end product of sulfur metabolism. In this review, we discuss the beneficial effect of taurine, its haloamines and taurine upregulated gene 1 (TUG1) long non‑coding RNA (lncRNA) in both cancer and inflammation. We outline how taurine or its haloamines (N‑Bromotaurine or N‑Chlorotaurine) can induce robust and efficient responses against inflammatory diseases, providing insight into their molecular mechanisms. We also provide information about the use of taurine as a therapeutic approach to cancer. Taurine can be combined with other chemotherapeutic drugs, not only mediating durable responses in various malignancies, but also circumventing the limitations met from chemotherapeutic drugs, thus improving the therapeutic outcome. Interestingly, the lncRNA TUG1 is regarded as a promising therapeutic approach, which can overcome acquired resistance of cancer cells to selected strategies. In this regard, we can translate basic knowledge about taurine and its TUG1 lncRNA into potential therapeutic options directed against specific oncogenic signaling targets, thereby bridging the gap between bench and bedside.
Collapse
Affiliation(s)
| | | | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Greece
| | | |
Collapse
|
29
|
Niu ZS, Wang WH, Dong XN, Tian LML. Role of long noncoding RNA-mediated competing endogenous RNA regulatory network in hepatocellular carcinoma. World J Gastroenterol 2020; 26:4240-4260. [PMID: 32848331 PMCID: PMC7422540 DOI: 10.3748/wjg.v26.i29.4240] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/05/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) are noncoding RNAs (ncRNAs) that occupy over 90% of the human genome, and their main function is to directly or indirectly regulate messenger RNA (mRNA) expression and participate in the tumorigenesis and progression of malignances. In particular, some lncRNAs can interact with miRNAs as competing endogenous RNAs (ceRNAs) to modulate mRNA expression. Accordingly, these RNA molecules are interrelated and coordinate to form a dynamic lncRNA-mediated ceRNA regulatory network. Mounting evidence has revealed that lncRNAs that act as ceRNAs are closely related to tumorigenesis. To date, numerous studies have established many different regulatory networks in hepatocellular carcinoma (HCC), and perturbations in these ceRNA interactions may result in the initiation and progression of HCC. Herein, we emphasize recent advances concerning the biological function of lncRNAs as ceRNAs in HCC, with the aim of elucidating the molecular mechanism underlying these HCC-related RNA molecules and providing novel insights into the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Zhao-Shan Niu
- Laboratory of Micromorphology, School of Basic Medicine, Medical Department of Qingdao University, Qingdao 266071, Shandong Province, China
| | - Wen-Hong Wang
- Department of Pathology, School of Basic Medicine, Medical Department of Qingdao University, Qingdao 266071, Shandong Province, China
| | - Xian-Ning Dong
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao 266061, Shandong Province, China
| | - Li-Mei-Li Tian
- BGI Gene Innovation Class, School of Basic Medicine, Medical Department of Qingdao University, Qingdao 266071, Shandong Province, China
| |
Collapse
|
30
|
Jana S, Krishna M, Singhal J, Horne D, Awasthi S, Salgia R, Singhal SS. Therapeutic targeting of miRNA-216b in cancer. Cancer Lett 2020; 484:16-28. [DOI: 10.1016/j.canlet.2020.04.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/15/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
|
31
|
Yan Z, Bi M, Zhang Q, Song Y, Hong S. LncRNA TUG1 promotes the progression of colorectal cancer via the miR-138-5p/ZEB2 axis. Biosci Rep 2020; 40:BSR20201025. [PMID: 32391554 PMCID: PMC7280475 DOI: 10.1042/bsr20201025] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
To explore the role of long-chain non-coding RNA (lncRNA) taurine up-regulated gene 1 (TUG1) in the development of colorectal cancer (CRC) via the miR-138-5p/zinc finger E-box-binding homeobox 2 (ZEB2) axis. Eighty-four CRC tissue specimens and 84 corresponding paracancerous tissue specimens were sampled from 84 patients with CRC admitted to the First Hospital of Jilin University from January 2018 to September 2019. The TUG1 expression in the specimens was determined, and its value in diagnosis and prognosis of CRC was analyzed. Additionally, constructed stable and transient overexpresison vectors and inhibition vectors were transfected into CRC cells. The MTT, transwell, and flow cytometry were adopted for analysis on the proliferation, invasion, and apoptosis of transfected cells, respectively, and a dual luciferase reporter (DLR) assay was carried out for correlation determination between TUG1 and miR-138-5p and between miR-138-5p and ZEB2. TUG1 was up-regulated in CRC, and serum TUG1 could be adopted as a diagnostic marker of CRC, with area-under-the-curve (AUC) larger than 0.8. In addition, siRNA-TUG1, shRNA-TUG1, miR-138-5p-mimics, and miR-138-5p-inhibitor were transfected into cells, and it turned out that overexpressing miR-138-5p and inhibiting ZEB2 exerted the same effects. The DLR assay revealed that TUG1 was able to targetedly regulate miR-138-5p, and miR-138-5p could targetedly regulate ZEB2, and in vitro experiments revealed that TUG1 could affect the epithelial-to-mesenchymal transition (EMT) of CRC via the miR-138-5p/ZEB2 axis. TUG1 could promote the development of CRC via the miR-138-5p/ZEB2 axis.
Collapse
Affiliation(s)
- Zhenkun Yan
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun 130022, Jilin Province, P.R. China
| | - Miaomiao Bi
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Qiyu Zhang
- Department of Radiology, Jilin Oil Field Hospital, SongYuan, Jilin138000, P.R. China
| | - Yumei Song
- Department of Thoracic Oncology, Tumor Hospital of Jilin Province, Jilin 130000, P.R. China
| | - Sen Hong
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun130021, Jilin Province, P.R. China
| |
Collapse
|
32
|
Li YH, Hu YQ, Wang SC, Li Y, Chen DM. LncRNA SNHG5: A new budding star in human cancers. Gene 2020; 749:144724. [PMID: 32360843 DOI: 10.1016/j.gene.2020.144724] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/12/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
Abstract
Long non-coding RNA (LncRNA) belongs to non-coding RNAs longer than 200 nucleic acids. More and more studies have revealed that lncRNA can participate in the occurrence and pathophysiology of diseases, especially in cancers. Although research on lncRNAs has doubled year by year, little is known about the specific regulatory mechanisms of lncRNAs in diseases. The main purpose of this review is to explore the molecular mechanism and clinical significance of SNHG5 in cancers. We systematically search Pubmed to obtain relevant literature on SNHG5. In this review, the functional role, molecular mechanism, and clinical significance of SNHG5 in human cancers are described in detail. Small nucleolar RNA host gene 5 (SNHG5) has been shown to be involved in the development and tumorigenesis of a variety of cancers (colorectal, bladder, gastric, endometrial, acute lymphocytic leukemia, osteosarcoma, etc.). Its disorder is closely related to metastasis, pathological staging, and prognosis. LncRNA SNHG5 might be a potential and novel diagnostic marker for cancer patients, a target for molecular targeted therapy, and a prognostic diagnostic marker.
Collapse
Affiliation(s)
- Yu-Han Li
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ya-Qian Hu
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Sheng-Chan Wang
- Department of Geriatrics, The Affiliated Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Li
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Dong-Ming Chen
- Department of Urology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|