1
|
Zhang G, Hou S, Li S, Wang Y, Cui W. Role of STAT3 in cancer cell epithelial‑mesenchymal transition (Review). Int J Oncol 2024; 64:48. [PMID: 38488027 PMCID: PMC11000535 DOI: 10.3892/ijo.2024.5636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
Since its discovery, the role of the transcription factor, signal transducer and activator of transcription 3 (STAT3), in both normal physiology and the pathology of numerous diseases, including cancer, has been extensively studied. STAT3 is aberrantly activated in different types of cancer, fulfilling a critical role in cancer progression. The biological process, epithelial‑mesenchymal transition (EMT), is indispensable for embryonic morphogenesis. During the development of cancer, EMT is hijacked to confer motility, tumor cell stemness, drug resistance and adaptation to changes in the microenvironment. The aim of the present review was to outline recent advances in knowledge of the role of STAT3 in EMT, which may contribute to the understanding of the function of STAT3 in EMT in various types of cancer. Delineating the underlying mechanisms associated with the STAT3‑EMT signaling axis may generate novel diagnostic and therapeutic options for cancer treatment.
Collapse
Affiliation(s)
- Guoan Zhang
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Sen Hou
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Shuyue Li
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Yequan Wang
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Wen Cui
- Department of Forensic Pathology, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| |
Collapse
|
2
|
Chen H, Wang X, Cheng H, Deng Y, Chen J, Wang B. CircRNA circRREB1 promotes tumorigenesis and progression of breast cancer by activating Erk1/2 signaling through interacting with GNB4. Heliyon 2024; 10:e28785. [PMID: 38617926 PMCID: PMC11015410 DOI: 10.1016/j.heliyon.2024.e28785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024] Open
Abstract
Current investigations have illuminated the essential roles played by circular RNAs (circRNAs) in driving breast cancer (BC) tumorigenesis. However, the functional implications and molecular underpinnings of most circRNAs in BC are not well characterized. Here, Circular RNA (circRNA) expression profiles were analyzed in four surgically resected BC cases along with adjacent non-cancerous tissues applying RNA microarray analysis. The levels and prognostic implications of circRREB1 in BC were subjected to quantitative real-time PCR (qRT-PCR) and in situ hybridization (ISH). Experimental manipulation of circRREB1 levels in both in vivo and in vitro settings further delineated its role in BC cell growth, invasion, and metastasis. The mechanical verification of circRREB1's interaction with GNB4 was established through RNA pull-down, mass spectrometry, Western blot analysis, RNA immunoprecipitation assays (RIP), fluorescence ISH (FISH), and rescue experiments. We found that circRREB1 exhibited significant upregulation in BC tissues and cells, implicating its association with an unfavorable prognosis in BC patients. CircRREB1 knockdown elicited anti-proliferative, anti-migratory, anti-invasive, and pro-apoptotic effects in BC cells, whereas its upregulation exerted opposing influences. Follow-up mechanistic examinations suggested that circRREB1 might interact with GNB4 directly, inducing the activation of Erk1/2 signaling and driving BC progression. Our findings collectively indicate that the interplay of circRREB1 with GNB4 promotes Erk1/2 signaling, thereby fostering BC progression, and positioning circRREB1 as a candidate therapeutic target for intervention in BC.
Collapse
Affiliation(s)
- Hong Chen
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China
| | - Xiaosong Wang
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China
| | - Hang Cheng
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China
| | - Yumei Deng
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China
| | - Junxia Chen
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China
| | - Bin Wang
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing 400054, China
| |
Collapse
|
3
|
Cheng M, Li T, Hu E, Yan Q, Li H, Wang Y, Luo J, Tang T. A novel strategy of integrating network pharmacology and transcriptome reveals antiapoptotic mechanisms of Buyang Huanwu Decoction in treating intracerebral hemorrhage. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117123. [PMID: 37673200 DOI: 10.1016/j.jep.2023.117123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Buyang Huanwu Decoction (BYHWD), as a traditional Chinese medical prescription, has been used to treat intracerebral hemorrhage (ICH) for hundreds of years, but the antiapoptotic properties have not yet been studied. AIM OF THE STUDY This study aims to elucidate the antiapoptotic mechanism of BYHWD in ICH. MATERIALS AND METHODS The therapeutic effect of BYHWD on ICH was assessed by modified neurological severity scores (mNSS), foot fault, and histopathological staining. Then, we used a modified comprehensive strategy by integrating transcriptome and network pharmacology to reveal the underlying mechanism. TUNEL assay, qRT-PCR, and western blot were further applied to evaluate the antiapoptotic effect of BYHWD on ICH. Dual-luciferase reporter assay and plasmid transfections were implemented to validate the potential competing endogenous RNAs (ceRNA) mechanism of Sh2b3. RESULTS Network pharmacology analysis indicated that the regulation of the apoptotic process was the highest enriched GO term, and that MAP kinase activity, ERK1, and ERK2 cascade were strongly correlated. Transcriptome analysis screened 180 differentially expressed mRNAs, which were highly enriched in the immune system process and negative regulation of programmed cell death. By checking the literature, we found that Sh2b3 was of great importance to apoptosis by modulating MAPK cascades. TUNEL assay validated the anti-apoptotic effect of BYHWD. Moreover, BYHWD was proven to regulate the Sh2b3-mediated ERK1/2 signaling pathway in ICH mice by qRT-PCR and western blot. We further explored the lncRNA-miRNA-mRNA network underlying the therapeutic effect, among which 4933404O12Rik/miR-185-5p is the upstream regulatory mechanism of Sh2b3. CONCLUSIONS We explored the antiapoptotic mechanism of BYHWD in treating ICH by a novel integrated strategy, which involved the 4933404O12Rik/miR-185-5p/Sh2b3 ceRNAs axis.
Collapse
Affiliation(s)
- Menghan Cheng
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Teng Li
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang, 330006, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - En Hu
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang, 330006, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Qiuju Yan
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Haigang Li
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan, 410219, PR China
| | - Yang Wang
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang, 330006, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Jiekun Luo
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang, 330006, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Tao Tang
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang, 330006, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| |
Collapse
|
5
|
Meng J, Zhang C, Zhu N, Zhang C, Liu M, Han Z, Li Y. EPN3 plays oncogenic role in non-small cell lung cancer by activating the JAK1/2-STAT3 pathway. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37186036 DOI: 10.1002/tox.23822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/10/2023] [Accepted: 04/16/2023] [Indexed: 05/17/2023]
Abstract
The effect of Epsin 3 (EPN3) on non-small cell lung cancer (NSCLC) has not yet been clearly elucidated. This study identified the exact function of EPN3 on NSCLC progression. EPN3 expression in NSCLC patients were analyzed based on the Cancer Genome Atlas database. Kaplan-Meier analysis was implemented to research the effect of EPN3 on patients' survival. EPN3 expression in clinical tissues of 62 NSCLC cases was monitored by real-time quantitative reverse transcription polymerase chain reaction, immunohistochemistry and Western blot. A549 and H1299 cells were transfected with EPN3 shRNA and treated by RO8191 (20 μM). Proliferation was researched by cell counting kit-8 and 5-ethnyl-2 deoxyuridine assays. Apoptosis was monitored by flow cytometry. Migration and invasion was assessed by Transwell experiment. EPN3 effect on A549 cell in vivo growth was researched using nude mice. RO8191 (200 μg) was intratumoral injected into mice. Immunohistochemistry and Western blot was implemented to monitor protein expression in cells and xenograft tumor tissues. EPN3 was abnormally up-regulated in NSCLC patients and cells, indicating a lower overall survival. Loss of EPN3 weakened proliferation, migration and invasion, induced apoptosis, and repressed epithelial-mesenchymal transition in NSCLC cells. Loss of EPN3 inactivated the JAK1/2-STAT3 pathway in NSCLC cells. RO8191 treatment reversed the inhibition of EPN3 knockdown on the malignant phenotype of NSCLC cells. RO8191 intratumoral injection reversed the suppression of EPN3 silencing on NSCLC cell in vivo growth. EPN3 acted as an oncogene in NSCLC via activating the JAK1/2-STAT3 pathway. EPN3 may be a promising target for NSCLC treatment.
Collapse
Affiliation(s)
- Jiguang Meng
- Department of Pulmonary and Critical Care Medicine, Fourth Medical Center of PLA General Hospital, Beijing, China
- Naval Clinical College, Anhui Medical University, Hefei, China
| | - Chunyang Zhang
- Department of Pulmonary and Critical Care Medicine, Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Nengyang Zhu
- Naval Clinical College, Anhui Medical University, Hefei, China
- Department of Pulmonary and Critical Care Medicine, Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Caiyun Zhang
- Department of Pulmonary and Critical Care Medicine, Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Meng Liu
- Department of Pulmonary and Critical Care Medicine, Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Zhihai Han
- Department of Pulmonary and Critical Care Medicine, Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Yongqun Li
- Department of Pulmonary and Critical Care Medicine, Sixth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Wang LN, Zhang ZT, Wang L, Wei HX, Zhang T, Zhang LM, Lin H, Zhang H, Wang SQ. TGF-β1/SH2B3 axis regulates anoikis resistance and EMT of lung cancer cells by modulating JAK2/STAT3 and SHP2/Grb2 signaling pathways. Cell Death Dis 2022; 13:472. [PMID: 35589677 PMCID: PMC9120066 DOI: 10.1038/s41419-022-04890-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 12/14/2022]
Abstract
The pathogenesis of lung cancer, the most common cancer, is complex and unclear, leading to limited treatment options and poor prognosis. To provide molecular insights into lung cancer development, we investigated the function and underlying mechanism of SH2B3 in the regulation of lung cancer. We indicated SH2B3 was diminished while TGF-β1 was elevated in lung cancer tissues and cells. Low SH2B3 level was correlated with poor prognosis of lung cancer patients. SH2B3 overexpression suppressed cancer cell anoikis resistance, proliferation, migration, invasion, and EMT, while TGF-β1 promoted those processes via reducing SH2B3. SH2B3 bound to JAK2 and SHP2 to repress JAK2/STAT3 and SHP2/Grb2/PI3K/AKT signaling pathways, respectively, resulting in reduced cancer cell anoikis resistance, proliferation, migration, invasion, and EMT. Overexpression of SH2B3 suppressed lung cancer growth and metastasis in vivo. In conclusion, SH2B3 restrained the development of anoikis resistance and EMT of lung cancer cells via suppressing JAK2/STAT3 and SHP2/Grb2/PI3K/AKT signaling cascades, leading to decreased cancer cell proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Li-Na Wang
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, 272029, Jining, Shandong Province, P. R. China
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, 272029, Jining, Shandong Province, P. R. China
| | - Zi-Teng Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, 272029, Jining, Shandong Province, P. R. China
| | - Li Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan Province, P. R. China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan Province, P. R. China
| | - Hai-Xiang Wei
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, 272029, Jining, Shandong Province, P. R. China
| | - Tao Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, 272029, Jining, Shandong Province, P. R. China
| | - Li-Ming Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, 272029, Jining, Shandong Province, P. R. China
| | - Hang Lin
- Department of General Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan Province, P. R. China
| | - Heng Zhang
- Department of General Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan Province, P. R. China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, 410008, Changsha, Hunan Province, P. R. China.
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, 410008, Changsha, Hunan Province, P. R. China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, P. R. China.
| | - Shao-Qiang Wang
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, 272029, Jining, Shandong Province, P. R. China.
| |
Collapse
|