1
|
Dang Q. LncRNA DARS-AS1 in human cancers: A comprehensive review of its potency as a biomarker and therapeutic target. Gene 2024; 923:148566. [PMID: 38762015 DOI: 10.1016/j.gene.2024.148566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Long non-coding RNAs have emerged as important players in cancer biology. Increasing evidence has uncovered their potency in improving cancer management as they can be used as a credible prognostic and diagnostic biomarker. Recently, DARS-AS1 has gained significant attention for its involvement in facilitating tumor progression. So far, numerous research has been reported its upregulation in different malignancies of human body systems and revealed its association with cancer hallmarks as well as clinicopathological characteristics. Importantly, targeting DARS-AS1 holds promise in cancer therapy. In the current study, we provide an in-depth analysis of its expression status and explore the underlying mechanisms through which DARS-AS1 contributes to tumor initiation, growth, invasion, and metastasis. Additionally, we examine the correlation between DARS-AS1 expression and clinicopathological features of cancer patients, shedding light on its potential as a cancer biomarker. Furthermore, we discuss the therapeutic potential of targeting DARS-AS1 in cancer treatment, highlighting emerging strategies, such as RNA interference and small molecule inhibitors. Boosting the understanding of its functional role can open new avenues for precision medicine, thus resulting in better outcomes for cancer patients.
Collapse
Affiliation(s)
- Qiucai Dang
- Zhumadian Preschool Education College, Zhumadian, Henan Province 463000, China.
| |
Collapse
|
2
|
Shi Q, Xue C, Zeng Y, Yuan X, Chu Q, Jiang S, Wang J, Zhang Y, Zhu D, Li L. Notch signaling pathway in cancer: from mechanistic insights to targeted therapies. Signal Transduct Target Ther 2024; 9:128. [PMID: 38797752 PMCID: PMC11128457 DOI: 10.1038/s41392-024-01828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/31/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Notch signaling, renowned for its role in regulating cell fate, organ development, and tissue homeostasis across metazoans, is highly conserved throughout evolution. The Notch receptor and its ligands are transmembrane proteins containing epidermal growth factor-like repeat sequences, typically necessitating receptor-ligand interaction to initiate classical Notch signaling transduction. Accumulating evidence indicates that the Notch signaling pathway serves as both an oncogenic factor and a tumor suppressor in various cancer types. Dysregulation of this pathway promotes epithelial-mesenchymal transition and angiogenesis in malignancies, closely linked to cancer proliferation, invasion, and metastasis. Furthermore, the Notch signaling pathway contributes to maintaining stem-like properties in cancer cells, thereby enhancing cancer invasiveness. The regulatory role of the Notch signaling pathway in cancer metabolic reprogramming and the tumor microenvironment suggests its pivotal involvement in balancing oncogenic and tumor suppressive effects. Moreover, the Notch signaling pathway is implicated in conferring chemoresistance to tumor cells. Therefore, a comprehensive understanding of these biological processes is crucial for developing innovative therapeutic strategies targeting Notch signaling. This review focuses on the research progress of the Notch signaling pathway in cancers, providing in-depth insights into the potential mechanisms of Notch signaling regulation in the occurrence and progression of cancer. Additionally, the review summarizes pharmaceutical clinical trials targeting Notch signaling for cancer therapy, aiming to offer new insights into therapeutic strategies for human malignancies.
Collapse
Affiliation(s)
- Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shuwen Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jinzhi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yaqi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
3
|
Siddique R, Gupta G, Mgm J, Kumar A, Kaur H, Ariffin IA, Pramanik A, Almalki WH, Ali H, Shahwan M, Patel N, Murari K, Mishra R, Thapa R, Bhat AA. Targeting notch-related lncRNAs in cancer: Insights into molecular regulation and therapeutic potential. Pathol Res Pract 2024; 257:155282. [PMID: 38608371 DOI: 10.1016/j.prp.2024.155282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024]
Abstract
Cancer is a group of diseases marked by unchecked cell proliferation and the ability for the disease to metastasize to different body areas. Enhancements in treatment and early detection are crucial for improved outcomes. LncRNAs are RNA molecules that encode proteins and have a length of more than 200 nucleotides. LncRNAs are crucial for chromatin architecture, gene regulation, and other cellular activities that impact both normal growth & pathological processes, even though they are unable to code for proteins. LncRNAs have emerged as significant regulators in the study of cancer biology, with a focus on their intricate function in the Notch signaling pathway. The imbalance of this pathway is often linked to a variety of malignancies. Notch signaling is essential for cellular functions like proliferation, differentiation, and death. The cellular response is shaped by these lncRNAs through their modulation of essential Notch pathway constituents such as receptors, ligands, and downstream effectors around it. Furthermore, a variety of cancer types exhibit irregular expression of Notch-related lncRNAs, underscoring their potential use as therapeutic targets and diagnostic markers. Gaining an understanding of the molecular processes behind the interaction between the Notch pathway and lncRNAs will help you better understand the intricate regulatory networks that control the development of cancer. This can open up new possibilities for individualized treatment plans and focused therapeutic interventions. The intricate relationships between lncRNAs & the Notch pathway in cancer are examined in this review.
Collapse
Affiliation(s)
- Raihan Siddique
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Johar Mgm
- Management and Science University (MSU), Shah Alam, Selangor 40100 MSU, Malaysia
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand- 831001, India
| | - I A Ariffin
- Management and Science University (MSU), Shah Alam, Selangor 40100 MSU, Malaysia
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Divison of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Neeraj Patel
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Krishna Murari
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Riya Mishra
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India.
| |
Collapse
|
4
|
Endale HT, Mariye YF, Negash HK, Hassen FS, Asrat WB, Mengstie TA, Tesfaye W. MiRNA in cervical cancer: Diagnosis to therapy: Systematic review. Heliyon 2024; 10:e24398. [PMID: 38317930 PMCID: PMC10839805 DOI: 10.1016/j.heliyon.2024.e24398] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Cancers are one of the most public health problems worldwide. Among them, cervical cancer (CC) is the fourth most prevalent cancer with 604 000 new cases and 342 000 deaths. Mostly, it is associated with Human papillomavirus (HPV). It has been caused by the aggregation of genetic and epigenetic modifications in cervical epithelial cells. Although genetic mutations are given great attention for the carcinogenesis of CC, epigenetic changes have emerged as a hotspot area for CC biomarkers research with great implications for early diagnosis, prognosis, and treatment response prediction of the disease. Recently, there are several studies focused on miRNAs as biomarkers of cervical cancer. However, the precise function of miRNAs in the development of cervical cancer is not still completely understood, particularly when it comes to unconventional sampling materials like cervical mucus and plasma serum. Hence, this review article will give a summary of the miRNAs profiles that emerge at different stages of cervical cancer progression and their downstream effects on target genes and associated signaling pathways. Finally, these results may provide insight into the use of miRNAs as biomarkers for the prediction or diagnosis of cervical cancer or the development of miRNA-based therapeutics against cervical cancer.
Collapse
Affiliation(s)
- Hiwot Tezera Endale
- Department of Biochemistry, School of Medicine, College of Medicine & Health Sciences, University of Gondar, Ethiopia
| | - Yitbarek Fantahun Mariye
- Department of Obstetrics & Gynecology, School of Medicine, College of Medicine & Health Sciences, Addis Ababa University, Ethiopia
| | - Habtu Kifle Negash
- Department of Human Anatomy, School of Medicine, College of Medicine & Health Sciences, University of Gondar, Ethiopia
| | - Fethiya Seid Hassen
- Department of Biochemistry, School of Medicine, College of Medicine & Health Sciences, University of Gondar, Ethiopia
| | - Wastina Bitewlign Asrat
- Department of Biochemistry, School of Medicine, College of Medicine & Health Sciences, University of Gondar, Ethiopia
| | - Tiget Ayelgn Mengstie
- Department of Biochemistry, School of Medicine, College of Medicine & Health Sciences, University of Gondar, Ethiopia
| | - Winta Tesfaye
- Department of Human Physiology, School of Medicine, College of Medicine & Health Sciences, University of Gondar, Ethiopia
| |
Collapse
|
5
|
Shu J, Xia K, Luo H, Wang Y. DARS-AS1: A Vital Oncogenic LncRNA Regulator with Potential for Cancer Prognosis and Therapy. Int J Med Sci 2024; 21:571-582. [PMID: 38322590 PMCID: PMC10845261 DOI: 10.7150/ijms.90611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/01/2024] [Indexed: 02/08/2024] Open
Abstract
DARS-AS1, short for Aspartyl-tRNA synthetase antisense RNA 1, has emerged as a pivotal player in cancers. Upregulation of this lncRNA is a recurrent phenomenon observed across various cancer types, where it predominantly assumes oncogenic roles, exerting influence on multiple facets of tumor cell biology. This aberrant expression of DARS-AS1 has triggered extensive research investigations, aiming to unravel its roles and clinical values in cancer. In this review, we elucidate the significant correlation between dysregulated DARS-AS1 expression and adverse survival prognoses in cancer patients, drawing from existing literature and pan-cancer analyses from The Cancer Genome Atlas (TCGA). Additionally, we provide comprehensive insights into the diverse functions of DARS-AS1 in various cancers. Our review encompasses the elucidation of the molecular mechanisms, ceRNA networks, functional mediators, and signaling pathways, as well as its involvement in therapy resistance, coupled with the latest advancements in DARS-AS1-related cancer research. These recent updates enrich our comprehensive comprehension of the pivotal role played by DARS-AS1 in cancer, thereby paving the way for future applications of DARS-AS1-targeted strategies in tumor prognosis evaluation and therapeutic interventions. This review furnishes valuable insights to advance the ongoing efforts in combating cancer effectively.
Collapse
Affiliation(s)
- Jian Shu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
- Department of Spleen and Stomach Diseases, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang 332000, Jiangxi, China
| | - Kejiang Xia
- Department of Neurosurgery, Yingtan People's Hospital, Yingtan 335000, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
| | - Yang Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
| |
Collapse
|
6
|
Li F, Wang Y, Wen M, Aizezi G, Yuan J, Zhou T, Shen G. NPHS2-6 drives cervical squamous cell carcinoma (CSCC) progression via hsa-miR-1323/SMC1B axis to activate PI3K-Akt pathway. Clin Transl Oncol 2024; 26:245-259. [PMID: 37322227 DOI: 10.1007/s12094-023-03248-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
PURPOSE A substantial amount of evidence demonstrates suggests that long non-coding RNAs (lncRNAs) play a key role in the progression of various malignancies, cervical squamous cell carcinoma (CSCC) included. In our study, we deeply investigated the role and molecular mechanism of lncRNA NPHS2-6 in CSCC. METHODS The expression level of gene and protein expression were measured by qRT-PCR and western blot. To test the cell proliferation and cell metastasis ability, we carried out the CCK-8 experiment, clone formation assay, transwell assay and wound healing, respectively. The interactivity among NPHS2-6, miR-1323 and SMC1B were co demonstrated using the bioinformatics tool, dual-luciferase reporter system, and RNA pulldown assay. The subcutaneous tumor model of nude mice was established to verify the results of previous studies at the in vivo. NPHS2-6 was upregulated in CSCC tissues and cells. RESULTS NPHS2-6 deficiency significantly inhibited CSCC cell growth and EMT in vitro. In addition, NPHS2-6 deficiency also inhibited the growth of CSCC xenograft tumors in mice in vivo. Importantly, NPHS2-6 was a competing endogenous RNA (ceRNA) to increases SMC1B levels by binding to miR-1323, leading to activate the PI3K/Akt pathway, thereby exacerbating tumorigenesis of CSCC. CONCLUSIONS In conclusion, NPHS2-6/miR-1323/SMC1B/PI3K/Akt signaling accelerates the progression of CSCC, providing a new direction for the treatment strategy of CSCC.
Collapse
Affiliation(s)
- Fen Li
- The Second Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, 789 Suzhou East Street, Urumqi, 830011, Xinjiang Province, China
| | - Yan Wang
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Mengke Wen
- The Second Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, 789 Suzhou East Street, Urumqi, 830011, Xinjiang Province, China
| | - Gulibiya Aizezi
- The Second Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, 789 Suzhou East Street, Urumqi, 830011, Xinjiang Province, China
| | - Jinrui Yuan
- The Second Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, 789 Suzhou East Street, Urumqi, 830011, Xinjiang Province, China
| | - Tongjunnan Zhou
- The Second Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, 789 Suzhou East Street, Urumqi, 830011, Xinjiang Province, China
| | - Guqun Shen
- The Second Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, 789 Suzhou East Street, Urumqi, 830011, Xinjiang Province, China.
| |
Collapse
|
7
|
Wu S, Zhong B, Yang Y, Wang Y, Pan Z. ceRNA networks in gynecological cancers progression and resistance. J Drug Target 2023; 31:920-930. [PMID: 37724808 DOI: 10.1080/1061186x.2023.2261079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/14/2023] [Indexed: 09/21/2023]
Abstract
Gynecological cancers are the second most common types of cancer in women. Clinical diagnosis of these cancers is often delayed or misdiagnosed due to lack of insight into their tumorigenesis mechanism and specific diagnostic biomarkers. Many studies have demonstrated that competing endogenous RNAs (ceRNAs) modulate the progression and resistance of gynecological cancer through microRNA (miRNA)-mediated mechanisms, which affect gene expression in multiple cancer-related pathways. Here we review studies on the involvement of the ceRNA hypothesis in the progression and resistance of gynaecological cancers to validate some ceRNAs as therapeutic targets and predictive biomarkers.
Collapse
Affiliation(s)
- Shuqin Wu
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Baoshan Zhong
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuxin Yang
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yurou Wang
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zezheng Pan
- Faculty of Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Ranga S, Yadav R, Chhabra R, Chauhan MB, Tanwar M, Yadav C, Kadian L, Ahuja P. Long non-coding RNAs as critical regulators and novel targets in cervical cancer: current status and future perspectives. Apoptosis 2023:10.1007/s10495-023-01840-6. [PMID: 37095313 PMCID: PMC10125867 DOI: 10.1007/s10495-023-01840-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 04/26/2023]
Abstract
Cervical cancer is among the leading causes of cancer-associated mortality in women. In spite of vaccine availability, improved screening procedures, and chemoradiation therapy, cervical cancer remains the most commonly diagnosed cancer in 23 countries and the leading cause of cancer deaths in 36 countries. There is, therefore, a need to come up with novel diagnostic and therapeutic targets. Long non-coding RNAs (lncRNAs) play a remarkable role in genome regulation and contribute significantly to several developmental and disease pathways. The deregulation of lncRNAs is often observed in cancer patients, where they are shown to affect multiple cellular processes, including cell cycle, apoptosis, angiogenesis, and invasion. Many lncRNAs are found to be involved in the pathogenesis as well as progression of cervical cancer and have shown potency to track metastatic events. This review provides an overview of lncRNA mediated regulation of cervical carcinogenesis and highlights their potential as diagnostic and prognostic biomarkers as well as therapeutic targets for cervical cancer. In addition, it also discusses the challenges associated with the clinical implication of lncRNAs in cervical cancer.
Collapse
Affiliation(s)
- Shalu Ranga
- Associate Professor, Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Ritu Yadav
- Associate Professor, Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| | - Ravindresh Chhabra
- Assistant Professor, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, 151401, India.
| | - Meenakshi B Chauhan
- Department of Obstetrics and Gynaecology, Pandit Bhagwat Dayal Sharma University of Health Sciences, Rohtak, Haryana, 124001, India
| | - Mukesh Tanwar
- Associate Professor, Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Chetna Yadav
- Associate Professor, Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Lokesh Kadian
- School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Parul Ahuja
- Associate Professor, Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
9
|
miRNAs role in cervical cancer pathogenesis and targeted therapy: Signaling pathways interplay. Pathol Res Pract 2023; 244:154386. [PMID: 36868096 DOI: 10.1016/j.prp.2023.154386] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023]
Abstract
Cervical cancer (CC) is the primary cause of cancer deaths in underdeveloped countries. The persistence of infection with high-risk human papillomavirus (HPV) is a significant contributor to the development of CC. However, few women with morphologic HPV infection develop invasive illnesses, suggesting other mechanisms contribute to cervical carcinogenesis. MicroRNAs (miRNAs, miRs) are small chain nucleic acids that can regulate wide networks of cellular events. They can inhibit or degrade their target protein-encoding genes. They had the power to regulate CC's invasion, pathophysiology, angiogenesis, apoptosis, proliferation, and cell cycle phases. Further research is required, even though novel methods have been developed for employing miRNAs in the diagnosis, and treatment of CC. We'll go through some of the new findings about miRNAs and their function in CC below. The function of miRNAs in the development of CC and its treatment is one of these. Clinical uses of miRNAs in the analysis, prediction, and management of CC are also covered.
Collapse
|
10
|
Du C, Han X, Zhang Y, Guo F, Yuan H, Wang F, Li M, Ning F, Wang W. DARS-AS1 modulates cell proliferation and migration of gastric cancer cells by regulating miR-330-3p/NAT10 axis. Open Med (Wars) 2022; 17:2036-2045. [PMID: 36568518 PMCID: PMC9755708 DOI: 10.1515/med-2022-0583] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/01/2022] [Accepted: 09/18/2022] [Indexed: 12/15/2022] Open
Abstract
The long noncoding RNA DARS-AS1 was aberrantly expressed and participated in several human cancer progressions, whereas whether DARS-AS1 is involved in human gastric cancer remains unclear. This study aimed to investigate the influence of DARS-AS1 on gastric cancer progression and explore the potential regulatory network of DARS-AS1/miR-330-3p/NAT10. The expression levels of DARS-AS1, miR-330-3p, and NAT10 were measured by quantitative real-time polymerase chain reaction. The CCK-8 assay and Transwell assay were used to determine the cell viability, migration, and invasion capacities, respectively. The target association between miR-330-3p and DARS-AS1 or NAT10 was confirmed using a luciferase reporter assay. In result, DARS-AS1 levels were elevated in tumor tissues and associated with shorter overall survival in patients with gastric cancer. Knockdown of DARS-AS1 could hamper cell viability, migration, and invasion in gastric cancer cells. DARS-AS1 acts as a competitive endogenous RNA to regulate the NAT10 expression by sponging miR-330-3p in gastric cancer cells. In conclusion, DARS-AS1 was elevated in gastric cancer, and DARS-AS1/miR-330-3p/NAT10 signaling offered some new horizons for predicting prognosis and a novel therapeutic method for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Chunjuan Du
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China,Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Xia Han
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Yanyan Zhang
- Department of Pediatrics, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Fengli Guo
- Department of Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Haibin Yuan
- Department of Health Management, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Feng Wang
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Mianli Li
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Fangling Ning
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Weibo Wang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, No 324, Jingwuweiqi Road, Jinan, Shandong, 250021, China
| |
Collapse
|
11
|
miR-23b-3p, miR-124-3p and miR-218-5p Synergistic or Additive Effects on Cellular Processes That Modulate Cervical Cancer Progression? A Molecular Balance That Needs Attention. Int J Mol Sci 2022; 23:ijms232113551. [PMID: 36362337 PMCID: PMC9658720 DOI: 10.3390/ijms232113551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
In cervical cancer (CC), miR-23b-3p, miR-124-3p, and miR-218-5p have been found to act as tumor suppressors by regulating cellular processes related to progression and metastasis. The objective of the present review is to provide an update on the experimental evidence about the role of miR-23b-3p, miR-124-3p, and miR-218-5p in the regulation of CC progression. Additionally, we present the results of a bioinformatic analysis that suggest that these miRNAs have a somewhat redundant role in the same cellular processes that may result in a synergistic effect to promote CC progression. The results indicate that specific and common target genes for miR-23b-3p, miR-124-3p, and miR-218-5p regulate proliferation, migration, apoptosis, and angiogenesis, all processes that are related to CC maintenance and progression. Furthermore, several target genes may regulate cancer-related signaling pathways. We found that a total of 271 proteins encoded by the target mRNAs of miR-23b-3p, miR-124-3p, or miR-218-5p interact to regulate the cellular processes previously mentioned, and some of these proteins are regulated by HPV-16 E7. Taken together, information analysis indicates that miR-23b-3p, miR-124-3p, and miR-218-5p may potentiate their effects to modulate the cellular processes related to the progression and maintenance of CC with and without HPV-16 involvement.
Collapse
|
12
|
Wei YB, Liang DM, Zhang ML, Li YJ, Sun HF, Wang Q, Liang Y, Li YM, Wang RR, Yang ZL, Wang P, Xie SY. WFDC21P promotes triple-negative breast cancer proliferation and migration through WFDC21P/miR-628/SMAD3 axis. Front Oncol 2022; 12:1032850. [PMID: 36387210 PMCID: PMC9659817 DOI: 10.3389/fonc.2022.1032850] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/14/2022] [Indexed: 08/26/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) modulate cell proliferation, cycle, and apoptosis. However, the role of lncRNA-WFDC21P in the tumorigenesis of triple-negative breast cancer (TNBC) remains unclear. Results of this study demonstrated that WFDC21P levels significantly increased in TNBC, which was associated with the poor survival of patients. WFDC21P overexpression significantly promoted TNBC cell proliferation and metastasis. WFDC21P interacted with miR-628-5p, which further suppressed cell proliferation and metastasis by negatively regulating Smad3-related gene expression. Recovery of miR-628-5p weakened the roles of WFDC21P in promoting the growth and metastasis of TNBC cells. Moreover,N6-methyladenosine (m6A) modification upregulated WFDC21P expression in the TNBC cells. WFDC21P and its m6A levels were increased after methyltransferase like 3 (METTL3) overexpression but reduced after METTL3 silencing. The proliferation and metastasis of TNBC cells were promoted by METTL3 overexpression but suppressed by METTL3 silencing. This study demonstrated the vital roles of WFDC21P and its m6A in regulating the proliferation and metastasis of TNBC cells via the WFDC21P/miR-628/SMAD3 axis.
Collapse
Affiliation(s)
- Yu-Bo Wei
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
| | - Dong-Min Liang
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
| | - Mei-Ling Zhang
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
| | - You-Jie Li
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
| | - Hong-Fang Sun
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
| | - Qin Wang
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
| | - Yan Liang
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Yan-Mei Li
- Department of Immune Rheumatism, Yantaishan Hospital, Yantai, Shandong, China
| | - Ran-Ran Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Zhen-Lin Yang
- Department of Breast and Thyroid Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Pingyu Wang
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
- Department of Epidemiology, Binzhou Medical University, Yantai, Shandong, China
| | - Shu-Yang Xie
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
13
|
Emam O, Wasfey EF, Hamdy NM. Notch-associated lncRNAs profiling circuiting epigenetic modification in colorectal cancer. Cancer Cell Int 2022; 22:316. [PMID: 36229883 PMCID: PMC9558410 DOI: 10.1186/s12935-022-02736-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/28/2022] [Indexed: 11/15/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most prevalent digestive cancers, ranking the 2nd cause of cancer-related fatality worldwide. The worldwide burden of CRC is predicted to rise by 60% by 2030. Environmental factors drive, first, inflammation and hence, cancer incidence increase. Main The Notch-signaling system is an evolutionarily conserved cascade, has role in the biological normal developmental processes as well as malignancies. Long non-coding RNAs (LncRNAs) have become major contributors in the advancement of cancer by serving as signal pathways regulators. They can control gene expression through post-translational changes, interactions with micro-RNAs or down-stream effector proteins. Recent emerging evidence has emphasized the role of lncRNAs in controlling Notch-signaling activity, regulating development of several cancers including CRC. Conclusion Notch-associated lncRNAs might be useful prognostic biomarkers or promising potential therapeutic targets for CRC treatment. Therefore, here-in we will focus on the role of “Notch-associated lncRNAs in CRC” highlighting “the impact of Notch-associated lncRNAs as player for cancer induction and/or progression.” Graphical Abstract ![]()
Collapse
Affiliation(s)
| | - Eman F Wasfey
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
14
|
刘 俊, 石 宇, 吴 敏, 徐 梦, 张 凤, 何 志, 唐 敏. [JAG1 promotes migration, invasion, and adhesion of triple-negative breast cancer cells by promoting angiogenesis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1100-1108. [PMID: 35869777 PMCID: PMC9308863 DOI: 10.12122/j.issn.1673-4254.2022.07.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of JAG1 on the malignant phenotype of triple-negative breast cancer (TNBC) and its role in angiogenesis in breast cancer microenvironment. METHODS The expressions of Notch molecules were detected in human TNBC 231 and 231B cells using RT-qPCR. Five female nude mice were inoculated with 231 cells and another 5 with 231B cells into the mammary fat pads, and 4-6 weeks later, the tumors were collected for immunohistochemical and immunofluorescence tests. 231 cells and 231B cells were treated with recombinant JAG (rJAG) protein and DAPT, respectively, and changes in their malignant phenotypes were assessed using CCK-8 assay, Hoechst 33258 staining, wound healing assay, Transwell chamber assay and endothelial cell adhesion assay. Western blotting was used to detect the changes in the expressions of proteins related with the malignant phenotypes of 231 and 231B cells. The effects of conditioned medium (CM) derived from untreated 231 and 231 B cells, rJAG1-treated 231 cells and DAPT-treated 231B cells on proliferation and tube formation ability of cultured human umbilical vein endothelial cells (HUVECs) were evaluated using CCK-8 assay and tube-forming assay. RESULTS The expression of JAG1 was higher in 231B cells than in 231 cells (P < 0.05). Tumor 231B showed higher expression of VEGFA and CD31. Compared with 231-Blank group, the migration, invasion and adhesion of 231 cells in 231-rJAG1 were significantly enhanced (P < 0.05). Protein levels of Twist1 and Snail increased (P < 0.01), anti-apoptotic protein Bcl-2 increased (P < 0.05), while DAPT inhibited the related phenomena and indicators of 231B. The 231-rJAG1-CM increased the cell number and tubule number of HUVEC (P < 0.05). CONCLUSION JAG1 may affect the malignant phenotype of TNBC and promote angiogenesis in the tumor microenvironment.
Collapse
Affiliation(s)
- 俊平 刘
- />重庆医科大学检验医学院,临床检验诊断学教育部重点实验室,重庆 400016Key Laboratory of Clinical Laboratory and Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - 宇彤 石
- />重庆医科大学检验医学院,临床检验诊断学教育部重点实验室,重庆 400016Key Laboratory of Clinical Laboratory and Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - 敏敏 吴
- />重庆医科大学检验医学院,临床检验诊断学教育部重点实验室,重庆 400016Key Laboratory of Clinical Laboratory and Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - 梦岐 徐
- />重庆医科大学检验医学院,临床检验诊断学教育部重点实验室,重庆 400016Key Laboratory of Clinical Laboratory and Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - 凤梅 张
- />重庆医科大学检验医学院,临床检验诊断学教育部重点实验室,重庆 400016Key Laboratory of Clinical Laboratory and Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - 志强 何
- />重庆医科大学检验医学院,临床检验诊断学教育部重点实验室,重庆 400016Key Laboratory of Clinical Laboratory and Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - 敏 唐
- />重庆医科大学检验医学院,临床检验诊断学教育部重点实验室,重庆 400016Key Laboratory of Clinical Laboratory and Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
15
|
Khan K, Gogonea V, Fox PL. Aminoacyl-tRNA synthetases of the multi-tRNA synthetase complex and their role in tumorigenesis. Transl Oncol 2022; 19:101392. [PMID: 35278792 PMCID: PMC8914993 DOI: 10.1016/j.tranon.2022.101392] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/16/2022] Open
Abstract
In mammalian cells, 20 aminoacyl-tRNA synthetases (AARS) catalyze the ligation of amino acids to their cognate tRNAs to generate aminoacylated-tRNAs. In higher eukaryotes, 9 of the 20 AARSs, along with 3 auxiliary proteins, join to form the cytoplasmic multi-tRNA synthetase complex (MSC). The complex is absent in prokaryotes, but evolutionary expansion of MSC constituents, primarily by addition of novel interacting domains, facilitates formation of subcomplexes that join to establish the holo-MSC. In some cases, environmental cues direct the release of constituents from the MSC which enables the execution of non-canonical, i.e., "moonlighting", functions distinct from their essential activities in protein translation. These activities are generally beneficial, but can also be deleterious to the cell. Elucidation of the non-canonical activities of several AARSs residing in the MSC suggest they are potential therapeutic targets for cancer, as well as metabolic and neurologic diseases. Here, we describe the role of MSC-resident AARSs in cancer progression, and the factors that regulate their release from the MSC. Also, we highlight recent developments in therapeutic modalities that target MSC AARSs for cancer prevention and treatment.
Collapse
Affiliation(s)
- Krishnendu Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| | - Valentin Gogonea
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, United States of America
| | - Paul L Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| |
Collapse
|
16
|
Wei J, Gao Y, Li Z, Jia H, Han B. LncRNA SNHG6 facilitates cell proliferation, migration, invasion and EMT by upregulating UCK2 and activating the Wnt/β-catenin signaling in cervical cancer. Bioorg Chem 2021; 120:105488. [PMID: 35033815 DOI: 10.1016/j.bioorg.2021.105488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 09/24/2021] [Accepted: 11/09/2021] [Indexed: 01/21/2023]
Abstract
Cervical cancer is a most prevalent gynecological malignancy around the world. Long non-coding RNAs (lncRNAs) are recognized as crucial players in the cellular activities of diverse cancers including cervical cancer. We aimed to reveal the biological function of lncRNA small nucleolar RNA host gene 6 (SNHG6) in cervical cancer. Our findings illuminated that SNHG6 expression was elevated in cervical cancer tissues and cell lines, and highly expressed SNHG6 was associated with poor outcome in patients with cervical cancer. Moreover, knockdown of SNHG6 repressed cervical cancer development via inhibiting cell proliferation and migration and accelerating cell apoptosis. Further, SNHG6 was a sponge of miR-485-3p and uridine-cytidine kinase 2 (UCK2) was the functional target of miR-485-3p. SNHG6 increased UCK2 expression by binding with miR-485-3p in cervical cancer cells. The rescue experiments showed that SNHG6 contributed to malignant phenotypes of cervical cancer cells by the miR-485-3p/UCK2 axis. Additionally, SNHG6 activated the Wnt/β-catenin pathway to enhance the proliferative and migratory ability of cervical cancer cells. Overall, this work revealed that SNHG6 promoted malignant behaviors of cervical cancer cells by binding with miR-485-3p to regulate UCK2 and activating the Wnt/β-catenin pathway, which may offer a beneficial direction to treat cervical cancer.
Collapse
Affiliation(s)
- Jing Wei
- Department of Gynecology, Cancer Hospital and Institute, China Medical University, Shenyang 110042, Liaoning, China
| | - YuHua Gao
- Department of Gynecology, Cancer Hospital and Institute, China Medical University, Shenyang 110042, Liaoning, China
| | - Zhuo Li
- Department of Gynecology, Cancer Hospital and Institute, China Medical University, Shenyang 110042, Liaoning, China
| | - HaiQing Jia
- Department of Gynecology, Cancer Hospital and Institute, China Medical University, Shenyang 110042, Liaoning, China
| | - Bing Han
- Department of The Sixth General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China.
| |
Collapse
|
17
|
Zhu J, Han S. Downregulation of LncRNA DARS-AS1 Inhibits the Tumorigenesis of Cervical Cancer via Inhibition of IGF2BP3. Onco Targets Ther 2021; 14:1331-1340. [PMID: 33658798 PMCID: PMC7920590 DOI: 10.2147/ott.s274623] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/16/2021] [Indexed: 12/15/2022] Open
Abstract
Background Evidence has been shown that long noncoding RNAs (lncRNAs) play an important role in the development of cervical cancer. Recently, lncRNA DARS-AS1 was reported to be dysregulated in several cancer types; however, the role of DARS-AS1 in cervical cancer remains unclear. Methods Flow cytometry and transwell invasion assays were performed to determine the apoptosis and invasion in cervical cancer cells. In addition, RNA pull-down and fluorescence in situ hybridization (FISH) assays were conducted to assess the interaction between DARS-AS1 and IGF2BP3 in cervical cancer cells. Results Downregulation of DARS-AS1 significantly induced apoptosis and cell cycle arrest in cervical cancer cells. Meanwhile, the invasion ability of cervical cancer cells was inhibited by DARS-AS1 knockdown as well. RNA pull-down and FISH results showed that DARS-AS1 interacted with IGF2BP3. Mechanistically, DARS-AS1 positively regulated IGF2BP3 expression via stabilization of IGF2BP3 mRNA. Rescue assays confirmed that DARS-AS1 regulated the progression of cervical cancer through interacting with IGF2BP3 in vitro. In addition, in vivo experiments revealed that downregulation of DARS-AS1 inhibited tumor growth in SiHa xenograft model. Conclusion In this study, we found that downregulation of DARS-AS1 could inhibit the growth of cervical cancer cells via inhibition of IGF2BP3, suggesting DARS-AS1 might serve as a potential target for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Jinming Zhu
- Department of Oncology, Affiliated Zhongshan Hospital, Dalian University, Dalian, Liaoning, 116000, People's Republic of China
| | - Shichao Han
- Department of Gynecology, The 2nd Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116021, People's Republic of China
| |
Collapse
|