1
|
Schöpe PC, Torke S, Kobelt D, Kortüm B, Treese C, Dumbani M, Güllü N, Walther W, Stein U. MACC1 revisited - an in-depth review of a master of metastasis. Biomark Res 2024; 12:146. [PMID: 39580452 PMCID: PMC11585957 DOI: 10.1186/s40364-024-00689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024] Open
Abstract
Cancer metastasis remains the most lethal characteristic of tumors mediating the majority of cancer-related deaths. Identifying key molecules responsible for metastasis, understanding their biological functions and therapeutically targeting these molecules is therefore of tremendous value. Metastasis Associated in Colon Cancer 1 (MACC1), a gene first described in 2009, is such a key driver of metastatic processes, initiating cellular proliferation, migration, invasion, and metastasis in vitro and in vivo. Since its discovery, the value of MACC1 as a prognostic biomarker has been confirmed in over 20 cancer entities. Additionally, several therapeutic strategies targeting MACC1 and its pro-metastatic functions have been developed. In this review, we will provide a comprehensive overview on MACC1, from its clinical relevance, towards its structure and role in signaling cascades as well as molecular networks. We will highlight specific biological consequences of MACC1 expression, such as an increase in stem cell properties, its immune-modulatory effects and induced therapy resistance. Lastly, we will explore various strategies interfering with MACC1 expression and/or its functions. Conclusively, this review underlines the importance of understanding the role of individual molecules in mediating metastasis.
Collapse
Affiliation(s)
- Paul Curtis Schöpe
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Sebastian Torke
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Dennis Kobelt
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Benedikt Kortüm
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Christoph Treese
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Malti Dumbani
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Nazli Güllü
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Wolfgang Walther
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
- German Cancer Consortium (DKTK), Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
2
|
Gao D, Shi J, Lu S, Li J, Lv K, Xu Y, Song M. METTL3 accelerates staphylococcal protein A (SpA)-induced osteomyelitis progression by regulating m6A methylation-modified miR-320a. J Orthop Surg Res 2024; 19:729. [PMID: 39506767 PMCID: PMC11542406 DOI: 10.1186/s13018-024-05164-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Osteomyelitis (OM) is an inflammatory disease of bone infection and destruction characterized by dysregulation of bone homeostasis. Staphylococcus aureus (SA) has been reported to be the most common pathogen causing infectious OM. Recent studies have demonstrated that N6-methyladenosine (m6A) regulators are associated with the development of OM. However, the molecular mechanism of m6A modifications in OM remains unclear. Here, we investigated the function of methyltransferase-like 3 (METTL3)-mediated m6A modification in OM development. In this study, human bone mesenchymal stem cells (hBMSCs) were treated with staphylococcal protein A (SpA), a vital virulence factor of SA, to construct cell models of OM. Firstly, we found that METTL3 was upregulated in OM patients and SpA-induced hBMSCs, and SpA treatment suppressed osteogenic differentiation and induced oxidative stress and inflammatory injury in hBMSCs. Functional experiments showed that METTL3 knockdown alleviated the inhibition of osteogenic differentiation and the promotion of oxidative stress and inflammation in SpA-treated hBMSCs. Furthermore, METTL3-mediated m6A modification upregulated miR-320a expression by promoting pri-miR-320a maturation, and the mitigating effects of METTL3 knockdown on SpA-mediated osteogenic differentiation, oxidative stress and inflammatory responses can be reversed by miR-320 mimic. In addition, we demonstrated that phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) was a downstream target of miR-320a, upregulation of PIK3CA alleviated miR-320a-induced inhibition of osteogenic differentiation, and upregulation of oxidative stress and inflammatory responses during SpA infection. Finally, we found that silencing METTL3 alleviated OM development by regulating the miR-320a/PIK3CA axis. Taken together, our data demonstrated that the METTL3/m6A/miR-320a/PIK3CA axis regulated SpA-mediated osteogenic differentiation, oxidative stress, and inflammatory responses in OM, which may provide a new therapeutic strategy for OM patients.
Collapse
Affiliation(s)
- Ding Gao
- Department of Orthopedic Trauma Surgery, Meizhou People's Hospital, Meizhou, 514031, China
| | - Jian Shi
- Department of Orthopedics, 920th Hospital of the Joint Logistics Force of the People's Liberation Army, No. 212, Daguan Road, Xishan District, Kunming, 650032, China
| | - Siyu Lu
- Department of Orthopedics, 920th Hospital of the Joint Logistics Force of the People's Liberation Army, No. 212, Daguan Road, Xishan District, Kunming, 650032, China
| | - Junyi Li
- Department of Orthopedics, 920th Hospital of the Joint Logistics Force of the People's Liberation Army, No. 212, Daguan Road, Xishan District, Kunming, 650032, China
- Graduate School of Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, China
| | - Kehan Lv
- Department of Orthopedics, 920th Hospital of the Joint Logistics Force of the People's Liberation Army, No. 212, Daguan Road, Xishan District, Kunming, 650032, China
- Graduate School of Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, China
| | - Yongqing Xu
- Department of Orthopedics, 920th Hospital of the Joint Logistics Force of the People's Liberation Army, No. 212, Daguan Road, Xishan District, Kunming, 650032, China.
| | - Muguo Song
- Department of Orthopedics, 920th Hospital of the Joint Logistics Force of the People's Liberation Army, No. 212, Daguan Road, Xishan District, Kunming, 650032, China.
- Graduate School of Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, China.
| |
Collapse
|
3
|
Gong L, Li G, Yi X, Han Q, Wu Q, Ying F, Shen L, Cao Y, Liu X, Gao L, Li W, Wang Z, Cai J. Tumor-derived small extracellular vesicles facilitate omental metastasis of ovarian cancer by triggering activation of mesenchymal stem cells. Cell Commun Signal 2024; 22:47. [PMID: 38233863 PMCID: PMC10795335 DOI: 10.1186/s12964-023-01413-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Omental metastasis is the major cause of ovarian cancer recurrence and shortens patient survival, which can be largely attributed to the dynamic evolution of the fertile metastatic microenvironment driven by cancer cells. Previously, we found that adipose-derived mesenchymal stem cells (ADSCs) undergoing a phenotype shift toward cancer-associated fibroblasts (CAFs) participated in the orchestrated omental premetastatic niche for ovarian cancer. Here, we aim to elucidate the underlying mechanisms. METHODS Small extracellular vesicles were isolated from ovarian cancer cell lines (ES-2 and its highly metastatic subline, ES-2-HM) and patient ascites using ultracentrifugation. Functional experiments, including Transwell and EdU assays, and molecular detection, including Western blot, immunofluorescence, and RT-qPCR, were performed to investigate the activation of ADSCs in vitro. High-throughput transcriptional sequencing and functional assays were employed to identify the crucial functional molecules inducing CAF-like activation of ADSCs and the downstream effector of miR-320a. The impact of extracellular vesicles and miR-320a-activated ADSCs on tumor growth and metastasis was assessed in subcutaneous and orthotopic ovarian cancer xenograft mouse models. The expression of miR-320a in human samples was evaluated using in situ hybridization staining. RESULTS Primary human ADSCs cocultured with small extracellular vesicles, especially those derived from ES-2-HM, exhibited boosted migration, invasion, and proliferation capacities and elevated α-SMA and FAP levels. Tumor-derived small extracellular vesicles increased α-SMA-positive stromal cells, fostered omental metastasis, and shortened the survival of mice harboring orthotopic ovarian cancer xenografts. miR-320a was abundant in highly metastatic cell-derived extracellular vesicles, evoked dramatic CAF-like transition of ADSCs, targeted the 3'-untranslated region of integrin subunit alpha 7 and attenuated its expression. miR-320a overexpression in ovarian cancer was associated with omental metastasis and shorter survival. miR-320a-activated ADSCs facilitated tumor cell growth and omental metastasis. Depletion of integrin alpha 7 triggered CAF-like activation of ADSCs in vitro. Video Abstract CONCLUSIONS: miR-320a in small extracellular vesicles secreted by tumor cells targets integrin subunit alpha 7 in ADSCs and drives CAF-like activation, which in turn facilitates omental metastasis of ovarian cancer.
Collapse
Affiliation(s)
- Lanqing Gong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guoqing Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoqing Yi
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qing Han
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Obstetrics and Gynecology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, 443000, China
| | - Qiulei Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feiquan Ying
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lu Shen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Gynecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Ying Cao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoli Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lingling Gao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenhan Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
4
|
Zhang W, Zhang X, Cheng P, Yue K, Tang M, Li Y, Guo Q, Zhang Y. HSF4 promotes tumor progression of colorectal cancer by transactivating c-MET. Mol Cell Biochem 2022; 478:1141-1150. [PMID: 36229759 DOI: 10.1007/s11010-022-04582-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022]
Abstract
Heat shock factors (HSFs) are a family of transcription factors, composed of HSF1, HSF2, and HSF4, to regulate cell stress reaction for maintaining cellular homeostasis in response to adverse stimuli. Recent studies have disclosed the roles of HSF1 and HSF2 in modulating tumor development, including colorectal cancer (CRC). However, HSF4, which is closely associated with pathology of congenital cataracts, remains less studied in tumors. In this study, we aimed to describe the regulatory effects of HSF4 and underlying molecular mechanism in CRC progression. By bioinformatic analysis of TCGA database and TMA-IHC assay, we identified that the expression of HSF4 was significantly upregulated in CRCs compared with normal colonic tissues and was a prognostic factor of poor outcomes of CRC patients. Function assays, including CCK-8, colony formation, transwell assays, and xenografted mouse model, were employed to verify that HSF4 promoted cell growth, colony formation, invasion of CRC cells in vitro, and tumor growth in vivo as a potential oncogenic factor. Mechanistically, results of Chromatin immunoprecipitation (ChIP) and immunoblotting assays revealed that HSF4 associated directly to MET promoter to enhance expression of c-MET, a well-known oncogene in multiple cancers, thus fueling the activity of downstream ERK1/2 and AKT signaling pathways. In further rescue experiments, restoration of c-MET expression abolished inhibitory cell growth and invasion induced by downregulated HSF4 expression. To sum up, our findings describe a crucial role of HSF4 in CRC progression by enhancing activity of c-MET and downstream ERK1/2 and AKT signaling pathways, and highlight HSF4 as a potential therapeutic target for anti-CRC treatment.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Medical Oncology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650000, China.,Faculty of Medicine, Kunming University of Science and Technology, Kunming, 650000, China
| | - Xuelian Zhang
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, 650000, China
| | - Peng Cheng
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, 650000, China
| | - Kelin Yue
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, 650000, Kunming, China
| | - Ming Tang
- Department of Pathology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650000, China
| | - Yan Li
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, 650000, Kunming, China
| | - Qiang Guo
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, 650000, Kunming, China
| | - Yu Zhang
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, 650000, Kunming, China.
| |
Collapse
|
5
|
MACC1 Promotes the Progression and Is a Novel Biomarker for Predicting Immunotherapy Response in Colorectal Cancer. JOURNAL OF ONCOLOGY 2022; 2022:8326940. [PMID: 35874635 PMCID: PMC9303487 DOI: 10.1155/2022/8326940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022]
Abstract
Aims As one of the most prevalent malignant diseases in the world, the mechanisms of metastasis in colon cancer are poorly understood. The aim of this study was to investigate the role of the HGF/c-MET axis in the proliferation and metastasis in colon cancer. Methods The effect of MACC1 on cell proliferation and metastasis was analyzed through a series of in vitro experiments. The role of MACC1 in cancer cells was demonstrated by overexpression and silencing of MACC1 in gain or loss function experiments. To investigate the relationship between MACC1 and c-MET/HGF, we detected c-MET protein expression by disrupting with or overexpressing MACC1. The bioinformatics analysis was used to investigate the correlation between MACC1 and c-MET, and the c-MET expression after the interference of HGF with MACC1 was determined. Subsequently, the function of c-MET was verified in colon cancer cells by a series of experiments. The mouse tumor transplantation model experiment is most suitable in vivo. Results The results indicated that the overexpression of MACC1 could accelerate proliferation and facilitate metastasis in colon cancer cell lines. Furthermore, c-MET was determined to be the downstream regulator of MACC1. The addition of HGF could stimulate the expression of MACC1. With further exploration, we proved that c-MET is downstream of MACC1 in colon cancer and that overexpression of c-MET in colon cancer enhances cell proliferation and migration capability. At last, MACC1 expression level negatively correlates with the infiltration levels and several immune checkpoint biomarkers. High MACC1 expression has a lower response rate with ICIs in COAD. Conclusions We found that, under the regulation of the MACC1/HGF/c-MET axis, the proliferation and metastasis of colorectal cancer are increased by MACC1, which can be a novel biomarker for predicting ICIs response in colorectal cancer. Our findings provide a new idea for the targeted treatment of colorectal cancer.
Collapse
|
6
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H, Albakri KA, Alkhafaji E, Issa NN, Al-Holy MA, Abderrahman SM, Abdallah AM, Mohamud R. Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines 2022; 10:1219. [PMID: 35740242 PMCID: PMC9219990 DOI: 10.3390/biomedicines10061219] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Infants who are exclusively breastfed in the first six months of age receive adequate nutrients, achieving optimal immune protection and growth. In addition to the known nutritional components of human breast milk (HBM), i.e., water, carbohydrates, fats and proteins, it is also a rich source of microRNAs, which impact epigenetic mechanisms. This comprehensive work presents an up-to-date overview of the immunomodulatory constituents of HBM, highlighting its content of circulating microRNAs. The epigenetic effects of HBM are discussed, especially those regulated by miRNAs. HBM contains more than 1400 microRNAs. The majority of these microRNAs originate from the lactating gland and are based on the remodeling of cells in the gland during breastfeeding. These miRNAs can affect epigenetic patterns by several mechanisms, including DNA methylation, histone modifications and RNA regulation, which could ultimately result in alterations in gene expressions. Therefore, the unique microRNA profile of HBM, including exosomal microRNAs, is implicated in the regulation of the genes responsible for a variety of immunological and physiological functions, such as FTO, INS, IGF1, NRF2, GLUT1 and FOXP3 genes. Hence, studying the HBM miRNA composition is important for improving the nutritional approaches for pregnancy and infant's early life and preventing diseases that could occur in the future. Interestingly, the composition of miRNAs in HBM is affected by multiple factors, including diet, environmental and genetic factors.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan;
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Khaled A. Albakri
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Enas Alkhafaji
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Nada N. Issa
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Murad A. Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Salim M. Abderrahman
- Department of Biology and Biotechnology, Faculty of Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| |
Collapse
|
7
|
Goujon M, Woszczyk J, Gaudelot K, Swierczewski T, Fellah S, Gibier JB, Van Seuningen I, Larrue R, Cauffiez C, Gnemmi V, Aubert S, Pottier N, Perrais M. A Double-Negative Feedback Interaction between miR-21 and PPAR-α in Clear Renal Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14030795. [PMID: 35159062 PMCID: PMC8834244 DOI: 10.3390/cancers14030795] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the main histotype of kidney cancer, which is typically highly resistant to conventional therapies and known for abnormal lipid accumulation. In this context, we focused our attention on miR-21, an oncogenic miRNA overexpressed in ccRCC, and peroxysome proliferator-activated receptor-α (PPAR- α), one master regulator of lipid metabolism targeted by miR-21. First, in a cohort of 52 primary ccRCC samples, using RT-qPCR and immunohistochemistry, we showed that miR-21 overexpression was correlated with PPAR-α downregulation. Then, in ACHN and 786-O cells, using RT-qPCR, the luciferase reporter gene, chromatin immunoprecipitation, and Western blotting, we showed that PPAR-α overexpression (i) decreased miR-21 expression, AP-1 and NF-κB transcriptional activity, and the binding of AP-1 and NF-κB to the miR-21 promoter and (ii) increased PTEN and PDCD4 expressions. In contrast, using pre-miR-21 transfection, miR-21 overexpression decreased PPAR-α expression and transcriptional activity mediated by PPAR-α, whereas the anti-miR-21 (LNA-21) strategy increased PPAR-α expression, but also the expression of its targets involved in fatty acid oxidation. In this study, we showed a double-negative feedback interaction between miR-21 and PPAR-α. In ccRCC, miR-21 silencing could be therapeutically exploited to restore PPAR-α expression and consequently inhibit the oncogenic events mediated by the aberrant lipid metabolism of ccRCC.
Collapse
Affiliation(s)
- Marine Goujon
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
| | - Justine Woszczyk
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
| | - Kelly Gaudelot
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
| | - Thomas Swierczewski
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
| | - Sandy Fellah
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
| | - Jean-Baptiste Gibier
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
- CHU Lille, Service d’Anatomo-Pathologie, F-59000 Lille, France
| | - Isabelle Van Seuningen
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
| | - Romain Larrue
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
- CHU Lille, Service de Toxicologie et Génopathies, F-59000 Lille, France
| | - Christelle Cauffiez
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
| | - Viviane Gnemmi
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
- CHU Lille, Service d’Anatomo-Pathologie, F-59000 Lille, France
| | - Sébastien Aubert
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
- CHU Lille, Service d’Anatomo-Pathologie, F-59000 Lille, France
| | - Nicolas Pottier
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
- CHU Lille, Service de Toxicologie et Génopathies, F-59000 Lille, France
| | - Michaël Perrais
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
- Correspondence: ; Tel.: +33-3-20-29-88-62
| |
Collapse
|
8
|
Lv D, Shen T, Yao J, Yang Q, Xiang Y, Ma Z. HIF-1α Induces HECTD2 Up-Regulation and Aggravates the Malignant Progression of Renal Cell Cancer via Repressing miR-320a. Front Cell Dev Biol 2022; 9:775642. [PMID: 35004677 PMCID: PMC8739985 DOI: 10.3389/fcell.2021.775642] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/03/2021] [Indexed: 01/13/2023] Open
Abstract
Renal cell carcinoma (RCC) is a frequent malignancy of the urinary system. It has been found that hypoxia mediates the malignant evolvement of RCC. Here, we probe the impact and potential mechanism of HECT domain E3 ubiquitin-protein ligase 2 (HECTD2) and HIF-1α on regulating RCC evolvement. RCC tissues and adjacent normal tissues were collected, and the association between the expression profiles of HECTD2 and HIF-1α and the clinicopathological features was analyzed. Additionally, we constructed HECTD2/HIF-1α overexpression and knockdown models in RCC cell lines to ascertain the impacts of HECTD2 and HIF-1α on RCC cell proliferation, apoptosis, migration, and growth in vivo. We applied bioinformatics to predict the upstream miRNA targets of HECTD2. Meanwhile, RNA immunoprecipitation (RIP), and the dual-luciferase reporter assays were employed to clarify the targeting association between HECTD2 and miR-320a. The effect of miR-320a on HECTD2-mediated RCC progression was investigated. The results suggested that both HIF-1α and HECTD2 were up-regulated in RCC (compared with adjacent non-tumor tissues), and they had positive relationship. Moreover, higher level of HECTD2 and HIF-1α is associated with poorer overall survival of RCC patients. HECTD2 overexpression heightened RCC cell proliferation and migration, and weakened cell apoptosis. On the other hand, the malignant phenotypes of RCC cells were signally impeded by HECTD2 or HIF-1α knockdown. Moreover, miR-320a targeted the 3'-untranslated region of HECTD2 and suppressed HECTD2 expression. The rescue experiments showed that miR-320a restrained HECTD2-mediated malignant progression in RCC, while up-regulation of HIF-1α hampered miR-320a expression. Collectively, HIF-1α mediated HECTD2 up-regulation and aggravated RCC progression by attenuating miR-320a.
Collapse
Affiliation(s)
- Dong Lv
- Department of Urology, Eastern Hospital, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Taimin Shen
- Health Management Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Juncheng Yao
- Department of Urology, Eastern Hospital, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Qi Yang
- Department of Urology, Eastern Hospital, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Ying Xiang
- Department of Urology, Eastern Hospital, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Zhiwei Ma
- Department of Urology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
9
|
Jin Y, Meng L, Yang H, Cheng S, Xiao Y, Wang X, Feng X, Xiong Q, Chen B. The IL-22 gene rs2227478 polymorphism significantly decreases the risk of colorectal cancer in a Han Chinese population. Pathol Res Pract 2021; 228:153690. [PMID: 34808559 DOI: 10.1016/j.prp.2021.153690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/11/2021] [Accepted: 11/14/2021] [Indexed: 01/05/2023]
Abstract
To examine the role of IL-22 gene in colorectal cancer (CRC) susceptibility, we identified causative genetic polymorphisms in promoter region of IL-22 gene and explored the mechanism underlying their contribution to CRC development in a Chinese population of Hubei province. 13 target single nucleotide polymorphisms (SNPs) in IL-22 gene promoter were genotyped in 787 CRC patients (426 colon cancer and 361 rectal cancer) and 800 normal controls. The results demonstrated that the rs2227478 T > C polymorphism was significantly associated with the risk of colon cancer, rectal cancer and CRC, and the C allele was associated with a decreased cancer risk than the T allele. In CRC tissue samples, the subjects with CT+CC genotypes of rs2227478 had lower levels of IL-22 mRNA than the subjects with TT genotypes. Further functional analysis revealed that the transcription repressor Sp1 possessed a higher binding affinity to the C allele than the T allele. Collectively, the rs2227478 T > C is a functional genetic polymorphism that significantly reduces the CRC risk in a Han Chinese population.
Collapse
Affiliation(s)
- Yuchen Jin
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Linghan Meng
- Department of Biotechnology, Institute of WUT-AMU, Wuhan University of Technology, Wuhan, China
| | - Haoyi Yang
- Department of Biotechnology, Institute of WUT-AMU, Wuhan University of Technology, Wuhan, China
| | - Sirui Cheng
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Yiting Xiao
- Department of Biotechnology, Institute of WUT-AMU, Wuhan University of Technology, Wuhan, China
| | - Xingru Wang
- Department of Biotechnology, Institute of WUT-AMU, Wuhan University of Technology, Wuhan, China
| | - Xianhong Feng
- Clinical Laboratory, Wuhan Xinzhou District People's Hospital, Wuhan, China
| | - Qiantao Xiong
- Department of Laboratory, Maternal and Child Health Hospital of Hubei Province, Wuhan, China.
| | - Bifeng Chen
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China.
| |
Collapse
|