1
|
Zhang Y, Tang H, Zi M, Zhang Z, Gao Q, Tian S. CCDC71L as a novel prognostic marker and immunotherapy target via lipid metabolism in head and neck squamous cell carcinoma. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101799. [PMID: 38367702 DOI: 10.1016/j.jormas.2024.101799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is the sixth most widespread cancer globally with high rate and poor prognosis. Coiled-coil domain containing 71 like (CCDC71L) exerts an important role in cellular lipid metabolic process. However, its function in HNSCC remains unclear. To this end, we examined the CCDC71L implications for prognosis and tumor microenvironment in HNSCC. MATERIALS AND METHODS First, CCDC71L expression was explored through The Cancer Genome Atlas (TCGA), Human Protein Atlas (HPA), the Gene Expression Profiling Interactive Analysis 2 (GEPIA2), Clinical Proteomic Tumor Analysis Consortium (CPTAC) and the Gene Expression Omnibus (GEO) databases. The clinicpathological information were obtained from the dataset of TCGA. The Kaplan-Meier Plotter databases and Cox model were performed for the determination of prognostic values of CCDC71L, including the overall survival (OS), progress free interval (PFI), recurrence-free survival (RFS) and disease specific survival (DSS). Then, the potential mechanism of CCDC71L in HNSCC development was elucidated by means of Gene set enrichment analysis (GSEA) and Metascape databases. Furthermore, the relevance of CCDC71L to immune cells infiltration and immune checkpoints was assessed. The correlations among CCDC71L expression, mutational landscape and genome heterogeneity [mutant-allele tumor heterogeneity (MATH) and tumor purity] were detected by the data in TCGA. RESULTS CCDC71L expression was significantly upregulated in HNSCC, and positively associated with age, gender and N stage. Higher CCDC71L expression resulted in poor OS, RFS, DSS and PFI. Multivariate Cox regression analysis showed CCDC71L would be an independent prognostic marker in patients with HNSCC. Moreover, CCDC71L and the level of macrophage and neutrophil cells infiltration were significantly correlated in HNSCC. High expression of CCDC71L was related to immune checkpoint genes, oncogene mutations and genome heterogeneity markers. CONCLUSION These results implied that CCDC71L plays vital roles in HNSCC progression, which could be used as a underlying biomarker for the diagnosis and prognosis of HNSCC. Meanwhile, CCDC71L participates in immune regulation, which has a potential value for the immunotherapy of HNSCC patients.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Oral Medicine, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huifang Tang
- Department of Cariology and Endodontics, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Minghui Zi
- Department of Oral Medicine, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhiyong Zhang
- Department of Oral Medicine, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qi Gao
- Department of Oral Medicine, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Songbo Tian
- Department of Oral Medicine, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
2
|
Wu T, Dong Y, Yang X, Mo L, You Y. Crosstalk between lncRNAs and Wnt/β-catenin signaling pathways in lung cancers: From cancer progression to therapeutic response. Noncoding RNA Res 2024; 9:667-677. [PMID: 38577016 PMCID: PMC10987302 DOI: 10.1016/j.ncrna.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 04/06/2024] Open
Abstract
Lung cancer (LC) is considered to have the highest mortality rate around the world. Because there are no early diagnostic signs or efficient clinical alternatives, distal metastasis and increasing numbers of recurrences are a challenge in the clinical management of LC. Long non-coding RNAs (lncRNAs) have recently been recognized as a critical regulator involved in the progression and treatment response to LC. The Wnt/β-catenin pathway has been shown to influence LC occurrence and progress. Therefore, discovering connections between Wnt signaling pathway and lncRNAs may offer new therapeutic targets for improving LC treatment and management. In this review, the purpose of this article is to present possible therapeutic approaches by reviewing particular relationships, key processes, and molecules associated to the beginning and development of LC.
Collapse
Affiliation(s)
- Ting Wu
- Research Laboratory of Translational Medicine/Laboratory of Protein Structure and Function, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - YiRan Dong
- Research Laboratory of Translational Medicine/Laboratory of Protein Structure and Function, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - XinZhi Yang
- Research Laboratory of Translational Medicine/Laboratory of Protein Structure and Function, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Liang Mo
- Department of Thoracic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yong You
- Research Laboratory of Translational Medicine/Laboratory of Protein Structure and Function, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
3
|
Wu Q, Li G, Gong L, Cai J, Chen L, Xu X, Liu X, Zhao J, Zeng Y, Gao R, Yu L, Wang Z. Identification of miR-30c-5p as a tumor suppressor by targeting the m 6 A reader HNRNPA2B1 in ovarian cancer. Cancer Med 2023; 12:5055-5070. [PMID: 36259156 PMCID: PMC9972042 DOI: 10.1002/cam4.5246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/30/2022] [Accepted: 08/07/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND microRNAs (miRNAs) and N6-methyladenosine (m6 A) play important roles in ovarian cancer (OvCa). However, the mechanisms by which miRNAs regulate m6 A in OvCa have not been elucidated so far. METHODS To screen m6 A-related miRNAs, Pearson's correlation analysis of miRNAs and m6 A regulators was implemented using The Cancer Genome Atlas database (TCGA). To determine the level of m6 A, RNA m6 A quantitative assays were used. Then, colony formation assays, EdU assays, wound healing assays, and Transwell assays were performed. The dual-luciferase reporter assay was used to confirm the miRNA target genes. Protein-protein interaction (PPI) analysis of the target genes was performed, and hub genes were discovered using the cytoHubba/Cytoscape software. The underlying molecular mechanisms were explored by bioinformatics and RNA stability assays. RESULTS A total of 126 miRNAs were identified as m6 A-related miRNAs by Pearson's correlation analysis. Among them, the high level of miR-30c-5p was associated with good prognosis in OvCa patients. In vitro, the miR-30c-5p agomir lowered the m6 A level and inhibited OvCa cell proliferation, migration, and invasion. The hub target genes of miR-30c-5p were identified as (i) XPO1, (ii) AGO1, (iii) HNRNPA2B1, of which m6 A reader HNRNPA2B1 was highly expressed in OvCa tissues and related with poor prognosis. In vitro, knockdown of HNRNPA2B1 significantly reduced m6 A level and hampered the proliferation and migration of OvCa cells. The inhibition of m6 A reader HNRNPA2B1 attenuated the suppression of proliferation and migration and the low m6 A level induced by the miR-30c-5p downregulation. Mechanistically, m6 A reader HNRNPA2B1 might regulate CDK19 mRNA stability to alter m6 A level. CONCLUSIONS miR-30c-5p inhibits OvCa progression and reduces the m6 A level by inhibiting m6 A reader HNRNPA2B1, thus providing new insights into the m6 A regulatory mechanism in OvCa.
Collapse
Affiliation(s)
- Qiulei Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoqing Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lanqing Gong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Le Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohan Xu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoli Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya Zeng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Gao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Yu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Zhu Y, Wu H, Yang X, Xiong Z, Zhao T, Gan X. LINC00514 facilitates cell proliferation, migration, invasion, and epithelial-mesenchymal transition in non-small cell lung cancer by acting on the Wnt/β-catenin signaling pathway. Bioengineered 2022; 13:13654-13666. [PMID: 35653786 PMCID: PMC9276032 DOI: 10.1080/21655979.2022.2084246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The long non-coding RNA (lncRNA) LINC00514 was identified to play an essential oncogenic function in different human cancers, but its effects in non-small cell lung cancer (NSCLC) are yet to be elucidated. In this study, we evaluated the function of LINC00514 in NSCLC. LINC00514 expression and prognosis in NSCLC were analyzed using qRT-PCR and online bioinformatic tools. The bioeffects of LINC0514 in NSCLC cells were examined using cell counting kit-8, colony formation, and transwell assays. Western blotting was used to measure the expression of the target proteins. The LINC00514 regulation of the Wnt/β-catenin signaling pathway was assessed using a specific agonist (LiCl) and luciferase reporter assay. We found that LINC00514 expression was elevated in NSCLC cells and clinical samples and that increased LINC00514 expression predicted poorer patient prognosis. Silencing LINC00514 suppresses proliferation, migration, and invasion of NSCLC cells. Downregulation of LINC00514 inhibited Wnt/β-catenin signaling and epithelial-mesenchymal transition (EMT). Moreover, suppression of the biological phenotypes of NSCLC cells induced by LINC00514 gene silencing was restored after LiCl treatment. Finally, we found that silencing LINC00514 attenuated the growth of xenograft tumors in vivo. Altogether, this study provides the latest convincing evidence that LINC00514 facilitates the malignant biological behavior of NSCLC cells through activation of the Wnt/β-catenin pathway, which might offer a beneficial approach for the treatment of NSCLC.
Collapse
Affiliation(s)
- Yuanzhe Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.,Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Huala Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.,Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Xi Yang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Zhijuan Xiong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.,Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Tiantian Zhao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.,Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Xin Gan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.,Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
5
|
Chen J, Tang D, Li H, Zhang P. Expression changes of serum LINC00941 and LINC00514 in HBV infection-related liver diseases and their potential application values. J Clin Lab Anal 2021; 36:e24143. [PMID: 34825738 PMCID: PMC8761418 DOI: 10.1002/jcla.24143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs) are considered as potential diagnostic markers for a variety of tumors. Here, we aimed to explore the changes of LINC00941 and LINC00514 expression in hepatitis B virus (HBV) infection-related liver disease and evaluate their application value in disease diagnosis. METHODS Serum levels of LINC00941 and LINC00514 were detected by qRT-PCR. Potential diagnostic values were evaluated by receiver operating characteristic curve (ROC) analysis. RESULTS Serum LINC00941 and LINC00514 levels were elevated in patients with chronic hepatitis B (CHB), liver cirrhosis (LC), and hepatocellular carcinoma (HCC) compared with controls. When distinguishing HCC from controls, serum LINC00941 and LINC00514 had diagnostic parameters of an AUC of 0.919 and 0.808, sensitivity of 85% and 90%, and specificity of 86.67% and 56.67%, which were higher than parameters for alpha fetal protein (AFP) (all p < 0.0001). When distinguishing HCC from LC, CHB, or LC from controls, the combined detection of LINC00941 or LINC00514 can significantly improve the accuracy of AFP test alone (all p < 0.05). CONCLUSIONS LINC00941 and LINC00514 were increased in the serum of HBV infection-associated liver diseases and might be independent markers for the detection of liver diseases.
Collapse
Affiliation(s)
- Juanjuan Chen
- Laboratory Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongling Tang
- Laboratory Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huan Li
- Laboratory Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pingan Zhang
- Laboratory Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Luo X, Wang H. Correction to: LINC00514 upregulates CCDC71L to promote cell proliferation, migration and invasion in triple-negative breast cancer by sponging miR-6504-5p and miR-3139. Cancer Cell Int 2021; 21:561. [PMID: 34702258 PMCID: PMC8547035 DOI: 10.1186/s12935-021-02262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Xiao Luo
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Hui Wang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China.
| |
Collapse
|