1
|
Balhara N, Yadav R, Chauhan MB. Role of signaling pathways in endometrial cancer. Mol Biol Rep 2025; 52:408. [PMID: 40257522 DOI: 10.1007/s11033-025-10523-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
Endometrial cancer (EC) is a prevalent gynecological malignancy with a complex molecular landscape, contributing to significant global morbidity and mortality. Dysregulated signaling pathways such as PI3K/AKT/mTOR and RAS/RAF/MEK drive EC progression by promoting uncontrolled cell proliferation, survival, angiogenesis, and metastasis. Mutations in genes like PTEN and PIK3CA further underpin tumor aggressiveness. Molecular alterations in these pathways not only serve as biomarkers for prognosis but also guide the formulation of targeted therapies, such as mTOR inhibitors and anti-angiogenic agents. While such therapies show promise, optimizing their efficacy and minimizing adverse effects requires further research. A comprehensive approach integrating early detection (e.g., addressing postmenopausal bleeding), preventive strategies (e.g., managing obesity), increasing diagnostic sensitivity (e.g., transvaginal ultrasound) and advanced molecularly tailored treatments (e.g., AI & ML) is critical to reducing the burden of this disease. By targeting key signaling pathways, leveraging AI-driven methodologies, and addressing treatment resistance, we can enhance patient outcomes, also mitigate the rising global impact of EC.
Collapse
Affiliation(s)
- Nikita Balhara
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Ritu Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| | - Meenakshi B Chauhan
- Department of Obstetrics and Gynecology, PGIMS, Rohtak, Haryana, 124001, India
| |
Collapse
|
2
|
Paul S, Sims J, Pham T, Dey A. Targeting the Hippo pathway in cancer: kidney toxicity as a class effect of TEAD inhibitors? Trends Cancer 2025; 11:25-36. [PMID: 39521692 DOI: 10.1016/j.trecan.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
The Hippo pathway has emerged as a critical player in both cancers and targeted therapy resistance. Recent drug discovery efforts have led to the development of TEAD inhibitors, several of which have already progressed to the clinic. To truly leverage their potential as anticancer therapeutics, safety considerations, particularly in regard to the kidney, warrant additional investigation. This review explores the Hippo pathway's role in cancers, its therapeutic potential, role in kidney development, and the need to evaluate the best strategies to translate its clinical application for long-term patient benefit.
Collapse
Affiliation(s)
- Sayantanee Paul
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080
| | - Jessica Sims
- Department of Safety Assessment, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080
| | - Trang Pham
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080
| | - Anwesha Dey
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080.
| |
Collapse
|
3
|
Yang P, Li Y, Hou J, Wu D, Zeng X, Zeng Z, Zhang J, Xiong Y, Chen L, Yang D, Wan X, Wu Z, Jia L, Liu Q, Lu Q, Zou X, Fang W, Zeng X, Zhou D. Blockade of a novel MAP4K4-LATS2-SASH1-YAP1 cascade inhibits tumorigenesis and metastasis in luminal breast cancer. J Biol Chem 2024; 300:107309. [PMID: 38657867 PMCID: PMC11134552 DOI: 10.1016/j.jbc.2024.107309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024] Open
Abstract
Novel components in the noncanonical Hippo pathway that mediate the growth, metastasis, and drug resistance of breast cancer (BC) cells need to be identified. Here, we showed that expression of SAM and SH3 domain-containing protein 1 (SASH1) is negatively correlated with expression of mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) in a subpopulation of patients with luminal-subtype BC. Downregulated SASH1 and upregulated MAP4K4 synergistically regulated the proliferation, migration, and invasion of luminal-subtype BC cells. The expression of LATS2, SASH1, and YAP1 and the phosphorylation of YAP1 were negatively regulated by MAP4K4, and LATS2 then phosphorylated SASH1 to form a novel MAP4K4-LATS2-SASH1-YAP1 cascade. Dephosphorylation of Yes1 associated transcriptional regulator (YAP1), YAP1/TAZ nuclear translocation, and downstream transcriptional regulation of YAP1 were promoted by the combined effects of ectopic MAP4K4 expression and SASH1 silencing. Targeted inhibition of MAP4K4 blocked proliferation, cell migration, and ER signaling both in vitro and in vivo. Our findings reveal a novel MAP4K4-LATS2-SASH1-YAP1 phosphorylation cascade, a noncanonical Hippo pathway that mediates ER signaling, tumorigenesis, and metastasis in breast cancer. Targeted intervention with this noncanonical Hippo pathway may constitute a novel alternative therapeutic approach for endocrine-resistant BC.
Collapse
Affiliation(s)
- Pingping Yang
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P. R. China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, P. R. China; Department of Laboratory Medicine, The People's Hospital of QianNan, Guizhou, China
| | - Yadong Li
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Jing Hou
- Breast Cancer Surgery Department, Guizhou Provincial People's Hospital, Guiyang, Guizhou, P. R. China
| | - Daoqiu Wu
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Xing Zeng
- The Fifth Clinical College, Chongqing Medical University, Chongqing, China
| | - Zhen Zeng
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P. R. China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Jing Zhang
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Yu Xiong
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P. R. China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Lian Chen
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Dan Yang
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Xin Wan
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Zhixiong Wu
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Lei Jia
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Qianfan Liu
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Qingxiang Lu
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Xue Zou
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Wen Fang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Xiaohua Zeng
- Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, P. R. China.
| | - Ding'an Zhou
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P. R. China; Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
4
|
Li Z, Su P, Ding Y, Gao H, Yang H, Li X, Yang X, Xia Y, Zhang C, Fu M, Wang D, Zhang Y, Zhuo S, Zhu J, Zhuang T. RBCK1 is an endogenous inhibitor for triple negative breast cancer via hippo/YAP axis. Cell Commun Signal 2022; 20:164. [PMID: 36280829 PMCID: PMC9590148 DOI: 10.1186/s12964-022-00963-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is one of the most lethal breast cancer subtypes. Due to a lack of effective therapeutic targets, chemotherapy is still the main medical treatment for TNBC patients. Thus, it is important and necessary to find new therapeutic targets for TNBC. Recent genomic studies implicated the Hippo / Yap signal is over activated in TNBC, manifesting it plays a key role in TNBC carcinogenesis and cancer progression. RBCK1 was firstly identified as an important component for linear ubiquitin assembly complex (LUBAC) and facilitates NFKB signaling in immune response. Further studies showed RBCK1 also facilitated luminal type breast cancer growth and endocrine resistance via trans-activation estrogen receptor alpha. METHODS RBCK1 and YAP protein expression levels were measured by western blotting, while the mRNA levels of YAP target genes were measured by RT-PCR. RNA sequencing data were analyzed by Ingenuity Pathway Analysis. Identification of Hippo signaling activity was accomplished with luciferase assays, RT-PCR and western blotting. Protein stability assays and ubiquitin assays were used to detect YAP protein degradation. Ubiquitin-based immunoprecipitation assays were used to detect the specific ubiquitination modification on the YAP protein. RESULTS In our current study, our data revealed an opposite function for RBCK1 in TNBC progression. RBCK1 over-expression inhibited TNBC cell progression in vitro and in vivo, while RBCK1 depletion promoted TNBC cell invasion. The whole genomic expression profiling showed that RBCK1 depletion activated Hippo/YAP axis. RBCK1 depletion increased YAP protein level and Hippo target gene expression in TNBC. The molecular biology studies confirmed that RBCK1 could bind to YAP protein and enhance the stability of YAP protein by promoting YAP K48-linked poly-ubiquitination at several YAP lysine sites (K76, K204 and K321). CONCLUSION Our study revealed the multi-faced RBCK1 function in different subtypes of breast cancer patients and a promising therapeutic target for TNBC treatment. Video abstract.
Collapse
Affiliation(s)
- Zhongbo Li
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China
| | - Peng Su
- Department of Pathology, Shandong University Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong, Shandong Province People’s Republic of China
| | - Yinlu Ding
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong, Shandong Province People’s Republic of China
| | - Honglei Gao
- Department of General Surgery, Weifang People’s Hospital, Shandong, Shandong Province People’s Republic of China
| | - Huijie Yang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China
| | - Xin Li
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China
| | - Xiao Yang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China
| | - Yan Xia
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China
| | - Chenmiao Zhang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China
| | - Mingxi Fu
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China
| | - Dehai Wang
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong, Shandong Province People’s Republic of China
| | - Ye Zhang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China
| | - Shu Zhuo
- Signet Therapeutics Inc., Shenzhen, 518017 People’s Republic of China
| | - Jian Zhu
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong, Shandong Province People’s Republic of China
| | - Ting Zhuang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China
| |
Collapse
|
5
|
刘 俊, 石 宇, 吴 敏, 徐 梦, 张 凤, 何 志, 唐 敏. [JAG1 promotes migration, invasion, and adhesion of triple-negative breast cancer cells by promoting angiogenesis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1100-1108. [PMID: 35869777 PMCID: PMC9308863 DOI: 10.12122/j.issn.1673-4254.2022.07.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of JAG1 on the malignant phenotype of triple-negative breast cancer (TNBC) and its role in angiogenesis in breast cancer microenvironment. METHODS The expressions of Notch molecules were detected in human TNBC 231 and 231B cells using RT-qPCR. Five female nude mice were inoculated with 231 cells and another 5 with 231B cells into the mammary fat pads, and 4-6 weeks later, the tumors were collected for immunohistochemical and immunofluorescence tests. 231 cells and 231B cells were treated with recombinant JAG (rJAG) protein and DAPT, respectively, and changes in their malignant phenotypes were assessed using CCK-8 assay, Hoechst 33258 staining, wound healing assay, Transwell chamber assay and endothelial cell adhesion assay. Western blotting was used to detect the changes in the expressions of proteins related with the malignant phenotypes of 231 and 231B cells. The effects of conditioned medium (CM) derived from untreated 231 and 231 B cells, rJAG1-treated 231 cells and DAPT-treated 231B cells on proliferation and tube formation ability of cultured human umbilical vein endothelial cells (HUVECs) were evaluated using CCK-8 assay and tube-forming assay. RESULTS The expression of JAG1 was higher in 231B cells than in 231 cells (P < 0.05). Tumor 231B showed higher expression of VEGFA and CD31. Compared with 231-Blank group, the migration, invasion and adhesion of 231 cells in 231-rJAG1 were significantly enhanced (P < 0.05). Protein levels of Twist1 and Snail increased (P < 0.01), anti-apoptotic protein Bcl-2 increased (P < 0.05), while DAPT inhibited the related phenomena and indicators of 231B. The 231-rJAG1-CM increased the cell number and tubule number of HUVEC (P < 0.05). CONCLUSION JAG1 may affect the malignant phenotype of TNBC and promote angiogenesis in the tumor microenvironment.
Collapse
Affiliation(s)
- 俊平 刘
- />重庆医科大学检验医学院,临床检验诊断学教育部重点实验室,重庆 400016Key Laboratory of Clinical Laboratory and Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - 宇彤 石
- />重庆医科大学检验医学院,临床检验诊断学教育部重点实验室,重庆 400016Key Laboratory of Clinical Laboratory and Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - 敏敏 吴
- />重庆医科大学检验医学院,临床检验诊断学教育部重点实验室,重庆 400016Key Laboratory of Clinical Laboratory and Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - 梦岐 徐
- />重庆医科大学检验医学院,临床检验诊断学教育部重点实验室,重庆 400016Key Laboratory of Clinical Laboratory and Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - 凤梅 张
- />重庆医科大学检验医学院,临床检验诊断学教育部重点实验室,重庆 400016Key Laboratory of Clinical Laboratory and Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - 志强 何
- />重庆医科大学检验医学院,临床检验诊断学教育部重点实验室,重庆 400016Key Laboratory of Clinical Laboratory and Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - 敏 唐
- />重庆医科大学检验医学院,临床检验诊断学教育部重点实验室,重庆 400016Key Laboratory of Clinical Laboratory and Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
6
|
Discovery of N-benzylarylamide derivatives as novel tubulin polymerization inhibitors capable of activating the Hippo pathway. Eur J Med Chem 2022; 240:114583. [PMID: 35834904 DOI: 10.1016/j.ejmech.2022.114583] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 01/12/2023]
Abstract
Novel N-benzylarylamide saderivatives were designed and synthesized, and their antiproliferative activities were explored. Some of 51 target compounds exhibited potent inhibitory activities against MGC-803, HCT-116 and KYSE450 cells with IC50 values in two-digit nanomolar. Compound I-33 (MY-875) displayed the most potent antiproliferative activities against MGC-803, HCT-116 and KYSE450 cells (IC50 = 0.027, 0.055 and 0.067 μM, respectively) and possessed IC50 values ranging from 0.025 to 0.094 μM against other 11 cancer cell lines. Further mechanism studies indicated that compound I-33 (MY-875) inhibited tubulin polymerization (IC50 = 0.92 μM) by targeting the colchicine bingding site of tubulin. Compound I-33 (MY-875) disrupted the construction of the microtubule networks and affected the mitosis in MGC-803 and SGC-7901 cells. In addition, although it acted as a colchicine binding site inhibitor, compound I-33 (MY-875) also activated the Hippo pathway to promote the phosphorylation status of MST and LATS, resulting in the YAP degradation in MGC-803 and SGC-7901 cells. Due to the degradation of YAP, the expression levels of TAZ and Axl decreased. Because of the dual actions on colchicine binding site and Hippo pathway, compound I-33 (MY-875) dose-dependently inhibited cell colony formatting ability, arrested cells at the G2/M phase and induced cells apoptosis in MGC-803 and SGC-7901 cells. Moreover, compound I-33 (MY-875) could regulate the levels of cell cycle and apoptosis regulatory proteins in MGC-803 and SGC-7901 cells. Furthermore, molecular docking analysis suggested that the hydrogen bond and hydrophobic interactions made compound I-33 (MY-875) well bind into the colchicine binding site of tubulin. Collectively, compound I-33 (MY-875) is a novel anti-gastric cancer agent and deserves to be further investigated for cancer therapy by targeting the colchicine binding site of tubulin and activating the Hippo pathway.
Collapse
|
7
|
Babyshkina N, Dronova T, Erdyneeva D, Gervas P, Cherdyntseva N. Role of TGF-β signaling in the mechanisms of tamoxifen resistance. Cytokine Growth Factor Rev 2021; 62:62-69. [PMID: 34635390 DOI: 10.1016/j.cytogfr.2021.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 12/24/2022]
Abstract
The transforming growth factor beta (TGF-β) signaling pathway plays complex role in the regulation of cell proliferation, apoptosis and differentiation in breast cancer. TGF-β activation can lead to multiple cellular responses mediating the drug resistance evolution, including the resistance to antiestrogens. Tamoxifen is the most commonly prescribed antiestrogen that functionally involved in regulation of TGF-β activity. In this review, we focus on the role of TGF-β signaling in the mechanisms of tamoxifen resistance, including its interaction with estrogen receptors alfa (ERα) pathway and breast cancer stem cells (BCSCs). We summarize the current reported data regarding TGF-β signaling components as markers of tamoxifen resistance and review current approaches to overcoming tamoxifen resistance based on studies of TGF-β signaling.
Collapse
Affiliation(s)
- Nataliya Babyshkina
- Department of Molecular Oncology and Immunology, Саncеr Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russian Federation; Siberian State Medical University, Tomsk 634050, Russian Federation.
| | - Tatyana Dronova
- Department of Biology of Tumor Progression, Саncеr Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russian Federation
| | - Daiana Erdyneeva
- Department of Molecular Oncology and Immunology, Саncеr Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russian Federation
| | - Polina Gervas
- Department of Molecular Oncology and Immunology, Саncеr Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russian Federation
| | - Nadejda Cherdyntseva
- Department of Molecular Oncology and Immunology, Саncеr Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russian Federation
| |
Collapse
|
8
|
Recent Therapeutic Approaches to Modulate the Hippo Pathway in Oncology and Regenerative Medicine. Cells 2021; 10:cells10102715. [PMID: 34685695 PMCID: PMC8534579 DOI: 10.3390/cells10102715] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022] Open
Abstract
The Hippo pathway is an evolutionary conserved signaling network that regulates essential processes such as organ size, cell proliferation, migration, stemness and apoptosis. Alterations in this pathway are commonly found in solid tumors and can lead to hyperproliferation, resistance to chemotherapy, compensation for mKRAS and tumor immune evasion. As the terminal effectors of the Hippo pathway, the transcriptional coactivators YAP1/TAZ and the transcription factors TEAD1–4 present exciting opportunities to pharmacologically modulate the Hippo biology in cancer settings, inflammation and regenerative medicine. This review will provide an overview of the progress and current strategies to directly and indirectly target the YAP1/TAZ protein–protein interaction (PPI) with TEAD1–4 across multiple modalities, with focus on recent small molecules able to selectively bind to TEAD, block its autopalmitoylation and inhibit YAP1/TAZ–TEAD-dependent transcription in cancer.
Collapse
|