1
|
van der Merwe M, Myburgh K, Garnis C, Towle R, Engelbrecht AM. Unravelling the role of extracellular vesicles in cervical cancer: Mechanisms of progression, resistance, and emerging therapeutic strategies. Gene 2025; 957:149467. [PMID: 40204037 DOI: 10.1016/j.gene.2025.149467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/18/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025]
Abstract
Cervical cancer remains a significant global health challenge, particularly in its advanced stages, where treatment resistance complicates effective management. Extracellular vesicles (EVs) are crucial mediators of tumor progression and resistance, primarily through the transfer of miRNA cargo. In cervical cancer, specific miRNAs, including oncogenic miRNAs such as miR-21, miR-221-3p, miR-486-5p, and miR-92a-3p are upregulated in both cells and EVs, promoting proliferation, migration, epithelial-to-mesenchymal transition (EMT), and immune evasion-all of which contribute to therapy resistance and an aggressive tumor phenotype. Conversely, tumor-suppressive miRNAs, such as miR-122-5p, miR-100, and miR-142-3p, are selectively exported from cancer cells via EVs, suggesting a protective mechanism by which cancer cells eliminate these tumor suppressors. This review focuses on the role of oncogenic and tumor-suppressive miRNAs within EVs and their implications for cervical cancer progression and treatment resistance. Additionally, it examines the dynamic interactions between the tumor microenvironment (TME) and EV cargo, as well as emerging EV-based therapeutic strategies. These include the encapsulation of chemotherapeutic agents within EVs, the use of anti-miRs to silence oncogenic miRNAs, the delivery of tumor-suppressive miRNAs, the inhibition of EV release, and the targeting of downstream miRNA-regulated proteins. While miRNA-based therapies remain in the early stages, they hold significant promise for overcoming treatment resistance and improving cervical cancer outcomes.
Collapse
Affiliation(s)
- Michelle van der Merwe
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa.
| | - Kathy Myburgh
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Cathie Garnis
- Department of Integrative Oncology, British Columbia Cancer Research Center, Vancouver, BC V5Z1L3, Canada
| | - Rebecca Towle
- Department of Integrative Oncology, British Columbia Cancer Research Center, Vancouver, BC V5Z1L3, Canada
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
2
|
Zhang L, Zhang J, Zhang X, Liu S, Qi C, Gao S. miR‑100: A key tumor suppressor regulatory factor in human malignant tumors (Review). Int J Mol Med 2025; 55:67. [PMID: 40017111 PMCID: PMC11875724 DOI: 10.3892/ijmm.2025.5508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/02/2025] [Indexed: 03/01/2025] Open
Abstract
MicroRNA (miRNA/miR)‑100 is a crucial tumor‑suppressive miRNA that serves a pivotal role in the initiation and progression of various malignancies. miR‑100 regulates cancer cell proliferation, migration, invasion and apoptosis by targeting oncogenes, and acts as a molecular sponge to regulate long non‑coding RNAs and circular RNAs, thereby influencing processes such as glycolysis, autophagy and resistance to chemotherapy/radiotherapy. Furthermore, miR‑100 suppresses tumor progression by modulating key signaling pathways, including the PI3K/AKT and Wnt/β‑catenin signaling pathways. miR‑100 exhibits potential for early cancer diagnosis, particularly in cancer types such as gastric and lung cancer, where it can serve as a non‑invasive biomarker for early screening. As a therapeutic target, restoring miR‑100 expression can enhance the efficacy of chemotherapy or targeted therapy, thereby improving patient prognosis. Although challenges remain in its clinical application, including delivery systems and safety concerns, ongoing research suggests that miR‑100 holds promise for personalized treatment and early diagnosis. Given that cancer remains a global health challenge, research on miR‑100 provides hope for cancer therapy, particularly in China, where the mortality rates of malignancies such as gastric, lung and liver cancer continue to rise, further emphasizing its potential for clinical translation.
Collapse
Affiliation(s)
- Liang Zhang
- Department of General Surgery I, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Jiuling Zhang
- Department of General Surgery I, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Xue Zhang
- School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Shuang Liu
- School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Chunyu Qi
- School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
- Department of Infection, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Shengyu Gao
- Department of General Surgery I, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| |
Collapse
|
3
|
Wang Y, Huang D, Li M, Yang M. MicroRNA-99 family in cancer: molecular mechanisms for clinical applications. PeerJ 2025; 13:e19188. [PMID: 40161350 PMCID: PMC11955196 DOI: 10.7717/peerj.19188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNA sequences that regulate gene expression post-transcriptionally. The miR-99 family, which is highly evolutionarily conserved, comprises three homologs: miR-99a, miR-99b, and miR-100. Its members are under-expressed in most cancerous tissues, suggesting their cancer-repressing properties in multiple cancers; however, in some contexts, they also promote malignant lesion progression. MiR-99 family members target numerous genes involved in various tumor-related processes such as tumorigenesis, proliferation, cell-cycle regulation, apoptosis, invasion, and metastasis. We review the recent research on this family, summarize its implications in cancer, and explore its potential as a biomarker and cancer therapeutic target. This review contributes to the clinical translation of the miR-99 family members.
Collapse
Affiliation(s)
- Yueyuan Wang
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, ChangChun, Jilin, China
| | - Dan Huang
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, ChangChun, Jilin, China
| | - Mingxi Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, ChangChun, Jilin, China
| | - Ming Yang
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, ChangChun, Jilin, China
| |
Collapse
|
4
|
Chen W, Xie X, Liu C, Liao J, Wei Y, Wu R, Hong J. IRAK1 deficiency potentiates the efficacy of radiotherapy in repressing cervical cancer development. Cell Signal 2024; 119:111192. [PMID: 38685522 DOI: 10.1016/j.cellsig.2024.111192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/29/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
IRAK1 has been implicated in promoting development of various types of cancers and mediating radioresistance. However, its role in cervical cancer tumorigenesis and radioresistance, as well as the potential underlying mechanisms, remain poorly defined. In this study, we evaluated IRAK1 expression in radiotherapy-treated cervical cancer tissues and found that IRAK1 expression is negatively associated with the efficacy of radiotherapy. Consistently, ionizing radiation (IR)-treated HeLa and SiHa cervical cancer cells express a lower level of IRAK1 than control cells. Depletion of IRAK1 resulted in reduced activation of the NF-κB pathway, decreased cell viability, downregulated colony formation efficiency, cell cycle arrest, increased apoptosis, and impaired migration and invasion in IR-treated cervical cancer cells. Conversely, overexpressing IRAK1 mitigated the anti-cancer effects of IR in cervical cancer cells. Notably, treatment of IRAK1-overexpressing IR-treated HeLa and SiHa cells with the NF-κB pathway inhibitor pyrrolidine dithiocarbamate (PDTC) partially counteracted the effects of excessive IRAK1. Furthermore, our study demonstrated that IRAK1 deficiency enhanced the anti-proliferative role of IR treatment in a xenograft mouse model. These collective observations highlight IRAK1's role in mitigating the anti-cancer effects of radiotherapy, partly through the activation of the NF-κB pathway. SUMMARY: IRAK1 enhances cervical cancer resistance to radiotherapy, with IR treatment reducing IRAK1 expression and increasing cancer cell vulnerability and apoptosis.
Collapse
Affiliation(s)
- Wenjuan Chen
- Department of Radiotherapy, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, PR China; Department of Radiotherapy, Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, Fujian, PR China.
| | - Xingyun Xie
- Department of Radiotherapy, Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, Fujian, PR China
| | - Chengying Liu
- Department of Radiotherapy, Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, Fujian, PR China
| | - Jingrong Liao
- Laboratory of Radiation Oncology and Radiobiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, Fujian, PR China
| | - Yuting Wei
- Department of Radiotherapy, Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, Fujian, PR China
| | - Rongrong Wu
- Department of Radiotherapy, Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, Fujian, PR China
| | - Jinsheng Hong
- Department of Radiotherapy, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, PR China; National Regional Medical Center, Binhai Campus, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350212, Fujian, PR China; Key Laboratory of Radiation Biology of Fujian higher education institutions, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, PR China.
| |
Collapse
|
5
|
Liang M, Sheng L, Ke Y, Wu Z. The research progress on radiation resistance of cervical cancer. Front Oncol 2024; 14:1380448. [PMID: 38651153 PMCID: PMC11033433 DOI: 10.3389/fonc.2024.1380448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Cervical carcinoma is the most prevalent gynecology malignant tumor and ranks as the fourth most common cancer worldwide, thus posing a significant threat to the lives and health of women. Advanced and early-stage cervical carcinoma patients with high-risk factors require adjuvant treatment following surgery, with radiotherapy being the primary approach. However, the tolerance of cervical cancer to radiotherapy has become a major obstacle in its treatment. Recent studies have demonstrated that radiation resistance in cervical cancer is closely associated with DNA damage repair pathways, the tumor microenvironment, tumor stem cells, hypoxia, cell cycle arrest, and epigenetic mechanisms, among other factors. The development of tumor radiation resistance involves complex interactions between multiple genes, pathways, and mechanisms, wherein each factor interacts through one or more signaling pathways. This paper provides an overview of research progress on an understanding of the mechanism underlying radiation resistance in cervical cancer.
Collapse
Affiliation(s)
| | | | - Yumin Ke
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Zhuna Wu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
6
|
Zhou J, Lei N, Qin B, Chen M, Gong S, Sun H, Qiu L, Wu F, Guo R, Ma Q, Li Y, Chang L. Aldolase A promotes cervical cancer cell radioresistance by regulating the glycolysis and DNA damage after irradiation. Cancer Biol Ther 2023; 24:2287128. [PMID: 38010897 PMCID: PMC10761068 DOI: 10.1080/15384047.2023.2287128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023] Open
Abstract
Radioresistance is the major obstacle that affects the efficacy of radiotherapy which is an important treatment for cervical cancer. By analyzing the databases, we found that aldolase A (ALDOA), which is a key enzyme in metabolic reprogramming, has a higher expression in cervical cancer patients and is associated with poor prognosis. We detected the expression of ALDOA in the constructed cervical cancer radioresistance (RR) cells by repetitive irradiation and found that it was upregulated compared to the control cells. Functional assays were conducted and the results showed that the knockdown of ALDOA in cervical cancer RR cells inhibited the proliferation, migration, and clonogenic abilities by regulating the cell glycolysis. In addition, downregulation of ALDOA enhanced radiation-induced apoptosis and DNA damage by causing G2/M phase arrest and further promoted radiosensitivity of cervical cancer cells. The functions of ALDOA in regulating tumor radiosensitivity were also verified by the mouse tumor transplantation model in vivo. Therefore, our study provides new insights into the functions of ALDOA in regulating the efficacy of radiotherapy and indicates that ALDOA might be a promising target for enhancing radiosensitivity in treating cervical cancer patients.
Collapse
Affiliation(s)
- Junying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ningjing Lei
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Bo Qin
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengyu Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuai Gong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hao Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Luojie Qiu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fengling Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruixia Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qian Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yong Li
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Lei Chang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Doghish AS, Hegazy M, Ismail A, El-Mahdy HA, Elsakka EGE, Elkhawaga SY, Elkady MA, Yehia AM, Abdelmaksoud NM, Mokhtar MM. A spotlight on the interplay of signaling pathways and the role of miRNAs in osteosarcoma pathogenesis and therapeutic resistance. Pathol Res Pract 2023; 245:154442. [PMID: 37031532 DOI: 10.1016/j.prp.2023.154442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Osteosarcoma (OS) is one of the most common bone cancers that constantly affects children, teenagers, and young adults. Numerous epigenetic elements, such as miRNAs, have been shown to influence OS features like progression, initiation, angiogenesis, and treatment resistance. The expression of numerous genes implicated in OS pathogenesis might be regulated by miRNAs. This effect is ascribed to miRNAs' roles in the invasion, angiogenesis, metastasis, proliferation, cell cycle, and apoptosis. Important OS-related mechanistic networks like the WNT/b-catenin signaling, PTEN/AKT/mTOR axis, and KRAS mutations are also affected by miRNAs. In addition to pathophysiology, miRNAs may influence how the OS reacts to therapies like radiotherapy and chemotherapy. With a focus on how miRNAs affect OS signaling pathways, this review seeks to show how miRNAs and OS are related.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud Mohamed Mokhtar
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| |
Collapse
|
8
|
miRNAs role in cervical cancer pathogenesis and targeted therapy: Signaling pathways interplay. Pathol Res Pract 2023; 244:154386. [PMID: 36868096 DOI: 10.1016/j.prp.2023.154386] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023]
Abstract
Cervical cancer (CC) is the primary cause of cancer deaths in underdeveloped countries. The persistence of infection with high-risk human papillomavirus (HPV) is a significant contributor to the development of CC. However, few women with morphologic HPV infection develop invasive illnesses, suggesting other mechanisms contribute to cervical carcinogenesis. MicroRNAs (miRNAs, miRs) are small chain nucleic acids that can regulate wide networks of cellular events. They can inhibit or degrade their target protein-encoding genes. They had the power to regulate CC's invasion, pathophysiology, angiogenesis, apoptosis, proliferation, and cell cycle phases. Further research is required, even though novel methods have been developed for employing miRNAs in the diagnosis, and treatment of CC. We'll go through some of the new findings about miRNAs and their function in CC below. The function of miRNAs in the development of CC and its treatment is one of these. Clinical uses of miRNAs in the analysis, prediction, and management of CC are also covered.
Collapse
|