1
|
Yilmaz Y. Green Tea Mitigates the Hallmarks of Aging and Age-Related Multisystem Deterioration. Aging Dis 2025:AD.2025.0398. [PMID: 40249928 DOI: 10.14336/ad.2025.0398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 04/04/2025] [Indexed: 04/20/2025] Open
Abstract
Aging is characterized by progressive multisystem deterioration driven by molecular and cellular mechanisms encapsulated in the twelve hallmarks of aging. Green tea (GT), derived from Camellia sinensis, has garnered significant scientific interest due to its rich polyphenolic composition, particularly epigallocatechin-3-gallate, and its pleiotropic health benefits. In this narrative review, we explored the multifaceted mechanisms through which GT may mitigate the aging hallmarks. Evidence from in vitro, animal, and human studies has shown that GT polyphenols can enhance DNA repair pathways, preserve telomere length, modulate epigenetic aging markers, improve proteostasis and autophagic flux, regulate nutrient-sensing networks, and rejuvenate mitochondrial function. Additionally, GT exhibits anti-inflammatory properties and may restore a physiological gut microbiota composition. Beyond molecular and cellular effects, GT consumption in humans has been associated with improved cognitive function, cardiovascular health, muscle preservation, and metabolic regulation in aging populations. Collectively, these findings highlight GT's potential as a naturally occurring geroscience intervention capable of addressing the interconnected network of aging processes more comprehensively than single-target pharmaceuticals. Future research should focus on optimizing dosing regimens, exploring synergies with other anti-aging strategies, and investigating personalized responses to GT interventions.
Collapse
|
2
|
Patel S, Ellis K, Scipione CA, Fish JE, Howe KL. Epigallocatechin gallate (EGCG) modulates senescent endothelial cell-monocyte communication in age-related vascular inflammation. Front Cardiovasc Med 2025; 11:1506360. [PMID: 39906338 PMCID: PMC11790594 DOI: 10.3389/fcvm.2024.1506360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/26/2024] [Indexed: 02/06/2025] Open
Abstract
Aging significantly affects intercellular communication between vascular endothelial cells (ECs) and hematopoietic cells, leading to vascular inflammation and age-associated diseases. This study determined how senescent ECs communicate with monocytes, whether extracellular vesicles (EVs) released from senescent ECs affect monocyte functions, and investigated the potential for epigallocatechin-3-gallate (EGCG), a flavonoid in green tea, to reverse these effects. Human umbilical vein endothelial cells (HUVECs) were treated with Etoposide (10 µM, 24 h) to induce senescence, followed by EGCG (100 µM, 24 h) treatment to evaluate its potential as a senotherapeutic agent. The interaction between ECs and monocytes was analyzed using a co-culture system and direct treatment of monocytes with EC-derived EVs. EGCG reduced senescence-associated phenotypes in ECs, as evidenced by decreased senescence-associated (SA)-β-Gal activity and reversal of Etoposide-induced senescence markers. Monocytes co-cultured with EGCG-treated senescent ECs showed decreased pro-inflammatory responses compared to those co-cultured with untreated senescent ECs. Additionally, senescent ECs produced more EVs than non-senescent ECs. EVs from senescent ECs enhanced lipopolysaccharide (LPS)-induced pro-inflammatory activation of monocytes, whereas EVs from EGCG-treated senescent ECs mitigated this activation, maintaining monocyte activation at normal levels. Our findings reveal that EGCG confers anti-senescent effects via modulation of the senescent EC secretome (including EVs) with the capacity to modify monocyte activation. These findings suggest that EGCG could act as a senotherapeutic agent to reduce vascular inflammation related to aging.
Collapse
Affiliation(s)
- Sarvatit Patel
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Kai Ellis
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Department of Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Corey A. Scipione
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Jason E. Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Kathryn L. Howe
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Division of Vascular Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Wilczyński B, Dąbrowska A, Kulbacka J, Baczyńska D. Chemoresistance and the tumor microenvironment: the critical role of cell-cell communication. Cell Commun Signal 2024; 22:486. [PMID: 39390572 PMCID: PMC11468187 DOI: 10.1186/s12964-024-01857-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024] Open
Abstract
Resistance of cancer cells to anticancer drugs remains a major challenge in modern medicine. Understanding the mechanisms behind the development of chemoresistance is key to developing appropriate therapies to counteract it. Nowadays, with advances in technology, we are paying more and more attention to the role of the tumor microenvironment (TME) and intercellular interactions in this process. We also know that important elements of the TME are not only the tumor cells themselves but also other cell types, such as mesenchymal stem cells, cancer-associated fibroblasts, stromal cells, and macrophages. TME elements can communicate with each other indirectly (via cytokines, chemokines, growth factors, and extracellular vesicles [EVs]) and directly (via gap junctions, ligand-receptor pairs, cell adhesion, and tunnel nanotubes). This communication appears to be critical for the development of chemoresistance. EVs seem to be particularly interesting structures in this regard. Within these structures, lipids, proteins, and nucleic acids can be transported, acting as signaling molecules that interact with numerous biochemical pathways, thereby contributing to chemoresistance. Moreover, drug efflux pumps, which are responsible for removing drugs from cancer cells, can also be transported via EVs.
Collapse
Affiliation(s)
- Bartosz Wilczyński
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, Wroclaw, 50-367, Poland
| | - Alicja Dąbrowska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, Wroclaw, 50-367, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, Wroclaw, 50-556, Poland.
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariškių g. 5, Vilnius, LT-08406, Lithuania.
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, Wroclaw, 50-556, Poland
| |
Collapse
|
4
|
Libring S, Berestesky ED, Reinhart-King CA. The movement of mitochondria in breast cancer: internal motility and intercellular transfer of mitochondria. Clin Exp Metastasis 2024; 41:567-587. [PMID: 38489056 PMCID: PMC11499424 DOI: 10.1007/s10585-024-10269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/18/2024] [Indexed: 03/17/2024]
Abstract
As a major energy source for cells, mitochondria are involved in cell growth and proliferation, as well as migration, cell fate decisions, and many other aspects of cellular function. Once thought to be irreparably defective, mitochondrial function in cancer cells has found renewed interest, from suggested potential clinical biomarkers to mitochondria-targeting therapies. Here, we will focus on the effect of mitochondria movement on breast cancer progression. Mitochondria move both within the cell, such as to localize to areas of high energetic need, and between cells, where cells within the stroma have been shown to donate their mitochondria to breast cancer cells via multiple methods including tunneling nanotubes. The donation of mitochondria has been seen to increase the aggressiveness and chemoresistance of breast cancer cells, which has increased recent efforts to uncover the mechanisms of mitochondrial transfer. As metabolism and energetics are gaining attention as clinical targets, a better understanding of mitochondrial function and implications in cancer are required for developing effective, targeted therapeutics for cancer patients.
Collapse
Affiliation(s)
- Sarah Libring
- Department of Biomedical Engineering, Vanderbilt University, 440 Engineering and Science Building, 1212 25thAvenue South, Nashville, TN, 37235, USA
| | - Emily D Berestesky
- Department of Biomedical Engineering, Vanderbilt University, 440 Engineering and Science Building, 1212 25thAvenue South, Nashville, TN, 37235, USA
| | - Cynthia A Reinhart-King
- Department of Biomedical Engineering, Vanderbilt University, 440 Engineering and Science Building, 1212 25thAvenue South, Nashville, TN, 37235, USA.
| |
Collapse
|
5
|
Akla N, Veilleux C, Annabi B. The Chemopreventive Impact of Diet-Derived Phytochemicals on the Adipose Tissue and Breast Tumor Microenvironment Secretome. Nutr Cancer 2024; 77:9-25. [PMID: 39300732 DOI: 10.1080/01635581.2024.2401647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Cancer cells-derived extracellular vesicles can trigger the transformation of adipose-derived mesenchymal stem cells (ADMSC) into a pro-inflammatory, cancer-associated adipocyte (CAA) phenotype. Such secretome-mediated crosstalk between the adipose tissue and the tumor microenvironment (TME) therefore impacts tumor progression and metastatic processes. In addition, emerging roles of diet-derived phytochemicals, especially epigallocatechin-3-gallate (EGCG) among other polyphenols, in modulating exosome-mediated metabolic and inflammatory signaling pathways have been highlighted. Here, we discuss how selected diet-derived phytochemicals could alter the secretome signature as well as the crosstalk dynamics between the adipose tissue and the TME, with a focus on breast cancer. Their broader implication in the chemoprevention of obesity-related cancers is also discussed.
Collapse
Affiliation(s)
- Naoufal Akla
- Laboratoire d'Oncologie Moléculaire, Département de Chimie and CERMO-FC, Université du Québec à Montréal, Montreal, Canada
| | - Carolane Veilleux
- Laboratoire d'Oncologie Moléculaire, Département de Chimie and CERMO-FC, Université du Québec à Montréal, Montreal, Canada
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie and CERMO-FC, Université du Québec à Montréal, Montreal, Canada
| |
Collapse
|
6
|
Roy ME, Veilleux C, Annabi B. In vitro biomaterial priming of human mesenchymal stromal/stem cells : implication of the Src/JAK/STAT3 pathway in vasculogenic mimicry. Sci Rep 2024; 14:21444. [PMID: 39271790 PMCID: PMC11399305 DOI: 10.1038/s41598-024-72862-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024] Open
Abstract
Mesenchymal stromal/stem cells (MSC) play a crucial role in promoting neovascularization, which is essential for wound healing. They are commonly utilized as an autologous source of progenitor cells in various stem cell-based therapies. However, incomplete MSC differentiation towards a vascular endothelial cell phenotype questions their involvement in an alternative process to angiogenesis, namely vasculogenic mimicry (VM), and the signal transducing events that regulate their in vitro priming into capillary-like structures. Here, human MSC were primed on top of Cultrex matrix to recapitulate an in vitro phenotype of VM. Total RNA was extracted, and differential gene expression assessed through RNA-Seq analysis and RT-qPCR. Transient gene silencing was achieved using specific siRNA. AG490, Tofacitinib, and PP2 pharmacological effects on VM structures were analyzed using the Wimasis software. In vitro VM occurred within 4 h and was prevented by the JAK/STAT3 inhibitors AG490 and Tofacitinib, as well as by the Src inhibitor PP2. RNA-Seq highlighted STAT3 as a signaling hub contributing to VM when transcripts from capillary-like structures were compared to those from cell monolayers. Concomitant increases in IL6, IL1b, CSF1, CSF2, STAT3, FOXC2, RPSA, FN1, and SNAI1 transcript levels suggest the acquisition of a combined angiogenic, inflammatory and epithelial-to-mesenchymal transition phenotype in VM cultures. Increases in STAT3, FOXC2, RPSA, Fibronectin, and Snail protein expression were confirmed during VM. STAT3 and RPSA gene silencing abrogated in vitro VM. In conclusion, in vitro priming of MSC into VM structures requires Src/JAK/STAT3 signaling. This molecular evidence indicates that a clinically viable MSC-mediated pseudo-vasculature process could temporarily support grafts through VM, allowing time for the host vasculature to infiltrate and remodel the injured tissues.
Collapse
Affiliation(s)
- Marie-Eve Roy
- Laboratoire d'Oncologie Moléculaire, Département de Chimie and CERMO-FC, Université du Québec à Montréal, Montreal, QC, H3C 3J7, Canada
| | - Carolane Veilleux
- Laboratoire d'Oncologie Moléculaire, Département de Chimie and CERMO-FC, Université du Québec à Montréal, Montreal, QC, H3C 3J7, Canada
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie and CERMO-FC, Université du Québec à Montréal, Montreal, QC, H3C 3J7, Canada.
- Laboratoire d'Oncologie Moléculaire, Succ. Centre-ville Montréal, Université du Québec à Montréal, Quebec, Québec, C.P. 8888, H3C 3P8, Canada.
| |
Collapse
|
7
|
Wen Y, Yang H, Hong Y. Transcriptomic Approaches to Cardiomyocyte-Biomaterial Interactions: A Review. ACS Biomater Sci Eng 2024; 10:4175-4194. [PMID: 38934720 DOI: 10.1021/acsbiomaterials.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Biomaterials, essential for supporting, enhancing, and repairing damaged tissues, play a critical role in various medical applications. This Review focuses on the interaction of biomaterials and cardiomyocytes, emphasizing the unique significance of transcriptomic approaches in understanding their interactions, which are pivotal in cardiac bioengineering and regenerative medicine. Transcriptomic approaches serve as powerful tools to investigate how cardiomyocytes respond to biomaterials, shedding light on the gene expression patterns, regulatory pathways, and cellular processes involved in these interactions. Emerging technologies such as bulk RNA-seq, single-cell RNA-seq, single-nucleus RNA-seq, and spatial transcriptomics offer promising avenues for more precise and in-depth investigations. Longitudinal studies, pathway analyses, and machine learning techniques further improve the ability to explore the complex regulatory mechanisms involved. This review also discusses the challenges and opportunities of utilizing transcriptomic techniques in cardiomyocyte-biomaterial research. Although there are ongoing challenges such as costs, cell size limitation, sample differences, and complex analytical process, there exist exciting prospects in comprehensive gene expression analyses, biomaterial design, cardiac disease treatment, and drug testing. These multimodal methodologies have the capacity to deepen our understanding of the intricate interaction network between cardiomyocytes and biomaterials, potentially revolutionizing cardiac research with the aim of promoting heart health, and they are also promising for studying interactions between biomaterials and other cell types.
Collapse
Affiliation(s)
- Yufeng Wen
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Huaxiao Yang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|