1
|
Culleton R, Pain A, Snounou G. Plasmodium malariae: the persisting mysteries of a persistent parasite. Trends Parasitol 2023; 39:113-125. [PMID: 36517330 DOI: 10.1016/j.pt.2022.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
Plasmodium malariae is a 'neglected malaria parasite' in as much as the amount of research conducted on it pales into insignificance when compared to that pertaining to Plasmodium falciparum and Plasmodium vivax, its more notorious and pathogenic cousins. There has, however, been an increase in interest in this parasite over the past decade. Principally, this is because of the increasing use of sensitive molecular detection techniques that have revealed a wider than previously recorded prevalence in some regions (particularly in Africa), and high numbers of chronic, asymptomatic infections.
Collapse
Affiliation(s)
- Richard Culleton
- Division of Molecular Parasitology, Proteo-Science Centre, Ehime University, Matsuyama, Japan; Department of Protozoology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Arnab Pain
- Pathogen Genomics Group, Bioscience Programme, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah, Kingdom of Saudi Arabia
| | - Georges Snounou
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA-HB), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France.
| |
Collapse
|
2
|
Plasmodium malariae structure and genetic diversity in sub-Saharan Africa determined from microsatellite variants and linked SNPs in orthologues of antimalarial resistance genes. Sci Rep 2022; 12:21881. [PMID: 36536036 PMCID: PMC9761029 DOI: 10.1038/s41598-022-26625-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Plasmodium malariae, a neglected human malaria parasite, contributes up to 10% of malaria infections in sub-Saharan Africa (sSA). Though P. malariae infection is considered clinically benign, it presents mostly as coinfections with the dominant P. falciparum. Completion of its reference genome has paved the way to further understand its biology and interactions with the human host, including responses to antimalarial interventions. We characterized 75 P. malariae isolates from seven endemic countries in sSA using highly divergent microsatellites. The P. malariae infections were highly diverse and five subpopulations from three ancestries (independent of origin of isolates) were determined. Sequences of 11 orthologous antimalarial resistance genes, identified low frequency single nucleotide polymorphisms (SNPs), strong linkage disequilibrium between loci that may be due to antimalarial drug selection. At least three sub-populations were detectable from a subset of denoised SNP data from mostly the mitochondrial cytochrome b coding region. This evidence of diversity and selection calls for including P. malariae in malaria genomic surveillance towards improved tools and strategies for malaria elimination.
Collapse
|
3
|
Ramanto KN, Nurdiansyah R. Structural and immunogenicity analysis of reconstructed ancestral and consensus P48/45 for cross-species anti malaria transmission-blocking vaccine. Comput Biol Chem 2021; 92:107495. [PMID: 33940529 DOI: 10.1016/j.compbiolchem.2021.107495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/21/2021] [Indexed: 11/25/2022]
Abstract
The development of the anti-malaria vaccine holds a promising future in malaria control. One of the anti-malaria vaccine strategies known as the transmission-blocking vaccine (TBV) is to inhibit the parasite transmission between humans and mosquitoes by targeting the parasite gametocyte. Previously, we found that P48/45 included in the 6-Cysteine protein family shared by Plasmodium sp. We also detected vaccine properties possessed by all human-infecting Plasmodium and could be used as a cross-species anti-malaria vaccine. In this study, we investigated the efficacy of P48/45 through the ancestral and consensus reconstruction approach. P48/45 phylogenetic and time tree analysis was done by RAXML and BEAST2. GRASP server and Ugene software were used to reconstruct ancestral and consensus sequences, respectively. The protein structural prediction was made by using a psipred and Rosetta program. Each protein characteristic of P48/45 was analyzed by assessing hydrophobicity and Post-Translational Modification sites. Meanwhile, the Epitope sequence for B-cell, T-cell, and HLA was determined using an immunoinformatics approach. Lastly, molecular docking simulation was done to determine native binding interactions of P48/45-P230. The result showed a distinct protein characteristic of ancestral and consensus sequences. The immunogenicity analysis revealed the number of epitopes in the ancestral sequence is greater than the consensus sequence. The study also found a conserved epitope located in the binding site and consists of specific Post-Translational Modification sites. Hence, our research provides detailed insight into ancestral and consensus P48/45 efficacy for the cross-species anti-malaria vaccine.
Collapse
Affiliation(s)
- Kevin Nathanael Ramanto
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | - Rizky Nurdiansyah
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, Indonesia.
| |
Collapse
|
4
|
Oriero EC, Amenga-Etego L, Ishengoma DS, Amambua-Ngwa A. Plasmodium malariae, current knowledge and future research opportunities on a neglected malaria parasite species. Crit Rev Microbiol 2021; 47:44-56. [PMID: 33507842 DOI: 10.1080/1040841x.2020.1838440] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Plasmodium malariae is often reported as a benign malaria parasite. There are limited data on its biology and disease burden in sub-Saharan Africa (sSA) possibly due to the unavailability of specific and affordable tools for routine diagnosis and large epidemiology studies. In addition, P. malariae occurs at low parasite densities and in co-infections with other species, predominately P. falciparum. The paucity of data on P. malariae infections limits the capacity to accurately determine its contribution to malaria and the effect of control interventions against P. falciparum on its prevalence. Here, we summarise the current knowledge on P. malariae epidemiology in sSA - overall prevalence ranging from 0-32%, as detected by different diagnostic methods; seroprevalence ranging from 0-56% in three countries (Mozambique, Benin and Zimbabwe), and explore the future application of next-generation sequencing technologies as a tool for enriching P. malariae genomic epidemiology. This will provide insights into important adaptive mechanisms of this neglected non-falciparum species, including antimalarial drug resistance, local and regional parasite transmission patterns and genomic signatures of selection. Improved diagnosis and genomic surveillance of non-falciparum malaria parasites in Africa would be helpful in evaluating progress towards elimination of all human Plasmodium species.
Collapse
Affiliation(s)
- Eniyou C Oriero
- Disease Control and Elimination Theme, Medical Research Council Unit The Gambia at LSHTM, Fajara, The Gambia
| | - Lucas Amenga-Etego
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Ghana
| | - Deus S Ishengoma
- Tanga Research Centre, National Institute for Medical Research, Tanga, Tanzania
| | - Alfred Amambua-Ngwa
- Disease Control and Elimination Theme, Medical Research Council Unit The Gambia at LSHTM, Fajara, The Gambia
| |
Collapse
|
5
|
Bungei JK, Mobegi VA, Nyanjom SG. Single-nucleotide polymorphism characterization of gametocyte development 1 gene in Plasmodium falciparum isolates from Baringo, Uasin Gishu, and Nandi Counties, Kenya. Heliyon 2020; 6:e03453. [PMID: 32154414 PMCID: PMC7056661 DOI: 10.1016/j.heliyon.2020.e03453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/18/2020] [Accepted: 02/17/2020] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Plasmodium falciparum relies on gametocytogenesis to transmit from humans to mosquitoes. Gametocyte development 1 (Pfgdv1) is an upstream activator and epigenetic controller of gametocytogenesis. The emergence of drug resistance is a major public health concern and this requires the development of new strategies that target the transmission of malaria. As a putative drug target, Pfgdv1 has not been characterized to identify its polymorphisms and alleles under selection and how such polymorphisms influence protein structure. METHODS This study characterized single-nucleotide polymorphisms (SNPs) in primary sequences (n = 30) of Pfgdv1 gene generated from thirty blood samples collected from patients infected with P. falciparum and secondary sequences (n = 216) retrieved from PlasmoDB. ChromasPro, MUSCLE, Tajima's D statistic, SLAC, and STRUM were used in editing raw sequences, performing multiple sequence alignment (MSA), identifying signatures of selection, detecting codon sites under selection pressure, and determining the effect of SNPs, respectively. RESULTS MSA of primary and secondary sequences established the existence of five SNPs, consisting of four non-synonymous substitutions (nsSNPs) (p.P217H, p.R398Q, p.H417N, and p.D497E), and a synonymous substitution (p.S514S). The analysis of amino acid changes reveals that p.P217H, p.R398Q, and p.H417N comprise non-conservative changes. Tajima's D statistic showed that these SNPs were under balancing selection, while SLAC analysis identified p.P217H to be under the strongest positive selection. . Further analysis based on thermodynamics indicated that p.P217H has a destabilizing effect, while p.R398Q and p.D497E have stabilizing effects on the protein structure. CONCLUSIONS The existence of four nsSNPs implies that Pfgdv1 has a minimal diversity in the encoded protein. Selection analysis demonstrates that these nsSNPs are under balancing selection in both local and global populations. However, p.P217H exhibits positive directional selection consistent with previous reports where it showed differentiatial selection of P. falciparum in low and high transmission regions. Therefore, in-silico prediction and experimental determination of protein structure are necessary to evaluate Pfgdv1 as a target candidate for drug design and development.
Collapse
Affiliation(s)
- Josephat K. Bungei
- Department of Biochemistry, JKUAT, Kenya
- Department of Biochemistry, School of Medicine, University of Nairobi, Kenya
| | - Victor A. Mobegi
- Department of Biochemistry, School of Medicine, University of Nairobi, Kenya
| | | |
Collapse
|
6
|
Ajibaye O, Osuntoki AA, Balogun EO, Olukosi YA, Iwalokun BA, Oyebola KM, Hikosaka K, Watanabe YI, Ebiloma GU, Kita K, Amambua-Ngwa A. Genetic polymorphisms in malaria vaccine candidate Plasmodium falciparum reticulocyte-binding protein homologue-5 among populations in Lagos, Nigeria. Malar J 2020; 19:6. [PMID: 31906953 PMCID: PMC6945540 DOI: 10.1186/s12936-019-3096-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/26/2019] [Indexed: 01/26/2023] Open
Abstract
Background Vaccines are the most reliable alternative to elicit sterile immunity against malaria but their development has been hindered by polymorphisms and strain-specificity in previously studied antigens. New vaccine candidates are therefore urgently needed. Highly conserved Plasmodium falciparum reticulocyte-binding protein homologue-5 (PfRH5) has been identified as a potential candidate for anti-disease vaccine development. PfRH5 is essential for erythrocyte invasion by merozoites and crucial for parasite survival. However, there is paucity of data on the extent of genetic variations on PfRH5 in field isolates of Plasmodium falciparum. This study described genetic polymorphisms at the high affinity binding polypeptides (HABPs) 36718, 36727, 36728 of PfRH5 in Nigerian isolates of P. falciparum. This study tested the hypothesis that only specific conserved B and T cell epitopes on PfRH5 HABPs are crucial for vaccine development. Methods One hundred and ninety-five microscopically confirmed P. falciparum samples collected in a prospective cross-sectional study of three different populations in Lagos, Nigeria. Genetic diversity and haplotype construct of Pfrh5 gene were determined using bi-directional sequencing approach. Tajima’s D and the ratio of nonsynonymous vs synonymous mutations were utilized to estimate the extent of balancing and directional selection in the pfrh5 gene. Results Sequence analysis revealed three haplotypes of PfRH5 with negative Tajima’s D and dN/dS value of − 1.717 and 0.011 ± 0.020, respectively. A single nucleotide polymorphism, SNP (G → A) at position 608 was observed, which resulted in a change of the amino acid cysteine at position 203 to tyrosine. Haplotype and nucleotide diversities were 0.318 ± 0.016 and 0.0046 ± 0.0001 while inter-population genetic differentiation ranged from 0.007 to 0.037. Five polypeptide variants were identified, the most frequent being KTKYH with a frequency of 51.3%. One B-cell epitope, 151 major histocompatibility complex (MHC) class II T-cell epitopes, four intrinsically unstructured regions (IURs) and six MHC class I T-cell epitopes were observed in the study. Phylogenetic analysis of the sequences showed clustering and evidence of evolutionary relationship with 3D7, PAS-2 and FCB-2 RH5 sequences. Conclusions This study has revealed low level of genetic polymorphisms in PfRH5 antigen with B- and T-cell epitopes in intrinsically unstructured regions along the PfRH5 gene in Lagos, Nigeria. A broader investigation is however required in other parts of the country to support the possible inclusion of PfRH5 in a cross-protective multi-component vaccine.
Collapse
Affiliation(s)
- Olusola Ajibaye
- Department of Biochemistry & Nutrition, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria. .,Department of Biochemistry, College of Medicine, University of Lagos, Idi-Araba, Lagos, Nigeria.
| | - Akinniyi A Osuntoki
- Department of Biochemistry, College of Medicine, University of Lagos, Idi-Araba, Lagos, Nigeria
| | - Emmanuel O Balogun
- Department of Biochemistry, Ahmadu Bello University, 2222, Zaria, Nigeria.,Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yetunde A Olukosi
- Department of Biochemistry & Nutrition, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Bamidele A Iwalokun
- Department of Biochemistry & Nutrition, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Kolapo M Oyebola
- Department of Biochemistry & Nutrition, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria.,Parasitology and Bioinformatics Unit, Department of Zoology, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria
| | - Kenji Hikosaka
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yoh-Ichi Watanabe
- Department of Biochemistry, Ahmadu Bello University, 2222, Zaria, Nigeria
| | - Godwin U Ebiloma
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Alfred Amambua-Ngwa
- Medical Research Council at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, The Gambia
| |
Collapse
|
7
|
Garrido-Cardenas JA, González-Cerón L, Manzano-Agugliaro F, Mesa-Valle C. Plasmodium genomics: an approach for learning about and ending human malaria. Parasitol Res 2019; 118:1-27. [PMID: 30402656 DOI: 10.1007/s00436-018-6127-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022]
Abstract
Malaria causes high levels of morbidity and mortality in human beings worldwide. According to the World Health Organization (WHO), about half a million people die of this disease each year. Malaria is caused by six species of parasites belonging to the Plasmodium genus: P. falciparum, P. knowlesi, P. vivax, P. malariae, P. ovale curtisi, and P. ovale wallikeri. Currently, malaria is being kept under control with varying levels of elimination success in different countries. The development of new molecular tools as well as the use of next-generation sequencing (NGS) technologies and novel bioinformatic approaches has improved our knowledge of malarial epidemiology, diagnosis, treatment, vaccine development, and surveillance strategies. In this work, the genetics and genomics of human malarias have been analyzed. Since the first P. falciparum genome was sequenced in 2002, various population-level genetic and genomic surveys, together with transcriptomic and proteomic studies, have shown the importance of molecular approaches in supporting malaria elimination.
Collapse
Affiliation(s)
| | - Lilia González-Cerón
- Regional Center for Public Health Research, National Institute of Public Health, Tapachula, Chiapas, Mexico
| | | | | |
Collapse
|
8
|
Afridi SG, Irfan M, Ahmad H, Aslam M, Nawaz M, Ilyas M, Khan A. Population genetic structure of domain I of apical membrane antigen-1 in Plasmodium falciparum isolates from Hazara division of Pakistan. Malar J 2018; 17:389. [PMID: 30367656 PMCID: PMC6203999 DOI: 10.1186/s12936-018-2539-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/20/2018] [Indexed: 11/10/2022] Open
Abstract
Background The Plasmodium falciparum apical membrane antigen-1 (PfAMA1) is considered as an ideal vaccine candidate for malaria control due to its high level of immunogenicity and essential role in parasite survival. Among the three domains of PfAMA1 protein, hyper-variable region (HVR) of domain I is the most immunogenic. The present study was conducted to evaluate the extent of genetic diversity across HVR domain I of the pfama1 gene in P. falciparum isolates from Hazara division of Pakistan. Methods The HVR domain I of the pfama1 was amplified and sequenced from 20 P. falciparum positive cases from Hazara division of Pakistan. The sequences were analysed in context of global population data of P. falciparum from nine malaria endemic countries. The DNA sequence reads quality assessment, reads assembling, sequences alignment/phylogenetic and population genetic analyses were performed using Staden, Lasergene v. 7.1, MEGA7 and DnaSP v.5 software packages respectively. Results Total 14 mutations were found in Pakistani isolates with 12 parsimony informative sites. During comparison with global isolates, a novel non-synonymous mutation (Y240F) was found specifically in a single Pakistani sample with 5% frequency. The less number of mutations, haplotypes, recombination and low pairwise nucleotide differences revealed tightly linked uniform genetic structure with low genetic diversity at HVR domain I of pfama1 among P. falciparum isolates from Hazara region of Pakistan. This uniform genetic structure may be shaped across Pakistani P. falciparum isolates by bottleneck or natural selection events. Conclusion The Pakistani P. falciparum isolates were found to maintain a distinct genetic pattern at HVR pfama1 with some extent of genetic relationship with geographically close Myanmar and Indian samples. However, the exact pattern of gene flow and demographic events may infer from whole genome sequence data with large sample size of P. falciparum collected from broad area of Pakistan. Electronic supplementary material The online version of this article (10.1186/s12936-018-2539-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sahib Gul Afridi
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, 23200, Pakistan
| | - Muhammad Irfan
- Center for Human Genetics, Hazara University, Mansehra, 21310, Pakistan
| | - Habib Ahmad
- Center for Human Genetics, Hazara University, Mansehra, 21310, Pakistan.,Center for OMIC Studies, Islamia College University, Peshawar, 25000, Pakistan
| | - Muneeba Aslam
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, 23200, Pakistan
| | - Mehwish Nawaz
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, 23200, Pakistan
| | - Muhammad Ilyas
- Center for Human Genetics, Hazara University, Mansehra, 21310, Pakistan
| | - Asifullah Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| |
Collapse
|