1
|
Malaria Rapid Diagnostic Tests: Literary Review and Recommendation for a Quality Assurance, Quality Control Algorithm. Diagnostics (Basel) 2021; 11:diagnostics11050768. [PMID: 33922917 PMCID: PMC8145891 DOI: 10.3390/diagnostics11050768] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 01/24/2023] Open
Abstract
Malaria rapid diagnostic tests (RDTs) have had an enormous global impact which contributed to the World Health Organization paradigm shift from empiric treatment to obtaining a parasitological diagnosis prior to treatment. Microscopy, the classic standard, requires significant expertise, equipment, electricity, and reagents. Alternatively, RDT’s lower complexity allows utilization in austere environments while achieving similar sensitivities and specificities. Worldwide, there are over 200 different RDT brands that utilize three antigens: Plasmodium histidine-rich protein 2 (PfHRP-2), Plasmodium lactate dehydrogenase (pLDH), and Plasmodium aldolase (pALDO). pfHRP-2 is produced exclusively by Plasmodium falciparum and is very Pf sensitive, but an alternative antigen or antigen combination is required for regions like Asia with significant Plasmodium vivax prevalence. RDT sensitivity also decreases with low parasitemia (<100 parasites/uL), genetic variability, and prozone effect. Thus, proper RDT selection and understanding of test limitations are essential. The Center for Disease Control recommends confirming RDT results by microscopy, but this is challenging, due to the utilization of clinical laboratory standards, like the College of American Pathologists (CAP) and the Clinical Lab Improvement Act (CLIA), and limited recourses. Our focus is to provide quality assurance and quality control strategies for resource-constrained environments and provide education on RDT limitations.
Collapse
|
2
|
Zhu W, Ling X, Shang W, Du Y, Liu J, Cao Y, Yang M, Zhu G, Cao J, Huang J. High value of rapid diagnostic tests to diagnose malaria within children: A systematic review and meta-analysis. J Glob Health 2020; 10:010411. [PMID: 32373330 PMCID: PMC7182354 DOI: 10.7189/jogh.10.010411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Children aged under five years accounted for 61% of all malaria deaths worldwide in 2017, and quicker differential diagnosis of malaria fever is vital for them. Rapid diagnostic tests (RDTs) are strips to detect Plasmodium specific antigens promptly and are helpful in resource-limited areas. Thus, our aim is to assess the diagnostic accuracy of RDTs for malaria in children against the gold standard. Methods MEDLINE, Web of Science, EMBASE, Cochrane Library, the China National Knowledge Infrastructure, Wanfang, and Sinomed databases were systematically searched on August 23, 2019. Studies that compared RDTs with microscopy or polymerase chain reaction in malaria diagnoses for children were eligible. Relevant data were extracted. The quality of studies was evaluated using the revised Quality Assessment of Diagnostic Accuracy Studies instrument. Meta-analyses were carried out to calculate the pooled estimates and 95% confidence intervals of sensitivity and specificity. Results 51 articles were included. For diagnostic accuracy, the pooled estimates of the sensitivity and specificity of RDTs were 0.93 (95% confidence interval (CI) = 0.90, 0.95) and 0.93 (95% CI = 0.90, 0.96) respectively. Studies were highly heterogeneous, and subgroup analyses showed that the application of RDTs in high malaria transmission areas had higher sensitivity but lower specificity than those in low-to-moderate areas. Conclusions RDTs have high accuracy for malaria diagnosis in children, and this characteristic is more prominent in high transmission areas. As they also have the advantages of rapid-detection, are easy-to-use, and can be cost-effective, it is recommended that the wider usage of RDTs should be promoted, especially in resource-limited areas. Further research is required to assess their performance in WHO South-East Asia and Americas Region.
Collapse
Affiliation(s)
- Wenjun Zhu
- Key Lab of Health Technology Assessment, National Health Commission; School of Public Health, Fudan University, Shanghai, China
| | - XiaoXiao Ling
- Department of Statistical Science, University College London, London, UK
| | - Wenru Shang
- Key Lab of Health Technology Assessment, National Health Commission; School of Public Health, Fudan University, Shanghai, China
| | - Yanqiu Du
- Key Lab of Health Technology Assessment, National Health Commission; School of Public Health, Fudan University, Shanghai, China
| | - Jinyu Liu
- Key Lab of Health Technology Assessment, National Health Commission; School of Public Health, Fudan University, Shanghai, China
| | - Yuanyuan Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
| | - Mengmeng Yang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
| | - Guoding Zhu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Public Health Research Center, Jiangnan University, Wuxi, Jiangsu, China
| | - Jun Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Public Health Research Center, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiayan Huang
- Key Lab of Health Technology Assessment, National Health Commission; School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|