1
|
Xiao S, Wei T, Petersen JD, Zhou J, Lu X. Biological effects of negative air ions on human health and integrated multiomics to identify biomarkers: a literature review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27133-8. [PMID: 37170052 PMCID: PMC10175061 DOI: 10.1007/s11356-023-27133-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/17/2023] [Indexed: 05/13/2023]
Abstract
Environmental pollution seriously affects human health. The concentration of negative air ions (NAIs), which were discovered at the end of the nineteenth century, is one of the factors used to evaluate air quality. Additionally, NAIs have been widely considered markers by scholars due to their unique biological function. The aim of this study was to summarize existing research and propose future research on the generation and temporal and spatial dynamic patterns of NAIs concentrations as well as the relationship between NAIs and human health. We identified 187 studies (published January 2013-January 2023) that met our inclusion criteria. Fourteen English studies evaluated the effects of NAIs on depression, the cardiovascular system, the respiratory system, reproduction and development, cognition, and sports muscle injury. Only two studies reported the associations of NAIs exposure with metabolic omics. NAIs concentrations vary temporally with solar radiation, air temperature, and relative humidity, while the temporal dynamic patterns of NAIs are affected by season, time, meteorological factors, air quality index, geographical location, forest vegetation, and other factors. Researchers have shown that exposure to NAIs may benefit our health by changing amino acid metabolism, which mainly manifests as increased anti-inflammation and reduced inflammation and antioxidation. Furthermore, exposure to NAIs promotes energy production, affects the expression of c-fos, and regulates 5-HT levels. There has been considerable interest in the potential effects of NAIs on human health and well-being, but the conclusions have been inconsistent and the mechanisms remain unclear. The use of omics to elucidate the biological mechanism of NAIs is relatively new and has some advantages.
Collapse
Affiliation(s)
- Sha Xiao
- International School of Public Health and One Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, 571199, China
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Tianjing Wei
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Jindong Ding Petersen
- International School of Public Health and One Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, 571199, China
| | - Jing Zhou
- International School of Public Health and One Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, 571199, China
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
2
|
Liu S, Li C, Chu M, Zhang W, Wang W, Wang Y, Guo X, Deng F. Associations of forest negative air ions exposure with cardiac autonomic nervous function and the related metabolic linkages: A repeated-measure panel study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158019. [PMID: 35973547 DOI: 10.1016/j.scitotenv.2022.158019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Forest environment has many health benefits, and negative air ions (NAI) is one of the major forest environmental factors. Many studies have explored the effect of forest environment on cardiac autonomic nervous function, while forest NAI in the among function and the underlying mechanism still remain unclear. To explore the associations and molecular linkages between short-term exposure to forest NAI and heart rate variability (HRV), a repeated-measure panel study was conducted among 31 healthy adults. Participants were randomly selected to stay in a forest park for 3 days and 2 nights. Individual exposures including NAI were monitored simultaneously and HRV indices were measured repeatedly at the follow-up period. Urine samples were collected for non-targeted metabolomics analysis. Mixed-effect models were adopted to evaluate associations among NAI, HRV indices and metabolites. The median of NAI concentration was 68.11 (138.20) cm-3 during the study period. Short-term exposure to forest NAI was associated with the ameliorative HRV indices, especially the excitatory parasympathetic nerve. For instance, per interquartile range increase of 5-min moving average of NAI was associated with 9.99 % (95%CI: 8.95 %, 11.03 %) increase of power in high frequency. Eight metabolites were associated with NAI exposure. The down-regulated tyrosine metabolism was firstly observed, followed by other amino acid metabolic alterations. The NAI-related metabolic changes reflect the reduction of inflammation and oxidative stress. HRV indices were associated with 25 metabolites, mainly including arginine, proline and histidine metabolism. Short-term exposure to forest NAI is beneficial to HRV, especially to the parasympathetic nerve activity, by successively disturbing different metabolic pathways which mainly reflect the increased anti-inflammation and the reduced inflammation. The results will provide epidemiological evidences for developing forest therapy and improving cardiac autonomic nervous function.
Collapse
Affiliation(s)
- Shan Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Chen Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Mengtian Chu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Yazheng Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
3
|
Hu YQ, Niu TT, Xu JM, Peng L, Sun QH, Huang Y, Zhou J, Ding YQ. Negative air ion exposure ameliorates depression-like behaviors induced by chronic mild stress in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62626-62636. [PMID: 35411516 PMCID: PMC9464145 DOI: 10.1007/s11356-022-20144-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/04/2022] [Indexed: 04/15/2023]
Abstract
The presence of negative air ions (NAI) is suggested to be a beneficial factor in improving psychological status and used in treating depression as an alternative approach. However, more biological evidence from animal models is needed to ensure the effects of NAI on the mood regulation, through which can facilitate identification of possible underlying mechanisms. In this study, the chronic mild stress (CMS) protocol was used to induce depressive-like behaviors in mice, and the effects of NAI exposure on CMS-induced depression-like behaviors were examined. Thirty-day NAI exposure prevented the CMS-induced depression-like behaviors as shown by the restoration of sucrose preference and reduced immobility time in the tail suspension test. In addition, the elevation of serous corticosterone was present in CMS-treated mice but not existed in those with the NAI exposure. Furthermore, we observed altered ratios of some cytokines secreted by type 1 T helper (Th1) cells and Th2 cells in CMS-treated mice, but it could be restored after NAI exposure. In conclusion, NAI intervention is able to ameliorate CMS-induced depression-like behaviors in mice, and this effect is associated with the alteration of corticosterone and functional rebalance between Th1 and Th2 cells.
Collapse
Affiliation(s)
- Yun-Qing Hu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Ting-Ting Niu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu, 730000, People's Republic of China
| | - Jian-Ming Xu
- Shanghai Typhoon Institute, CMA, No. 166 Puxi Road, Shanghai, 200030, People's Republic of China
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, No. 166 Puxi Road, Shanghai, 200030, People's Republic of China
| | - Li Peng
- Shanghai Typhoon Institute, CMA, No. 166 Puxi Road, Shanghai, 200030, People's Republic of China
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, No. 166 Puxi Road, Shanghai, 200030, People's Republic of China
| | - Qing-Hua Sun
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, People's Republic of China
| | - Ying Huang
- Department of Laboratory Animal Science, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Ji Zhou
- Shanghai Typhoon Institute, CMA, No. 166 Puxi Road, Shanghai, 200030, People's Republic of China
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, No. 166 Puxi Road, Shanghai, 200030, People's Republic of China
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, No. 220 Handan Road, Shanghai, 200433, People's Republic of China
| | - Yu-Qiang Ding
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, People's Republic of China.
- Department of Laboratory Animal Science, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
4
|
Negative Ion Purifier Effects on Indoor Particulate Dosage to Small Airways. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:ijerph19010264. [PMID: 35010523 PMCID: PMC8751072 DOI: 10.3390/ijerph19010264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/13/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022]
Abstract
Indoor air quality is an important health factor as we spend more than 80% of our time indoors. The primary type of indoor pollutant is particulate matter, high levels of which increase respiratory disease risk. Therefore, air purifiers are a common choice for addressing indoor air pollution. Compared with traditional filtration purifiers, negative ion air purifiers (NIAPs) have gained popularity due to their energy efficiency and lack of noise. Although some studies have shown that negative ions may offset the cardiorespiratory benefits of air purifiers, the underlying mechanism is still unclear. In this study, we conducted a full-scale experiment using an in vitro airway model connected to a breathing simulator to mimic inhalation. The model was constructed using computed tomography scans of human airways and 3D-printing technology. We then quantified the effects of NIAPs on the administered dose of 0.5-2.5 μm particles in the small airway. Compared with the filtration purifier, the NIAP had a better dilution effect after a 1-h exposure and the cumulative administered dose to the small airway was reduced by 20%. In addition, increasing the negative ion concentration helped reduce the small airway exposure risk. NIAPs were found to be an energy-efficient air purification intervention that can effectively reduce the small airway particle exposure when a sufficient negative ion concentration is maintained.
Collapse
|
5
|
Della Vecchia A, Mucci F, Pozza A, Marazziti D. Negative Air Ions in Neuropsychiatric Disorders. Curr Med Chem 2021; 28:2521-2539. [PMID: 32603272 DOI: 10.2174/0929867327666200630104550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/04/2020] [Accepted: 05/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Air ions (AIs) are clusters of ionized particles present in the atmosphere, carrying an electrical charge of negative or positive polarity. Past speculations suggested that exposure to positive air ions may be harmful, while exposure to negative air ions (NAIs) may be associated with beneficial health effects. Increasing attention has been directed towards investigating the potential effect of NAIs on human brain activities since initial observations of their beneficial effects on some cognitive processes and mood. AIMS Given the paucity and scattered literature, our paper aims to review the available studies on potential positive effects of NAIs exposure on cognitive performances and depression. DISCUSSION The review of the literature seems to confirm the effects of NAIs on several brain functions. Indeed, a significant association between NAIs exposure and both well-being and high cognitive performances has been described. Furthermore, exposure to high concentrations of NAIs could be related to the improvement of depressive symptoms. CONCLUSION A growing evidence of data, although not yet conclusive, would suggest that NAIs might improve cognitive processes. These findings require specific and urgent controlled trials adopting systems based on AIs release to possibly prevent and treat cognitive dysfunctions present in a broad range of neuropsychiatric conditions.
Collapse
Affiliation(s)
- Alessandra Della Vecchia
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Via Roma 67, 56100 Pisa, Italy
| | - Federico Mucci
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Via Roma 67, 56100 Pisa, Italy
| | - Andrea Pozza
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Via Roma 67, 56100 Pisa, Italy
| |
Collapse
|
6
|
Ho CS, Lee MC, Chang CY, Chen WC, Huang WC. Beneficial effects of a negative ion patch on eccentric exercise-induced muscle damage, inflammation, and exercise performance in badminton athletes. CHINESE J PHYSIOL 2020; 63:35-42. [PMID: 32056985 DOI: 10.4103/cjp.cjp_33_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Complementary and alternative medicines (CAMs) are widely applied and accepted for therapeutic purposes because of their numerous benefits. Negative ion treatment belongs to one of the critical categories defined by the National Center for CAM, with such treatment capable of air purification and ameliorating emotional disorders (e.g., depression and seasonal affective disorder). Negative ions can be produced naturally and also by a material with activated energy. Exercise-induced muscle damage (EIMD) often occurs due to inadequate warm up, high-intensity exercise, overload, and inappropriate posture, especially for high-intensive competition. Few studies have investigated the effects of negative ion treatment on muscular injury in the sports science field. In the current study, we enrolled badminton athletes and induced muscle damage in them through eccentric exercise in the form of a high-intensity squat program. We evaluated the effects of negative ion patches of different intensities at three points (preexercise, postexercise, and recovery) by analyzing physiological indexes (tumor necrosis factor [TNF]-α, interleukin [IL]-6, IL-10, creatine kinase [CK], and lactate dehydrogenase [LDH] levels) and performing a functional assessment (a countermovement jump [CMJ] test). We found that a high-intensity negative ion patch could significantly reduce the levels of TNF-α, an injury-associated inflammatory cytokine, and related markers (CK and LDH). In addition, muscular overload-caused fatigue could be also ameliorated, as indicated by the functional CMJ test result, and related muscular characteristics (tone and stiffness) could be effectively improved. Thus, the negative ion treatment could effectively improve physiological adaption and muscular fatigue recovery after EIMD in the current study. The negative ion patch treatment can be further integrated into a taping system to synergistically fulfill exercise-induced damage protection and functional elevation. However, the effects of this treatment require further experimental validation.
Collapse
Affiliation(s)
- Chin-Shan Ho
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Chi-Yao Chang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Wen-Chyuan Chen
- Center for General Education, Chang Gung University of Science and Technology; Department of Otorhinolaryngology, Head and Neck Surgery, Sleep Center, Linkou-Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wen-Ching Huang
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| |
Collapse
|
7
|
Abstract
Abstract
Research has shown that microclimate is determined not only by air microparticles, but also by the degree of air ionization. Ions affect the body through the respiratory tract and skin. Exposure of reared chickens to elevated air temperature (37°C–23°C) was found to accelerate the break-down of negative ions compared to temperature lower by 10°C. Negative air ionization offsets the adverse effect of elevated temperature on chickens. Higher (85%) air humidity during rearing of chickens was also observed to destroy negative ions. Research findings indicate that air ionization is an environmental element that contributes to improving performance in broiler chickens. Many studies have also confirmed a positive effect of air ionization on the body weight and health of piglets.
Collapse
|
8
|
Jiang SY, Ma A, Ramachandran S. Negative Air Ions and Their Effects on Human Health and Air Quality Improvement. Int J Mol Sci 2018; 19:E2966. [PMID: 30274196 PMCID: PMC6213340 DOI: 10.3390/ijms19102966] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/13/2018] [Accepted: 09/25/2018] [Indexed: 11/16/2022] Open
Abstract
Negative air ions (NAIs) have been discovered for more than 100 years and are widely used for air cleaning. Here, we have carried out a comprehensive reviewing on the effects of NAIs on humans/animals, and microorganisms, and plant development. The presence of NAIs is credited for increasing psychological health, productivity, and overall well-being but without consistent or reliable evidence in therapeutic effects and with controversy in anti-microorganisms. Reports also showed that NAIs could help people in relieving symptoms of allergies to dust, mold spores, and other allergens. Particulate matter (PM) is a major air pollutant that affects human health. Experimental data showed that NAIs could be used to high-efficiently remove PM. Finally, we have reviewed the plant-based NAI release system under the pulsed electric field (PEF) stimulation. This is a new NAI generation system which releases a huge amount of NAIs under the PEF treatment. The system may be used to freshen indoor air and reduce PM concentration in addition to enriching oxygen content and indoor decoration at home, school, hospital, airport, and other indoor areas.
Collapse
Affiliation(s)
- Shu-Ye Jiang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| | - Ali Ma
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| | - Srinivasan Ramachandran
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| |
Collapse
|