1
|
Fura Ł, Tymkiewicz R, Kujawska T. Numerical studies on shortening the duration of HIFU ablation therapy and their experimental validation. ULTRASONICS 2024; 142:107371. [PMID: 38852549 DOI: 10.1016/j.ultras.2024.107371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/09/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
High Intensity Focused Ultrasound (HIFU) is used in clinical practice for thermal ablation of malignant and benign solid tumors located in various organs. One of the reason limiting the wider use of this technology is the long treatment time resulting from i.a. the large difference between the size of the focal volume of the heating beam and the size of the tumor. Therefore, the treatment of large tumors requires scanning their volume with a sequence of single heating beams, the focus of which is moved in the focal plane along a specific trajectory with specific time and distance interval between sonications. To avoid an undesirable increase in the temperature of healthy tissues surrounding the tumor during scanning, the acoustic power and exposure time of each HIFU beam as well as the time intervals between sonications should be selected in such a way as to cover the entire volume of the tumor with necrosis as quickly as possible. This would reduce the costs of treatment. The aim of this study was to quantitatively evaluate the hypothesis that selecting the average acoustic power and exposure time for each individual heating beam, as well as the temporal intervals between sonications, can significantly shorten treatment time. Using 3D numerical simulations, the dependence of the duration of treatment of a tumor with a diameter of 5 mm or 9 mm (requiring multiple exposure to the HIFU beam) on the sonication parameters (acoustic power, exposure time) of each single beam capable of delivering the threshold thermal dose (CEM43 = 240 min) to the treated tissue volume was examined. The treatment duration was determined as the sum of exposure times to individual beams and time intervals between sonications. The tumor was located inside the ex vivo tissue sample at a depth of 12.6 mm. The thickness of the water layer between the HIFU transducer and the tissue was 50 mm. The sonication and scanning parameters selected using the developed algorithm shortened the duration of the ablation procedure by almost 14 times for a 5-mm tumor and 20 times for a 9-mm tumor compared to the duration of the same ablation plan when a HIFU beam was used of a constant acoustic power, constant exposure time (3 s) and constant long time intervals (120 s) between sonications. Results of calculations of the location and size of the necrotic lesion formed were experimentally verified on ex vivo pork loin samples, showing good agreement between them. In this way, it was proven that the proper selection of sonication and scanning parameters for each HIFU beam allows to significantly shorten the time of HIFU therapy.
Collapse
Affiliation(s)
- Łukasz Fura
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland.
| | - Ryszard Tymkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Tamara Kujawska
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| |
Collapse
|
2
|
Grutman T, Ilovitsh T. Dense speed-of-sound shift imaging for ultrasonic thermometry. Phys Med Biol 2023; 68:215004. [PMID: 37774710 DOI: 10.1088/1361-6560/acfec3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/29/2023] [Indexed: 10/01/2023]
Abstract
Objective. Develop a dense algorithm for calculating the speed-of-sound shift between consecutive acoustic acquisitions as a noninvasive means to evaluating temperature change during thermal ablation.Methods. An algorithm for dense speed-of-sound shift imaging (DSI) was developed to simultaneously incorporate information from the entire field of view using a combination of dense optical flow and inverse problem regularization, thus speeding up the calculation and introducing spatial agreement between pixels natively. Thermal ablation monitoring consisted of two main steps: pixel shift tracking using Farneback optical flow, and mathematical modeling of the relationship between the pixel displacement and temperature change as an inverse problem to find the speed-of-sound shift. A calibration constant translates from speed-of-sound shift to temperature change. The method performance was tested inex vivosamples and compared to standard thermal strain imaging (TSI) methods.Main results. Thermal ablation at a frequency of 2 MHz was applied to an agarose phantom that created a speed-of-sound shift measured by an L12-5 imaging transducer. A focal spot was reconstructed by solving the inverse problem. Next, a thermocouple measured the temperature rise during thermal ablation ofex vivochicken breast to calibrate the setup. Temperature changes between 3 °C and 15 °C was measured with high thermometry precision of less than 2 °C error for temperature changes as low as 8 °C. The DSI method outperformed standard TSI in both spatial coherence and runtime in high-intensity focused ultrasound-induced hyperthermia.Significance. Dense ultrasonic speed-of-sound shift imaging can successfully monitor the speed-of-sound shift introduced by thermal ablation. This technique is faster and more robust than current methods, and therefore can be used as a noninvasive, real time and cost-effective thermometry method, with high clinical applicability.
Collapse
Affiliation(s)
- Tal Grutman
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tali Ilovitsh
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
3
|
Imtiaz C, Farooqi MA, Bhatti T, Lee J, Moin R, Kang CU, Farooqi HMU. Focused Ultrasound, an Emerging Tool for Atherosclerosis Treatment: A Comprehensive Review. Life (Basel) 2023; 13:1783. [PMID: 37629640 PMCID: PMC10455721 DOI: 10.3390/life13081783] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Focused ultrasound (FUS) has emerged as a promising noninvasive therapeutic modality for treating atherosclerotic arterial disease. High-intensity focused ultrasound (HIFU), a noninvasive and precise modality that generates high temperatures at specific target sites within tissues, has shown promising results in reducing plaque burden and improving vascular function. While low-intensity focused ultrasound (LIFU) operates at lower energy levels, promoting mild hyperthermia and stimulating tissue repair processes. This review article provides an overview of the current state of HIFU and LIFU in treating atherosclerosis. It focuses primarily on the therapeutic potential of HIFU due to its higher penetration and ability to achieve atheroma disruption. The review summarizes findings from animal models and human trials, covering the effects of FUS on arterial plaque and arterial wall thrombolysis in carotid, coronary and peripheral arteries. This review also highlights the potential benefits of focused ultrasound, including its noninvasiveness, precise targeting, and real-time monitoring capabilities, making it an attractive approach for the treatment of atherosclerosis and emphasizes the need for further investigations to optimize FUS parameters and advance its clinical application in managing atherosclerotic arterial disease.
Collapse
Affiliation(s)
- Cynthia Imtiaz
- Ocean and Biomedical Ultrasound Laboratory, Department of Ocean System Engineering, Jeju National University, Jeju-si 63243, Republic of Korea; (C.I.)
| | - Muhammad Awais Farooqi
- Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Theophilus Bhatti
- Interdisciplinary Department of Advanced Convergence Technology and Science, College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - Jooho Lee
- Ocean and Biomedical Ultrasound Laboratory, Department of Ocean System Engineering, Jeju National University, Jeju-si 63243, Republic of Korea; (C.I.)
| | - Ramsha Moin
- Department of Pediatrics, Elaj Hospital, Gujranwala 52250, Pakistan
| | - Chul Ung Kang
- Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Republic of Korea
| | | |
Collapse
|
4
|
Kuo YY, Chen WT, Lin GB, Lu CH, Chao CY. Study on the effect of a triple cancer treatment of propolis, thermal cycling-hyperthermia, and low-intensity ultrasound on PANC-1 cells. Aging (Albany NY) 2023; 15:7496-7512. [PMID: 37506229 PMCID: PMC10457055 DOI: 10.18632/aging.204916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
To reduce side effects and enhance treatment efficacy, study on combination therapy for pancreatic cancer, a deadly cancer, has gained much attraction in recent years. In this study, we propose a novel triple treatment combining propolis and two physical stimuli-thermal cycling-hyperthermia (TC-HT) and low-intensity ultrasound (US). The study found that, after the triple treatment, the cell viability of a human cancer cell line PANC-1 decreased to a level 80% less than the control, without affecting the normal pancreatic cells. Another result was excessive accumulation of reactive oxygen species (ROS) after the triple treatment, leading to the amplification of apoptotic pathway through the MAPK family and mitochondrial dysfunction. This study, to the best of our knowledge, is the first attempt to combine TC-HT, US, and a natural compound in cancer treatment. The combination of TC-HT and US also promotes the anticancer effect of the heat-sensitive chemotherapy drug cisplatin on PANC-1 cells. It is expected that optimized parameters for different agents and different types of cancer will expand the methodology on oncological therapy in a safe manner.
Collapse
Affiliation(s)
- Yu-Yi Kuo
- Department of Physics, Lab for Medical Physics and Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Wei-Ting Chen
- Department of Physics, Lab for Medical Physics and Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Guan-Bo Lin
- Department of Physics, Lab for Medical Physics and Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Chueh-Hsuan Lu
- Department of Physics, Lab for Medical Physics and Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Chih-Yu Chao
- Department of Physics, Lab for Medical Physics and Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Applied Physics, Biophysics Division, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
5
|
Khokhlova VA, Rosnitskiy PB, Tsysar SA, Buravkov SV, Ponomarchuk EM, Sapozhnikov OA, Karzova MM, Khokhlova TD, Maxwell AD, Wang YN, Kadrev AV, Chernyaev AL, Chernikov VP, Okhobotov DA, Kamalov AA, Schade GR. Initial Assessment of Boiling Histotripsy for Mechanical Ablation of Ex Vivo Human Prostate Tissue. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:62-71. [PMID: 36207225 PMCID: PMC9712256 DOI: 10.1016/j.ultrasmedbio.2022.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/27/2022] [Accepted: 07/31/2022] [Indexed: 05/16/2023]
Abstract
Boiling histotripsy (BH) is a focused ultrasound technology that uses millisecond-long pulses with shock fronts to induce mechanical tissue ablation. The pulsing scheme and mechanisms of BH differ from those of cavitation cloud histotripsy, which was previously developed for benign prostatic hyperplasia. The goal of the work described here was to evaluate the feasibility of using BH to ablate fresh ex vivo human prostate tissue as a proof of principle for developing BH for prostate applications. Fresh human prostate samples (N = 24) were obtained via rapid autopsy (<24 h after death, institutional review board exempt). Samples were analyzed using shear wave elastography to ensure that mechanical properties of autopsy tissue were clinically representative. Samples were exposed to BH using 10- or 1-ms pulses with 1% duty cycle under real-time B-mode and Doppler imaging. Volumetric lesions were created by sonicating 1-4 rectangular planes spaced 1 mm apart, containing a grid of foci spaced 1-2 mm apart. Tissue then was evaluated grossly and histologically, and the lesion content was analyzed using transmission electron microscopy and scanning electron microscopy. Observed shear wave elastography characterization of ex vivo prostate tissue (37.9 ± 22.2 kPa) was within the typical range observed clinically. During BH, hyperechoic regions were visualized at the focus on B-mode, and BH-induced bubbles were also detected using power Doppler. As treatment progressed, hypoechoic regions of tissue appeared, suggesting successful tissue fractionation. BH treatment was twofold faster using shorter pulses (1 ms vs. 10 ms). Histological analysis revealed lesions containing completely homogenized cell debris, consistent with histotripsy-induced mechanical ablation. It was therefore determined that BH is feasible in fresh ex vivo human prostate tissue producing desired mechanical ablation. The study supports further work aimed at translating BH technology as a clinical option for prostate ablation.
Collapse
Affiliation(s)
- Vera A. Khokhlova
- University of Washington, Applied Physics Laboratory, Center for Industrial and Medical Ultrasound, Seattle, WA
- Lomonosov Moscow State University, Physics Faculty, Moscow, Russia
| | | | - Sergey A. Tsysar
- Lomonosov Moscow State University, Physics Faculty, Moscow, Russia
| | - Sergey V. Buravkov
- Lomonosov Moscow State University, Faculty of Fundamental Medicine, Laboratory of Cell Image Analysis, Moscow, Russia
- Research Institute of Human Morphology, Moscow, Russia
| | | | - Oleg A. Sapozhnikov
- University of Washington, Applied Physics Laboratory, Center for Industrial and Medical Ultrasound, Seattle, WA
- Lomonosov Moscow State University, Physics Faculty, Moscow, Russia
| | - Maria M. Karzova
- Lomonosov Moscow State University, Physics Faculty, Moscow, Russia
| | - Tatiana D. Khokhlova
- University of Washington School of Medicine, Department of Medicine Division of Gastroenterology, Seattle, WA
| | - Adam D. Maxwell
- University of Washington School of Medicine, Department of Urology, Seattle, WA
| | - Yak-Nam Wang
- University of Washington, Applied Physics Laboratory, Center for Industrial and Medical Ultrasound, Seattle, WA
| | - Alexey V. Kadrev
- Lomonosov Moscow State University, Medical Research and Educational Center, Department of Urology and Andrology, Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, Diagnostic Ultrasound Division, Moscow, Russia
| | - Andrey L. Chernyaev
- Research Institute of Human Morphology, Moscow, Russia
- Pulmonology Scientific Research Institute, Moscow, Russia
| | | | - Dmitriy A. Okhobotov
- Lomonosov Moscow State University, Medical Research and Educational Center, Department of Urology and Andrology, Moscow, Russia
| | - Armais A. Kamalov
- Lomonosov Moscow State University, Medical Research and Educational Center, Department of Urology and Andrology, Moscow, Russia
| | - George R. Schade
- University of Washington School of Medicine, Department of Urology, Seattle, WA
| |
Collapse
|
6
|
Brahmandam A, Chan SM, Dardik A, Nassiri N, Aboian E. A narrative review on the application of high-intensity focused ultrasound for the treatment of occlusive and thrombotic arterial disease. JVS Vasc Sci 2022; 3:292-305. [PMID: 36276806 PMCID: PMC9579503 DOI: 10.1016/j.jvssci.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/17/2022] [Indexed: 12/03/2022] Open
Abstract
Objectives High-intensity focused ultrasound (HIFU) is a noninvasive therapeutic modality with a variety of applications. It is approved for the treatment of essential tremors, ablation of prostate, hepatic, breast, and uterine tumors. Although not approved for use in the treatment of atherosclerotic arterial disease, there is a growing body of evidence investigating applications of HIFU. Currently, percutaneous endovascular techniques are predominant for the treatment of arterial pathology; however, there are no endovascular techniques of HIFU available. This study aims to review the state of current evidence for the application of HIFU in atherosclerotic arterial disease. Methods All English-language articles evaluating the effect of HIFU on arterial occlusive and thrombotic disease until 2021 were reviewed. Both preclinical and human clinical studies were included. Study parameters such as animal or clinical model and outcomes were reviewed. In addition, details pertaining to settings on the HIFU device used were also reviewed. Results In preclinical models, atherosclerotic plaque progression was inhibited by HIFU, through decreases in oxidized low-density lipoprotein cholesterol and increases in macrophage apoptosis. Additionally, HIFU promotes angiogenesis in hindlimb ischemic models by the upregulation of angiogenic and antiapoptotic factors, with increased angiogenesis at higher line densities of HIFU. HIFU also promotes thrombolysis and conversely induces platelet activation at low frequencies and higher intensities. Various clinical studies have attempted to translate some of these properties and demonstrated positive clinical outcomes for arterial recanalization after thrombotic stroke, decreased atherosclerotic plaque burden in carotid arteries, increase in tissue perfusion and a decrease in diameter stenosis in patients with atherosclerotic arterial disease. Conclusions In current preclinical and clinical data, the safety and efficacy of HIFU shows great promise in the treatment of atherosclerotic arterial disease. Future focused studies are warranted to guide the refinement of HIFU settings for more widespread adoption of this technology.
Collapse
|