1
|
Cui Z, Liu X, Qu H, Wang H. Technical Principles and Clinical Applications of Electrical Impedance Tomography in Pulmonary Monitoring. SENSORS (BASEL, SWITZERLAND) 2024; 24:4539. [PMID: 39065936 PMCID: PMC11281055 DOI: 10.3390/s24144539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Pulmonary monitoring is crucial for the diagnosis and management of respiratory conditions, especially after the epidemic of coronavirus disease. Electrical impedance tomography (EIT) is an alternative non-radioactive tomographic imaging tool for monitoring pulmonary conditions. This review proffers the current EIT technical principles and applications on pulmonary monitoring, which gives a comprehensive summary of EIT applied on the chest and encourages its extensive usage to clinical physicians. The technical principles involving EIT instrumentations and image reconstruction algorithms are explained in detail, and the conditional selection is recommended based on clinical application scenarios. For applications, specifically, the monitoring of ventilation/perfusion (V/Q) is one of the most developed EIT applications. The matching correlation of V/Q could indicate many pulmonary diseases, e.g., the acute respiratory distress syndrome, pneumothorax, pulmonary embolism, and pulmonary edema. Several recently emerging applications like lung transplantation are also briefly introduced as supplementary applications that have potential and are about to be developed in the future. In addition, the limitations, disadvantages, and developing trends of EIT are discussed, indicating that EIT will still be in a long-term development stage before large-scale clinical applications.
Collapse
Affiliation(s)
- Ziqiang Cui
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China; (X.L.); (H.Q.); (H.W.)
| | | | | | | |
Collapse
|
2
|
Alvarado F, Fernandez B, Rebolledo S, Pino EJ. Portable EIT System Validation with a FEM Model-based Resistance Phantom. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039610 DOI: 10.1109/embc53108.2024.10782912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
This paper details the development and preliminary validation of a portable Electric Impedance Tomography (EIT) system. Focused on ambulatory respiratory monitoring as a point-of-care device, the system consists of a compact and low power consumption device. The system portability is achieved using integrated solutions and through the incorporation of miniaturized components, while the low power requirements ensure extended operational periods on battery power. Validation experiments utilizing a customized resistor phantom mimicking a round geometry demonstrate the system's accuracy and sensitivity in reconstructing images in different scenarios and capturing dynamic impedance changes. Our portable EIT system offers a practical, mobile, and energy-efficient solution for continuous patient care.
Collapse
|
3
|
Zheng HY, Li Y, Wang N, Xiang Y, Liu JH, Zhang LD, Huang L, Wang ZY. A novel framework for three-dimensional electrical impedance tomography reconstruction of maize ear via feature reconfiguration and residual networks. PeerJ Comput Sci 2024; 10:e1944. [PMID: 38660147 PMCID: PMC11042020 DOI: 10.7717/peerj-cs.1944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/27/2024] [Indexed: 04/26/2024]
Abstract
Electrical impedance tomography (EIT) provides an indirect measure of the physiological state and growth of the maize ear by reconstructing the distribution of electrical impedance. However, the two-dimensional (2D) EIT within the electrode plane finds it challenging to comprehensively represent the spatial distribution of conductivity of the intact maize ear, including the husk, kernels, and cob. Therefore, an effective method for 3D conductivity reconstruction is necessary. In practical applications, fluctuations in the contact impedance of the maize ear occur, particularly with the increase in the number of grids and computational workload during the reconstruction of 3D spatial conductivity. These fluctuations may accentuate the ill-conditioning and nonlinearity of the EIT. To address these challenges, we introduce RFNetEIT, a novel computational framework specifically tailored for the absolute imaging of the three-dimensional electrical impedance of maize ear. This strategy transforms the reconstruction of 3D electrical conductivity into a regression process. Initially, a feature map is extracted from measured boundary voltage via a data reconstruction module, thereby enhancing the correlation among different dimensions. Subsequently, a nonlinear mapping model of the 3D spatial distribution of the boundary voltage and conductivity is established, utilizing the residual network. The performance of the proposed framework is assessed through numerical simulation experiments, acrylic model experiments, and maize ear experiments. Our experimental results indicate that our method yields superior reconstruction performance in terms of root-mean-square error (RMSE), correlation coefficient (CC), structural similarity index (SSIM), and inverse problem-solving time (IPST). Furthermore, the reconstruction experiments on maize ears demonstrate that the method can effectively reconstruct the 3D conductivity distribution.
Collapse
Affiliation(s)
- Hai-Ying Zheng
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Ministry of Agriculture, Beijing, China
| | - Yang Li
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, China
| | - Nan Wang
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Ministry of Agriculture, Beijing, China
| | - Yang Xiang
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, China
| | - Jin-Hang Liu
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Ministry of Agriculture, Beijing, China
| | - Liu-Deng Zhang
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, China
| | - Lan Huang
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Ministry of Agriculture, Beijing, China
| | - Zhong-Yi Wang
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, China
| |
Collapse
|
4
|
Setyawan G, Sejati PA, Ibrahim KA, Takei M. Breast cancer recognition by electrical impedance tomography implemented with Gaussian relaxation-time distribution (EIT-GRTD). JOURNAL OF ELECTRICAL BIOIMPEDANCE 2024; 15:99-106. [PMID: 39263531 PMCID: PMC11387985 DOI: 10.2478/joeb-2024-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Indexed: 09/13/2024]
Abstract
The comparison between breast cancer recognition by electrical impedance tomography implemented with Gaussian relaxation time distribution (EIT-GRTD) and conventional EIT has been conducted to evaluate the optimal frequency for cancer detection f cancer. The EIT-GRTD has two steps, which are 1) the determination of the f cancer and 2) the refinement of breast reconstruction through time-constant enhancement. This paper employs two-dimensional numerical simulations by a finite element method (FEM) software to replicate the process of breast cancer recognition. The simulation is constructed based on two distinct electrical properties, which are conductivity σ and permitivitty ε, inherent to two major breast tissues: adipose tissues, and breast cancer tissues. In this case, the σ and ε of breast cancer σ cancer, ε cancer are higher than adipose tissues σ adipose, ε adipose. The simulation results indicate that the most effective frequency for breast cancer detection based on EIT-GRTD is f cancer = 56,234 Hz. Meanwhile, conventional EIT requires more processing to determine the f cancer based on image results or spatial conductivity analysis. Quantitatively, both EIT-GRTD and conventional EIT can clearly show the position of the cancer in layers 1 and 2 for EIT-GRTD and only layer 1 for conventional EIT.
Collapse
Affiliation(s)
- Galih Setyawan
- Department of Mechanical Engineering, Graduate School of Science and Engineering, Chiba University, Chiba, Japan
- Department of Electrical Engineering and Informatics, Vocational College, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Prima Asmara Sejati
- Department of Mechanical Engineering, Graduate School of Science and Engineering, Chiba University, Chiba, Japan
- Department of Electrical Engineering and Informatics, Vocational College, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Kiagus Aufa Ibrahim
- Department of Mechanical Engineering, Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| | - Masahiro Takei
- Department of Mechanical Engineering, Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| |
Collapse
|
5
|
Liu X, Zhang T, Ye J, Tian X, Zhang W, Yang B, Dai M, Xu C, Fu F. Fast Iterative Shrinkage-Thresholding Algorithm with Continuation for Brain Injury Monitoring Imaging Based on Electrical Impedance Tomography. SENSORS (BASEL, SWITZERLAND) 2022; 22:9934. [PMID: 36560297 PMCID: PMC9783778 DOI: 10.3390/s22249934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Electrical impedance tomography (EIT) is low-cost and noninvasive and has the potential for real-time imaging and bedside monitoring of brain injury. However, brain injury monitoring by EIT imaging suffers from image noise (IN) and resolution problems, causing blurred reconstructions. To address these problems, a least absolute shrinkage and selection operator model is built, and a fast iterative shrinkage-thresholding algorithm with continuation (FISTA-C) is proposed. Results of numerical simulations and head phantom experiments indicate that FISTA-C reduces IN by 63.2%, 47.2%, and 29.9% and 54.4%, 44.7%, and 22.7%, respectively, when compared with the damped least-squares algorithm, the split Bergman, and the FISTA algorithms. When the signal-to-noise ratio of the measurements is 80-50 dB, FISTA-C can reduce IN by 83.3%, 72.3%, and 68.7% on average when compared with the three algorithms, respectively. Both simulation and phantom experiments suggest that FISTA-C produces the best image resolution and can identify the two closest targets. Moreover, FISTA-C is more practical for clinical application because it does not require excessive parameter adjustments. This technology can provide better reconstruction performance and significantly outperforms the traditional algorithms in terms of IN and resolution and is expected to offer a general algorithm for brain injury monitoring imaging via EIT.
Collapse
Affiliation(s)
- Xuechao Liu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an 710032, China
- Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an 710032, China
| | - Tao Zhang
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an 710032, China
- Drug and Instrument Supervision and Inspection Station, Xining Joint Logistics Support Center, Lanzhou 730050, China
| | - Jian’an Ye
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an 710032, China
| | - Xiang Tian
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an 710032, China
| | - Weirui Zhang
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an 710032, China
| | - Bin Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an 710032, China
- Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an 710032, China
| | - Meng Dai
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an 710032, China
- Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an 710032, China
| | - Canhua Xu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an 710032, China
- Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an 710032, China
| | - Feng Fu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an 710032, China
- Shaanxi Key Laboratory for Bioelectromagnetic Detection and Intelligent Perception, Xi’an 710032, China
| |
Collapse
|
6
|
Shi Y, Yang Z, Xie F, Ren S, Xu S. The Research Progress of Electrical Impedance Tomography for Lung Monitoring. Front Bioeng Biotechnol 2021; 9:726652. [PMID: 34660553 PMCID: PMC8517404 DOI: 10.3389/fbioe.2021.726652] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/09/2021] [Indexed: 01/16/2023] Open
Abstract
Medical imaging can intuitively show people the internal structure, morphological information, and organ functions of the organism, which is one of the most important inspection methods in clinical medical diagnosis. Currently used medical imaging methods can only be applied to some diagnostic occasions after qualitative lesions have been generated, and the general imaging technology is usually accompanied by radiation and other conditions. However, electrical impedance tomography has the advantages of being noninvasive and non-radiative. EIT (Electrical Impedance Tomography) is also widely used in the early diagnosis and treatment of some diseases because of these advantages. At present, EIT is relatively mature and more and more image reconstruction algorithms are used to improve imaging resolution. Hardware technology is also developing rapidly, and the accuracy of data collection and processing is continuously improving. In terms of clinical application, EIT has also been used for pathological treatment of lungs, the brain, and the bladder. In the future, EIT has a good application prospect in the medical field, which can meet the needs of real-time, long-term monitoring and early diagnosis. Aiming at the application of EIT in the treatment of lung pathology, this article reviews the research progress of EIT, image reconstruction algorithms, hardware system design, and clinical applications used in the treatment of lung diseases. Through the research and introduction of several core components of EIT technology, it clarifies the characteristics of EIT system complexity and its solutions, provides research ideas for subsequent research, and once again verifies the broad development prospects of EIT technology in the future.
Collapse
Affiliation(s)
- Yan Shi
- The School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
| | - ZhiGuo Yang
- The School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
| | - Fei Xie
- Department of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Shuai Ren
- The School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
| | - ShaoFeng Xu
- The School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
| |
Collapse
|
7
|
Cao L, Li H, Fu D, Liu X, Ma H, Xu C, Dong X, Yang B, Fu F. Real-time imaging of infarction deterioration after ischemic stroke in rats using electrical impedance tomography. Physiol Meas 2020; 41:015004. [PMID: 31918414 DOI: 10.1088/1361-6579/ab69ba] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE This study investigated the feasibility of electrical impedance tomography (EIT) for monitoring the deterioration of ischemic lesion after the onset of stroke. APPROACH Fifteen rats were randomly distributed into two groups: rats operated to establish a right middle cerebral artery occlusion (MCAO) (n = 10), and sham-operated rats (n = 5). Then, the operated rats were kept 2 h under anesthesia for EIT monitoring. Subsequently, descriptive statistical analysis was performed on whole-brain resistivity changes, and repeated-measures analysis of variance (ANOVA) on the average resistivity variation index. Additionally, pathological examinations were performed after 6 h of infarction. MAIN RESULTS The results obtained showed that ischemic damage developed in the right corpus striatum of the rats with MCAO, whereas the brains of the sham group showed no anomalies. The descriptive statistical analysis revealed that the whole-brain resistivity changes after 30, 60, 90, and 120 min of infarction were 0.063 ± 0.038, 0.097 ± 0.046, 0.141 ± 0.062, and 0.204 ± 0.092 for the rats with MCAO and 0.029 ± 0.021, 0.002 ± 0.002, 0.017 ± 0.011, and -0.001 ± 0.011 for the sham-operated rats, respectively. The repeated-measures ANOVA revealed that the right MCAO model resulted in a significant impedance increase in the right hemisphere, which continued to increase over time after infarction. SIGNIFICANCE The overall study results indicate that EIT facilitates monitoring of local impedance variations caused by MCAO and may be a solution for real-time monitoring of intracranial pathological changes in ischemic stroke patients.
Collapse
Affiliation(s)
- Lu Cao
- Lu Cao and Haoting Li contributed equally to this work
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Chitturi V, Farrukh N. Narrowband Array Processing Beamforming Technique for Electrical Impedance Tomography. JOURNAL OF ELECTRICAL BIOIMPEDANCE 2019; 10:96-102. [PMID: 33584889 PMCID: PMC7851972 DOI: 10.2478/joeb-2019-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Indexed: 06/12/2023]
Abstract
Electrical impedance tomography (EIT) has a large potential as a two dimensional imaging technique and is gaining attention among researchers across various fields of engineering. Beamforming techniques stem from the array signal processing field and is used for spatial filtering of array data to evaluate the location of objects. In this work the circular electrodes are treated as an array of sensors and beamforming technique is used to localize the object(s) in an electrical field. The conductivity distributions within a test tank is obtained by an EIT system in terms of electrode voltages. These voltages are then interpolated using elliptic partial differential equations. Finally, a narrowband beamformer detects the peak in the output response signal to localize the test object(s). Test results show that the beamforming technique can be used as a secondary method that may provide complementary information about accurate position of the test object(s) using an eight electrode EIT system. This method could possibly open new avenues for spatial EIT data filtering techniques with an understanding that the inverse problem is more likely considered here as a source localization algorithm instead as an image reconstruction algorithm.
Collapse
Affiliation(s)
| | - Nagi Farrukh
- Department of Mechanical Engineering, UniTEN, Selangor, Malaysia
| |
Collapse
|