1
|
Chikhi S, Matton N, Sanna M, Blanchet S. Effects of one session of theta or high alpha neurofeedback on EEG activity and working memory. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:1065-1083. [PMID: 39322825 DOI: 10.3758/s13415-024-01218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/27/2024]
Abstract
Neurofeedback techniques provide participants immediate feedback on neuronal signals, enabling them to modulate their brain activity. This technique holds promise to unveil brain-behavior relationship and offers opportunities for neuroenhancement. Establishing causal relationships between modulated brain activity and behavioral improvements requires rigorous experimental designs, including appropriate control groups and large samples. Our primary objective was to examine whether a single neurofeedback session, designed to enhance working memory through the modulation of theta or high-alpha frequencies, elicits specific changes in electrophysiological and cognitive outcomes. Additionally, we explored predictors of successful neuromodulation. A total of 101 healthy adults were assigned to groups trained to increase frontal theta, parietal high alpha, or random frequencies (active control group). We measured resting-state EEG, working memory performance, and self-reported psychological states before and after one neurofeedback session. Although our analyses revealed improvements in electrophysiological and behavioral outcomes, these gains were not specific to the experimental groups. An increase in the frequency targeted by the training has been observed for the theta and high alpha groups, but training designed to increase randomly selected frequencies appears to induce more generalized neuromodulation compared with targeting a specific frequency. Among all the predictors of neuromodulation examined, resting theta and high alpha amplitudes predicted specifically the increase of those frequencies during the training. These results highlight the challenge of integrating a control group based on enhancing randomly selected frequency bands and suggest potential avenues for optimizing interventions (e.g., by including a control group trained in both up- and down-regulation).
Collapse
Affiliation(s)
- Samy Chikhi
- Laboratoire Mémoire, Cerveau et Cognition, Université Paris Cité, F-92100, Boulogne-Billancourt, France.
- Integrative Neuroscience and Cognition Center, Université Paris Cité, F-75006, Paris, France.
| | - Nadine Matton
- CLLE - Cognition, Langues, Langage, Ergonomie, Université de Toulouse, Toulouse, France
- Fédération ENAC ISAE-SUPAERO ONERA, Université de Toulouse, Toulouse, France
| | - Marie Sanna
- Laboratoire Mémoire, Cerveau et Cognition, Université Paris Cité, F-92100, Boulogne-Billancourt, France
| | - Sophie Blanchet
- Laboratoire Mémoire, Cerveau et Cognition, Université Paris Cité, F-92100, Boulogne-Billancourt, France
| |
Collapse
|
2
|
Kvamme TL, Ros T, Overgaard M. Can neurofeedback provide evidence of direct brain-behavior causality? Neuroimage 2022; 258:119400. [PMID: 35728786 DOI: 10.1016/j.neuroimage.2022.119400] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 01/01/2023] Open
Abstract
Neurofeedback is a procedure that measures brain activity in real-time and presents it as feedback to an individual, thus allowing them to self-regulate brain activity with effects on cognitive processes inferred from behavior. One common argument is that neurofeedback studies can reveal how the measured brain activity causes a particular cognitive process. The causal claim is often made regarding the measured brain activity being manipulated as an independent variable, similar to brain stimulation studies. However, this causal inference is vulnerable to the argument that other upstream brain activities change concurrently and cause changes in the brain activity from which feedback is derived. In this paper, we outline the inference that neurofeedback may causally affect cognition by indirect means. We further argue that researchers should remain open to the idea that the trained brain activity could be part of a "causal network" that collectively affects cognition rather than being necessarily causally primary. This particular inference may provide a better translation of evidence from neurofeedback studies to the rest of neuroscience. We argue that the recent advent of multivariate pattern analysis, when combined with implicit neurofeedback, currently comprises the strongest case for causality. Our perspective is that although the burden of inferring direct causality is difficult, it may be triangulated using a collection of various methods in neuroscience. Finally, we argue that the neurofeedback methodology provides unique advantages compared to other methods for revealing changes in the brain and cognitive processes but that researchers should remain mindful of indirect causal effects.
Collapse
Affiliation(s)
- Timo L Kvamme
- Cognitive Neuroscience Research Unit, CFIN/MINDLab, Aarhus University, Universitetsbyen 3, Aarhus, Denmark; Centre for Alcohol and Drug Research (CRF), Aarhus University, Aarhus, Denmark.
| | - Tomas Ros
- Departments of Neuroscience and Psychiatry, University of Geneva, Campus Biotech, Geneva, Switzerland
| | - Morten Overgaard
- Cognitive Neuroscience Research Unit, CFIN/MINDLab, Aarhus University, Universitetsbyen 3, Aarhus, Denmark
| |
Collapse
|
3
|
Schaworonkow N, Nikulin VV. Is sensor space analysis good enough? Spatial patterns as a tool for assessing spatial mixing of EEG/MEG rhythms. Neuroimage 2022; 253:119093. [PMID: 35288283 DOI: 10.1016/j.neuroimage.2022.119093] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 12/25/2022] Open
Abstract
Analyzing non-invasive recordings of electroencephalography (EEG) and magnetoencephalography (MEG) directly in sensor space, using the signal from individual sensors, is a convenient and standard way of working with this type of data. However, volume conduction introduces considerable challenges for sensor space analysis. While the general idea of signal mixing due to volume conduction in EEG/MEG is recognized, the implications have not yet been clearly exemplified. Here, we illustrate how different types of activity overlap on the level of individual sensors. We show spatial mixing in the context of alpha rhythms, which are known to have generators in different areas of the brain. Using simulations with a realistic 3D head model and lead field and data analysis of a large resting-state EEG dataset, we show that electrode signals can be differentially affected by spatial mixing by computing a sensor complexity measure. While prominent occipital alpha rhythms result in less heterogeneous spatial mixing on posterior electrodes, central electrodes show a diversity of rhythms present. This makes the individual contributions, such as the sensorimotor mu-rhythm and temporal alpha rhythms, hard to disentangle from the dominant occipital alpha. Additionally, we show how strong occipital rhythms can contribute the majority of activity to frontal channels, potentially compromising analyses that are solely conducted in sensor space. We also outline specific consequences of signal mixing for frequently used assessment of power, power ratios and connectivity profiles in basic research and for neurofeedback application. With this work, we hope to illustrate the effects of volume conduction in a concrete way, such that the provided practical illustrations may be of use to EEG researchers to in order to evaluate whether sensor space is an appropriate choice for their topic of investigation.
Collapse
Affiliation(s)
- Natalie Schaworonkow
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main 60528, Germany.
| | - Vadim V Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| |
Collapse
|
4
|
徐 浩, 龚 安, 丁 鹏, 罗 建, 陈 超, 伏 云. [Key technologies for intelligent brain-computer interaction based on magnetoencephalography]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2022; 39:198-206. [PMID: 35231982 PMCID: PMC9927744 DOI: 10.7507/1001-5515.202108069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Brain-computer interaction (BCI) is a transformative human-computer interaction, which aims to bypass the peripheral nerve and muscle system and directly convert the perception, imagery or thinking activities of cranial nerves into actions for further improving the quality of human life. Magnetoencephalogram (MEG) measures the magnetic field generated by the electrical activity of neurons. It has the unique advantages of non-contact measurement, high temporal and spatial resolution, and convenient preparation. It is a new BCI driving signal. MEG-BCI research has important brain science significance and potential application value. So far, few documents have elaborated the key technical issues involved in MEG-BCI. Therefore, this paper focuses on the key technologies of MEG-BCI, and details the signal acquisition technology involved in the practical MEG-BCI system, the design of the MEG-BCI experimental paradigm, the MEG signal analysis and decoding key technology, MEG-BCI neurofeedback technology and its intelligent method. Finally, this paper also discusses the existing problems and future development trends of MEG-BCI. It is hoped that this paper will provide more useful ideas for MEG-BCI innovation research.
Collapse
Affiliation(s)
- 浩天 徐
- 昆明理工大学 信息工程与自动化学院(昆明 650500)Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, P. R. China
- 昆明理工大学 脑认知与脑机智能融合创新团队(昆明 650500)Brain Cognition and Brain-computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - 安民 龚
- 昆明理工大学 信息工程与自动化学院(昆明 650500)Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - 鹏 丁
- 昆明理工大学 信息工程与自动化学院(昆明 650500)Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, P. R. China
- 昆明理工大学 脑认知与脑机智能融合创新团队(昆明 650500)Brain Cognition and Brain-computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - 建功 罗
- 昆明理工大学 信息工程与自动化学院(昆明 650500)Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, P. R. China
- 昆明理工大学 脑认知与脑机智能融合创新团队(昆明 650500)Brain Cognition and Brain-computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - 超 陈
- 昆明理工大学 信息工程与自动化学院(昆明 650500)Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - 云发 伏
- 昆明理工大学 信息工程与自动化学院(昆明 650500)Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, P. R. China
- 昆明理工大学 脑认知与脑机智能融合创新团队(昆明 650500)Brain Cognition and Brain-computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, P. R. China
| |
Collapse
|
5
|
Kvamme TL, Sarmanlu M, Bailey C, Overgaard M. Neurofeedback Modulation of the Sound-induced Flash Illusion Using Parietal Cortex Alpha Oscillations Reveals Dependency on Prior Multisensory Congruency. Neuroscience 2021; 482:1-17. [PMID: 34838934 DOI: 10.1016/j.neuroscience.2021.11.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 01/27/2023]
Abstract
Spontaneous neural oscillations are key predictors of perceptual decisions to bind multisensory signals into a unified percept. Research links decreased alpha power in the posterior cortices to attention and audiovisual binding in the sound-induced flash illusion (SIFI) paradigm. This suggests that controlling alpha oscillations would be a way of controlling audiovisual binding. In the present feasibility study we used MEG-neurofeedback to train one group of subjects to increase left/right and another to increase right/left alpha power ratios in the parietal cortex. We tested for changes in audiovisual binding in a SIFI paradigm where flashes appeared in both hemifields. Results showed that the neurofeedback induced a significant asymmetry in alpha power for the left/right group, not seen for the right/left group. Corresponding asymmetry changes in audiovisual binding in illusion trials (with 2, 3, and 4 beeps paired with 1 flash) were not apparent. Exploratory analyses showed that neurofeedback training effects were present for illusion trials with the lowest numeric disparity (i.e., 2 beeps and 1 flash trials) only if the previous trial had high congruency (2 beeps and 2 flashes). Our data suggest that the relation between parietal alpha power (an index of attention) and its effect on audiovisual binding is dependent on the learned causal structure in the previous stimulus. The present results suggests that low alpha power biases observers towards audiovisual binding when they have learned that audiovisual signals originate from a common origin, consistent with a Bayesian causal inference account of multisensory perception.
Collapse
Affiliation(s)
- Timo L Kvamme
- Cognitive Neuroscience Research Unit, CFIN/MINDLab, Aarhus University, Aarhus, Denmark.
| | - Mesud Sarmanlu
- Cognitive Neuroscience Research Unit, CFIN/MINDLab, Aarhus University, Aarhus, Denmark
| | - Christopher Bailey
- Cognitive Neuroscience Research Unit, CFIN/MINDLab, Aarhus University, Aarhus, Denmark
| | - Morten Overgaard
- Cognitive Neuroscience Research Unit, CFIN/MINDLab, Aarhus University, Aarhus, Denmark
| |
Collapse
|