1
|
Di Pierro F, Sagheddu V, Galletti S, Casaroli A, Labrini E, Soldi S, Cazzaniga M, Bertuccioli A, Matera M, Cavecchia I, Palazzi CM, Tanda ML, Zerbinati N. Selection, Comparative Genomics, and Potential Probiotic Features of Escherichia coli 5C, a pks-Negative Strain Isolated from Healthy Infant Donor Feces. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10522-5. [PMID: 40238037 DOI: 10.1007/s12602-025-10522-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 04/18/2025]
Abstract
Among the emerging issues in probiotic safety, the possible presence of pks, a gene cluster synthetizing a genotoxin known as colibactin, is one of the most alarming. Indeed, indigenous E. coli strain pks-positive are found in 60% of patients with colorectal cancer, and the most widely used E. coli-based probiotic, known as E. coli Nissle 1917 (DSM 6601), is pks-positive. Starting from 25 potential candidates selected by screening 25 infant stool samples, we have selected an E. coli strain (named 5C, deposited as LMG S-33222) belonging to the phylotype A and having the serovar O173:H1. Having been previously completely sequenced by our group, we have further characterized this strain, demonstrating that it is (i) devoid of the most known potential pathogenic-related genes, (ii) devoid of possible plasmids, (iii) antibiotic-sensitive according to the EFSA panel, (iv) resistant in gastric and enteric juice, (v) significantly producing acetate, (vi) poorly producing histamine, (vii) endowed with a significant in vitro antipathogenic profile, (viii) promoting a significant in vitro immunological response based on IL-10 and IL-12, and (ix) devoid of the pks genes. A comparative genomics versus E. coli Nissle 1917 is also provided. Considering that the other two most commonly used E. coli-based probiotics (E. coli DSM 17252 and E. coli A0 34/86) are respectively pks-positive and alpha-hemolysin-(hly) and cytotoxic necrotizing factor-1-(cnf1) positive, this novel strain (E. coli 5C) is likely the probiotic E. coli strain with the best safety profile available to date for human use.
Collapse
Affiliation(s)
- Francesco Di Pierro
- Microbiota International Clinical Society, 10123, Turin, Italy
- Scientific & Research Department, Velleja Research, 20125, Milan, Italy
- Department of Medicine and Technological Innovation, University of Insubria, 21100, Varese, Italy
| | - Valeria Sagheddu
- AAT-Advanced Analytical Technologies, Fiorenzuola d'Arda, 29017, Piacenza, Italy
| | - Serena Galletti
- AAT-Advanced Analytical Technologies, Fiorenzuola d'Arda, 29017, Piacenza, Italy
| | - Alice Casaroli
- AAT-Advanced Analytical Technologies, Fiorenzuola d'Arda, 29017, Piacenza, Italy
| | - Edoardo Labrini
- AAT-Advanced Analytical Technologies, Fiorenzuola d'Arda, 29017, Piacenza, Italy
| | - Sara Soldi
- AAT-Advanced Analytical Technologies, Fiorenzuola d'Arda, 29017, Piacenza, Italy
| | | | - Alexander Bertuccioli
- Microbiota International Clinical Society, 10123, Turin, Italy
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122, Urbino, Italy
| | - Mariarosaria Matera
- Microbiota International Clinical Society, 10123, Turin, Italy
- Department of Pediatric Emergencies, Misericordia Hospital, 58100, Grosseto, Italy
| | - Ilaria Cavecchia
- Microbiota International Clinical Society, 10123, Turin, Italy
- Microbiomic Department, Koelliker Hospital, 10134, Turin, Italy
| | | | - Maria Laura Tanda
- Endocrine Unit, Department of Medicine and Surgery, University of Insubria, 21100, Varese, Italy
| | - Nicola Zerbinati
- Department of Medicine and Technological Innovation, University of Insubria, 21100, Varese, Italy
| |
Collapse
|
2
|
Esposito F, Sellera FP, Cardoso B, Brandt-Almeida D, Vargas-Otalora S, Cifuentes S, Cortez M, Lincopan N. Ciprofloxacin-induced mucoviscosity in ESBL-positive Escherichia coli carrying the Klebsiella pneumoniae K23 capsular structure hinders phagocytosis. Microb Pathog 2025; 199:107207. [PMID: 39645094 DOI: 10.1016/j.micpath.2024.107207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Escherichia coli is a Gram-negative ubiquitous bacteria occurring in a diversity of environments including water, soil, and the gastrointestinal tract of humans and warm-blooded animals, being classified into commensal and pathogenic strains. While empirical antibiotic therapy with fluoroquinolones, such a ciprofloxacin and norfloxacin, has been a common practice, resistance to broad-spectrum cephalosporins, mediated by extended-spectrum β-lactamases (ESBLs), has been alerted as a critical priority by the World Health Organization. Additionally, the convergence of virulence and resistance has been observed in some E. coli strains, which enable these bacteria to infect humans and animals, and can jeopardize their health. Mucoviscosity phenotype has been frequently described in highly-virulent Klebsiella pneumoniae strains, whereas this phenotypic behavior remains rarely reported in E. coli. Herein, we report microbiological, genomic, and anti-phagocytic activity of ciprofloxacin-induced mucoviscosity in a CTX-M-15 (ESBL)-positive E. coli. Noteworthy, genomic analysis revealed virulence genes responsible for the synthesis of the K23 capsule type, previously described in hypermucoviscous K. pneumoniae lineages, whereas phagocytosis assays confirmed the ability of K23 E. coli strain to evade the immune system under mucoviscosity induction by ciprofloxacin treatment.
Collapse
Affiliation(s)
- Fernanda Esposito
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil.
| | - Fábio P Sellera
- One Health Brazilian Resistance Project (OneBR), Brazil; Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
| | - Brenda Cardoso
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Deborah Brandt-Almeida
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sandra Vargas-Otalora
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sebastián Cifuentes
- Centro de Referencia y Diagnóstico Médico (CRD), Osorno, Chile, Escuela de Tecnología Médica, Sede Osorno, Tecnología Médica, Salud, Universidad Santo Tomás, Chile
| | - Mauro Cortez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil; Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Yibar A, Duman M, Ay H, Ajmi N, Tasci G, Gurler F, Guler S, Morick D, Saticioglu IB. Genomic Insight into Vibrio Isolates from Fresh Raw Mussels and Ready-to-Eat Stuffed Mussels. Pathogens 2025; 14:52. [PMID: 39861013 PMCID: PMC11768812 DOI: 10.3390/pathogens14010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/28/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Consuming raw or undercooked mussels can lead to gastroenteritis and septicemia due to Vibrio contamination. This study analyzed the prevalence, density, species diversity, and molecular traits of Vibrio spp. in 48 fresh raw wild mussels (FRMs) and 48 ready-to-eat stuffed mussels (RTE-SMs) through genome analysis, assessing health risks. The results showed Vibrio prevalence rates of 12.5% in FRMs and 4.2% in RTE-SMs, with V. alginolyticus as the most common species (46.7%). It was determined that the seasonal distribution of Vibrio spp. prevalence in the samples was higher in the summer months. The genome sizes of the Vibrio spp. ranged from approximately 3.9 to 6.1 Mb, with the GC contents varying between 41.9% and 50.4%. A total of 22 virulence factor (VF) classes and up to six antimicrobial resistance (AMR) genes were detected in different Vibrio species. The presence of nine different biosynthetic gene clusters (BGCs), 27 prophage regions, and eight CRISPR/Cas systems in 15 Vibrio strains provides information about their potential pathogenicity, survival strategies, and adaptation to different habitats. Overall, this study provides a comprehensive understanding of the genomic diversity of Vibrio spp. isolated from FRM and RTE-SM samples, shedding light on the prevalence, pathogenicity, and toxicity mechanisms of Vibrio-induced gastroenteritis.
Collapse
Affiliation(s)
- Artun Yibar
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Türkiye;
| | - Muhammed Duman
- Department of Aquatic Animal Disease, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Türkiye; (M.D.); (N.A.); (G.T.)
| | - Hilal Ay
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Yildiz Technical University, Istanbul 34220, Türkiye;
| | - Nihed Ajmi
- Department of Aquatic Animal Disease, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Türkiye; (M.D.); (N.A.); (G.T.)
| | - Gorkem Tasci
- Department of Aquatic Animal Disease, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Türkiye; (M.D.); (N.A.); (G.T.)
| | - Fatma Gurler
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Türkiye;
| | - Sabire Guler
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Türkiye;
| | - Danny Morick
- Department of Blue Biotechnologies and Sustainable Mariculture, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel;
| | - Izzet Burcin Saticioglu
- Department of Aquatic Animal Disease, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Türkiye; (M.D.); (N.A.); (G.T.)
| |
Collapse
|
4
|
Sváb D, Somogyi Z, Tóth I, Marina J, Jose SV, Jeeba J, Safna A, Juhász J, Nagy P, Abdelnassir AMT, Ismail AA, Makrai L. Molecular Markers and Antimicrobial Resistance Patterns of Extraintestinal Pathogenic Escherichia coli from Camel Calves Including Colistin-Resistant and Hypermucoviscuous Strains. Trop Med Infect Dis 2024; 9:123. [PMID: 38922035 PMCID: PMC11209031 DOI: 10.3390/tropicalmed9060123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/06/2024] [Accepted: 04/24/2024] [Indexed: 06/27/2024] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) strains are capable of causing various systemic infections in both humans and animals. In this study, we isolated and characterized 30 E. coli strains from the parenchymatic organs and brains of young (<3 months of age) camel calves which died in septicemia. Six of the strains showed hypermucoviscous phenotype. Based on minimum inhibitory concentration (MIC) values, seven of the strains were potentially multidrug resistant, with two additional showing colistin resistance. Four strains showed mixed pathotypes, as they carried characteristic virulence genes for intestinal pathotypes of E. coli: three strains carried cnf1, encoding cytotoxic necrotizing factor type 1, the key virulence gene of necrotoxigenic E. coli (NTEC), and one carried eae encoding intimin, the key virulence gene of enteropathogenic E. coli (EPEC). An investigation of the integration sites of pathogenicity islands (PAIs) and the presence of prophage-related sequences showed that the strains carry diverse arrays of mobile genetic elements, which may contribute to their antimicrobial resistance and virulence patterns. Our work is the first to describe ExPEC strains from camels, and points to their veterinary pathogenic as well as zoonotic potential in this important domestic animal.
Collapse
Affiliation(s)
- Domonkos Sváb
- HUN-REN Veterinary Medical Research Institute, H-1143 Budapest, Hungary;
| | - Zoltán Somogyi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, H-1078 Budapest, Hungary;
| | - István Tóth
- HUN-REN Veterinary Medical Research Institute, H-1143 Budapest, Hungary;
| | - Joseph Marina
- Central Veterinary Research Laboratory, Dubai P.O. Box 597, United Arab Emirates; (J.M.); (S.V.J.); (J.J.); (A.S.)
| | - Shantymol V. Jose
- Central Veterinary Research Laboratory, Dubai P.O. Box 597, United Arab Emirates; (J.M.); (S.V.J.); (J.J.); (A.S.)
| | - John Jeeba
- Central Veterinary Research Laboratory, Dubai P.O. Box 597, United Arab Emirates; (J.M.); (S.V.J.); (J.J.); (A.S.)
| | - Anas Safna
- Central Veterinary Research Laboratory, Dubai P.O. Box 597, United Arab Emirates; (J.M.); (S.V.J.); (J.J.); (A.S.)
| | - Judit Juhász
- Farm and Veterinary Department, Emirates Industry for Camel Milk and Products, Dubai P.O. Box 294236, United Arab Emirates; (J.J.); (P.N.); (A.M.T.A.); (A.A.I.)
| | - Péter Nagy
- Farm and Veterinary Department, Emirates Industry for Camel Milk and Products, Dubai P.O. Box 294236, United Arab Emirates; (J.J.); (P.N.); (A.M.T.A.); (A.A.I.)
| | - Ahmed Mohamed Taha Abdelnassir
- Farm and Veterinary Department, Emirates Industry for Camel Milk and Products, Dubai P.O. Box 294236, United Arab Emirates; (J.J.); (P.N.); (A.M.T.A.); (A.A.I.)
| | - Ahmed Abdelrhman Ismail
- Farm and Veterinary Department, Emirates Industry for Camel Milk and Products, Dubai P.O. Box 294236, United Arab Emirates; (J.J.); (P.N.); (A.M.T.A.); (A.A.I.)
| | | |
Collapse
|
5
|
Wight J, Byrne AS, Tahlan K, Lang AS. Anthropogenic contamination sources drive differences in antimicrobial-resistant Escherichia coli in three urban lakes. Appl Environ Microbiol 2024; 90:e0180923. [PMID: 38349150 PMCID: PMC10952509 DOI: 10.1128/aem.01809-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/12/2024] [Indexed: 03/21/2024] Open
Abstract
Antimicrobial resistance (AMR) is an ever-present threat to the treatment of infectious diseases. However, the potential relevance of this phenomenon in environmental reservoirs still raises many questions. Detection of antimicrobial-resistant bacteria in the environment is a critical aspect for understanding the prevalence of resistance outside of clinical settings, as detection in the environment indicates that resistance is likely already widespread. We isolated antimicrobial-resistant Escherichia coli from three urban waterbodies over a 15-month time series, determined their antimicrobial susceptibilities, investigated their population structure, and identified genetic determinants of resistance. We found that E. coli populations at each site were composed of different dominant phylotypes and showed distinct patterns of antimicrobial and multidrug resistance, despite close geographic proximity. Many strains that were genome-sequenced belonged to sequence types of international concern, particularly the ST131 clonal complex. We found widespread resistance to clinically important antimicrobials such as amoxicillin, cefotaxime, and ciprofloxacin, but found that all strains were susceptible to amikacin and the last-line antimicrobials meropenem and fosfomycin. Resistance was most often due to acquirable antimicrobial resistance genes, while chromosomal mutations in gyrA, parC, and parE conferred resistance to quinolones. Whole-genome analysis of a subset of strains further revealed the diversity of the population of E. coli present, with a wide array of AMR and virulence genes identified, many of which were present on the chromosome, including blaCTX-M. Finally, we determined that environmental persistence, transmission between sites, most likely mediated by wild birds, and transfer of mobile genetic elements likely contributed significantly to the patterns observed.IMPORTANCEA One Health perspective is crucial to understand the extent of antimicrobial resistance (AMR) globally, and investigation of AMR in the environment has been increasing in recent years. However, most studies have focused on waterways that are directly polluted by sewage, industrial manufacturing, or agricultural activities. Therefore, there remains a lack of knowledge about more natural, less overtly impacted environments. Through phenotypic and genotypic investigation of AMR in Escherichia coli, this study adds to our understanding of the extent and patterns of resistance in these types of environments, including over a time series, and showed that complex biotic and abiotic factors contribute to the patterns observed. Our study further emphasizes the importance of incorporating the surveillance of microbes in freshwater environments in order to better comprehend potential risks for both human and animal health and how the environment may serve as a sentinel for potential future clinical infections.
Collapse
Affiliation(s)
- Jordan Wight
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Alexander S. Byrne
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Andrew S. Lang
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| |
Collapse
|
6
|
Bazalar-Gonzales J, Silvestre-Espejo T, Rodríguez Cueva C, Carhuaricra Huamán D, Ignación León Y, Luna Espinoza L, Rosadio Alcántara R, Maturrano Hernández L. Genomic insights into ESBL-producing Escherichia coli isolated from non-human primates in the Peruvian Amazon. Front Vet Sci 2024; 10:1340428. [PMID: 38292135 PMCID: PMC10825005 DOI: 10.3389/fvets.2023.1340428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
Introduction Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae are on the WHO priority pathogens list because they are associated with high mortality, health-care burden, and antimicrobial resistance (AMR), a serious problem that threatens global public health and should be addressed through the One Health approach. Non-human primates (NHP) have a high risk of acquiring these antibiotic-resistant bacteria due to their close phylogenetic relationship with humans and increased anthropogenic activities in their natural environments. This study aimed to detect and analyze the genomes of ESBL-producing Escherichia coli (ESBL-producing E. coli) in NHP from the Peruvian Amazon. Materials and methods We collected a total of 119 fecal samples from semi-captive Saguinus labiatus, Saguinus mystax, and Saimiri boliviensis, and captive Ateles chamek, Cebus unicolor, Lagothrix lagothricha, and Sapajus apella in the Loreto and Ucayali regions, respectively. Subsequently, we isolated and identified E. coli strains by microbiological methods, detected ESBL-producing E. coli through antimicrobial susceptibility tests following CLSI guidelines, and analyzed their genomes using previously described genomic methods. Results We detected that 7.07% (7/99) of E. coli strains: 5.45% (3/55) from Loreto and 9.09% (4/44) from Ucayali, expressed ESBL phenotype. Genomic analysis revealed the presence of high-risk pandemic clones, such as ST10 and ST117, carrying a broad resistome to relevant antibiotics, including three blaCTX-M variants: blaCTX-M-15, blaCTX-M-55, and blaCTX-M-65. Phylogenomic analysis confirmed the clonal relatedness of high-risk lineages circulating at the human-NHP interface. Additionally, two ESBL-producing E. coli strains were identified as EPEC (eae) and ExPEC according to their virulence profiles, and one more presented a hypermucoviscous phenotype. Discussion We report the detection and genomic analysis of seven ESBL-producing E. coli strains carrying broad resistome and virulence factors in NHP from two regions of the Peruvian Amazon. Some of these strains are closely related to high-risk pandemic lineages previously reported in humans and domestic animals, highlighting the negative impact of anthropogenic activities on Amazonian wildlife. To our knowledge, this is the first documentation of ESBL-producing E. coli in NHP from the Amazon, underscoring the importance of adopting the One Health approach to AMR surveillance and minimizing the potential transmission risk of antibiotic-resistant bacteria at the human-NHP interface.
Collapse
Affiliation(s)
- Jhonathan Bazalar-Gonzales
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
- Asociación Equipo Primatológico del Perú (EPP), Iquitos, Peru
| | - Thalía Silvestre-Espejo
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Carmen Rodríguez Cueva
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Dennis Carhuaricra Huamán
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
- Programa de Pós-Graduação Interunidades em Bioinformática, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Yennifer Ignación León
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Luis Luna Espinoza
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Raúl Rosadio Alcántara
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Lenin Maturrano Hernández
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| |
Collapse
|
7
|
Zhao J, Zheng B, Xu H, Li J, Sun T, Jiang X, Liu W. Emergence of a NDM-1-producing ST25 Klebsiella pneumoniae strain causing neonatal sepsis in China. Front Microbiol 2022; 13:980191. [PMID: 36338063 PMCID: PMC9630351 DOI: 10.3389/fmicb.2022.980191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) seriously threaten the efficacy of modern medicine with a high associated mortality rate and unprecedented transmission rate. In this study, we isolated a clinical K. pneumoniae strain DY1928 harboring blaNDM-1 from a neonate with blood infection. Antimicrobial susceptibility testing indicated that DY1928 was resistant to various antimicrobial agents, including meropenem, imipenem, ceftriaxone, cefotaxime, ceftazidime, cefepime, piperacillin-tazobactam, and amoxicillin-clavulanate. S1 nuclease-pulsed field gel electrophoresis (S1-PFGE), southern blot and conjugation experiment revealed that the blaNDM-1 gene was located on a conjugative plasmid of IncA/C2 type with a 147.9 kb length. Whole-genome sequencing showed that there was a conservative structure sequence (blaNDM-1-ble-trpF-dsbD) located downstream of the blaNDM-1 gene. Multilocus sequence typing (MLST) classified DY1928 as ST25, which was a hypervirulent K. pneumoniae type. Phylogenetic analysis of genomic data from all ST25 K. pneumoniae strains available in the NCBI database suggested that all blaNDM-1 positive strains were isolated in China and had clinical origins. A mouse bloodstream infection model was constructed to test the virulence of DY1928, and 11 K. pneumoniae strains homologous to DY1928 were isolated from the feces of infected mice. Moreover, we found that DY1928 had a tendency to flow from the blood into the intestine in mice and caused multiple organ damage. To our knowledge, this is the first study to report an infection caused by blaNDM-1-positive ST25 K. pneumoniae in the neonatal unit. Our findings indicated that stricter surveillance and more effective actions were needed to reduce the risk of disseminating such K. pneumoniae strains in clinical settings, especially in neonatal wards.
Collapse
Affiliation(s)
- Junhui Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Beiwen Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Junfeng Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tengfei Sun
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiawei Jiang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Xiawei Jiang,
| | - Wenhong Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Wenhong Liu,
| |
Collapse
|