1
|
Christopoulos P, Herster F, Hoffknecht P, Falk M, Tiemann M, Kopp HG, Althoff A, Stammberger A, Laack E. Activity of afatinib in patients with NSCLC harboring novel uncommon EGFR mutations with or without co-mutations: a case report. Front Oncol 2024; 14:1347742. [PMID: 38769948 PMCID: PMC11103604 DOI: 10.3389/fonc.2024.1347742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) represent first-line standard of care in unresectable EGFR mutation-positive (EGFRm+) non-small cell lung cancer (NSCLC). However, 10-20% of patients with EGFRm+ NSCLC have uncommon EGFR variants, defined as mutations other than L858R substitutions or exon 19 deletions. NSCLC harboring uncommon EGFR mutations may demonstrate lower sensitivity to targeted agents than NSCLC with L858R or exon 19 deletion mutations. Prospective clinical trial data in patients with NSCLC uncommon EGFR mutations are lacking. Afatinib is a second-generation TKI and the only Food and Drug Administration-approved drug for some of the more prevalent uncommon EGFR mutations. We present a series of seven case reports describing clinical outcomes in afatinib-treated patients with NSCLC harboring a diverse range of extremely rare mutations with or without co-mutations affecting other genes. EGFR alterations included compound mutations, P-loop αC-helix compressing mutations, and novel substitution mutations. We also present a case with NSCLC harboring a novel EGFR::CCDC6 gene fusion. Overall, the patients responded well to afatinib, including radiologic partial responses in six patients during treatment. Responses were durable for three patients. The cases presented are in line with a growing body of clinical and preclinical evidence that indicating that NSCLC with various uncommon EGFR mutations, with or without co-mutations, may be sensitive to afatinib.
Collapse
Affiliation(s)
- Petros Christopoulos
- Department of Oncology, Thoraxklinik and National Center for Tumor Diseases at Heidelberg University Hospital, Heidelberg, Germany
- Thoracic Oncology, Translational Lung Research Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Franziska Herster
- Robert Bosch Center for Tumor Diseases (RBCT), Robert Bosch Hospital, Stuttgart, Germany
| | - Petra Hoffknecht
- Lungenzentrum Osnabrueck, Franziskus-Hospital Harderberg, Georgsmarienhütte, Germany
| | - Markus Falk
- Lung Cancer Network NOWEL.org, Oldenburg, Germany
- Molecular Pathology, Institute of Hematopathology Hamburg, Hamburg, Germany
| | - Markus Tiemann
- Lung Cancer Network NOWEL.org, Oldenburg, Germany
- Molecular Pathology, Institute of Hematopathology Hamburg, Hamburg, Germany
| | - Hans-Georg Kopp
- Robert Bosch Center for Tumor Diseases (RBCT), Robert Bosch Hospital, Stuttgart, Germany
| | - Andre Althoff
- Department of Pulmonology, Thoraxzentrum Offenbach, Sana Klinikum Offenbach, Offenbach, Germany
| | - Anja Stammberger
- Oncology, Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany
| | | |
Collapse
|
2
|
Dobbelaere J, Su TY, Erdi B, Schleiffer A, Dammermann A. A phylogenetic profiling approach identifies novel ciliogenesis genes in Drosophila and C. elegans. EMBO J 2023; 42:e113616. [PMID: 37317646 PMCID: PMC10425847 DOI: 10.15252/embj.2023113616] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023] Open
Abstract
Cilia are cellular projections that perform sensory and motile functions in eukaryotic cells. A defining feature of cilia is that they are evolutionarily ancient, yet not universally conserved. In this study, we have used the resulting presence and absence pattern in the genomes of diverse eukaryotes to identify a set of 386 human genes associated with cilium assembly or motility. Comprehensive tissue-specific RNAi in Drosophila and mutant analysis in C. elegans revealed signature ciliary defects for 70-80% of novel genes, a percentage similar to that for known genes within the cluster. Further characterization identified different phenotypic classes, including a set of genes related to the cartwheel component Bld10/CEP135 and two highly conserved regulators of cilium biogenesis. We propose this dataset defines the core set of genes required for cilium assembly and motility across eukaryotes and presents a valuable resource for future studies of cilium biology and associated disorders.
Collapse
Affiliation(s)
- Jeroen Dobbelaere
- Max Perutz LabsUniversity of Vienna, Vienna Biocenter (VBC)ViennaAustria
| | - Tiffany Y Su
- Max Perutz LabsUniversity of Vienna, Vienna Biocenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Balazs Erdi
- Max Perutz LabsUniversity of Vienna, Vienna Biocenter (VBC)ViennaAustria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology, Vienna Biocenter (VBC)ViennaAustria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC)ViennaAustria
| | | |
Collapse
|
3
|
López-Palacios TP, Andersen JL. Kinase regulation by liquid-liquid phase separation. Trends Cell Biol 2023; 33:649-666. [PMID: 36528418 PMCID: PMC10267292 DOI: 10.1016/j.tcb.2022.11.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
Liquid-liquid phase separation (LLPS) is emerging as a mechanism of spatiotemporal regulation that could answer long-standing questions about how order is achieved in biochemical signaling. In this review we discuss how LLPS orchestrates kinase signaling, either by creating condensate structures that are sensed by kinases or by direct LLPS of kinases, cofactors, and substrates - thereby acting as a mechanism to compartmentalize kinase-substrate relationships, and in some cases also sequestering the kinase away from inhibitory factors. We also examine the possibility that selective pressure promotes genomic rearrangements that fuse pro-growth kinases to LLPS-prone protein sequences, which in turn drives aberrant kinase activation through LLPS.
Collapse
Affiliation(s)
- Tania P López-Palacios
- Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Joshua L Andersen
- Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
4
|
Zhang S, Pei G, Li B, Li P, Lin Y. Abnormal phase separation of biomacromolecules in human diseases. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1133-1152. [PMID: 37475546 PMCID: PMC10423695 DOI: 10.3724/abbs.2023139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
Membrane-less organelles (MLOs) formed through liquid-liquid phase separation (LLPS) are associated with numerous important biological functions, but the abnormal phase separation will also dysregulate the physiological processes. Emerging evidence points to the importance of LLPS in human health and diseases. Nevertheless, despite recent advancements, our knowledge of the molecular relationship between LLPS and diseases is frequently incomplete. In this review, we outline our current understanding about how aberrant LLPS affects developmental disorders, tandem repeat disorders, cancers and viral infection. We also examine disease mechanisms driven by aberrant condensates, and highlight potential treatment approaches. This study seeks to expand our understanding of LLPS by providing a valuable new paradigm for understanding phase separation and human disorders, as well as to further translate our current knowledge regarding LLPS into therapeutic discoveries.
Collapse
Affiliation(s)
- Songhao Zhang
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- IDG/McGovern Institute for Brain Research at Tsinghua UniversityBeijing100084China
| | - Gaofeng Pei
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- Frontier Research Center for Biological StructureTsinghua UniversityBeijing100084China
| | - Boya Li
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- IDG/McGovern Institute for Brain Research at Tsinghua UniversityBeijing100084China
| | - Pilong Li
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- Frontier Research Center for Biological StructureTsinghua UniversityBeijing100084China
| | - Yi Lin
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- IDG/McGovern Institute for Brain Research at Tsinghua UniversityBeijing100084China
| |
Collapse
|
5
|
Liu Z, Yan W, Liu S, Liu Z, Xu P, Fang W. Regulatory network and targeted interventions for CCDC family in tumor pathogenesis. Cancer Lett 2023; 565:216225. [PMID: 37182638 DOI: 10.1016/j.canlet.2023.216225] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
CCDC (coiled-coil domain-containing) is a coiled helix domain that exists in natural proteins. There are about 180 CCDC family genes, encoding proteins that are involved in intercellular transmembrane signal transduction and genetic signal transcription, among other functions. Alterations in expression, mutation, and DNA promoter methylation of CCDC family genes have been shown to be associated with the pathogenesis of many diseases, including primary ciliary dyskinesia, infertility, and tumors. In recent studies, CCDC family genes have been found to be involved in regulation of growth, invasion, metastasis, chemosensitivity, and other biological behaviors of malignant tumor cells in various cancer types, including nasopharyngeal carcinoma, lung cancer, colorectal cancer, and thyroid cancer. In this review, we summarize the involvement of CCDC family genes in tumor pathogenesis and the relevant upstream and downstream molecular mechanisms. In addition, we summarize the potential of CCDC family genes as tumor therapy targets. The findings discussed here help us to further understand the role and the therapeutic applications of CCDC family genes in tumors.
Collapse
Affiliation(s)
- Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China.
| | - Weiwei Yan
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China
| | - Shaohua Liu
- Department of General Surgery, Pingxiang People's Hospital, Pingxiang, Jiangxi, 337000, China
| | - Zhan Liu
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, 410002, China
| | - Ping Xu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China; Respiratory Department, Peking University Shenzhen Hospital, Shenzhen, 518034, China.
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China.
| |
Collapse
|
6
|
Shabbir A, Kojadinovic A, Shafiq T, Mundi PS. Targeting RET alterations in cancer: Recent progress and future directions. Crit Rev Oncol Hematol 2023; 181:103882. [PMID: 36481304 DOI: 10.1016/j.critrevonc.2022.103882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/06/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Genomic alterations in the receptor tyrosine kinase RET represent actionable driver events in several cancer types. Activation of the kinase domain by point mutations represents a pathognomonic event in medullary thyroid cancer, while RET fusions are critical driver events in a sizable subset of differentiated thyroid cancer and a smaller percentage of lung cancer. Early trials with multi-kinase inhibitors yielded modest improvement in outcomes for RET-driven cancers. In recent years, highly selective RET inhibitors entered clinical trials and demonstrated remarkable response rates, resulting in accelerated approval for selpercatinib and pralsetinib in 2020. An important mechanism of eventual resistance to RET inhibitors is the emergence of secondary drug resistance mutations, particularly in the solvent front, and several promising compounds are in development to overcome these mutations. Mechanisms of acquired resistance that bypass RET signaling altogether have also been discovered, suggesting that combinatorial drug strategies may be necessary for some patients.
Collapse
Affiliation(s)
| | - Arsenije Kojadinovic
- Department of Medicine, Icahn School of Medicine at Mount Sinai, USA; Department of Medicine, James J. Peters VA Medical Center, USA
| | - Tabinda Shafiq
- Department of Endocrinology, Baptist Health Medical Center, North Little Rock, USA
| | - Prabhjot S Mundi
- Department of Medicine, James J. Peters VA Medical Center, USA; Department of Hematology-Oncology, Columbia University Medical Center, USA.
| |
Collapse
|
7
|
Liang Z, He Y, Hu X. Cardio-Oncology: Mechanisms, Drug Combinations, and Reverse Cardio-Oncology. Int J Mol Sci 2022; 23:10617. [PMID: 36142538 PMCID: PMC9501315 DOI: 10.3390/ijms231810617] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Chemotherapy, radiotherapy, targeted therapy, and immunotherapy have brought hope to cancer patients. With the prolongation of survival of cancer patients and increased clinical experience, cancer-therapy-induced cardiovascular toxicity has attracted attention. The adverse effects of cancer therapy that can lead to life-threatening or induce long-term morbidity require rational approaches to prevention and treatment, which requires deeper understanding of the molecular biology underpinning the disease. In addition to the drugs used widely for cardio-protection, traditional Chinese medicine (TCM) formulations are also efficacious and can be expected to achieve "personalized treatment" from multiple perspectives. Moreover, the increased prevalence of cancer in patients with cardiovascular disease has spurred the development of "reverse cardio-oncology", which underscores the urgency of collaboration between cardiologists and oncologists. This review summarizes the mechanisms by which cancer therapy induces cardiovascular toxicity, the combination of antineoplastic and cardioprotective drugs, and recent advances in reverse cardio-oncology.
Collapse
Affiliation(s)
| | | | - Xin Hu
- China–Japan Union Hospital of Jilin University, Jilin University, Changchun 130033, China
| |
Collapse
|
8
|
Morra F, Merolla F, Zito Marino F, Catalano R, Franco R, Chieffi P, Celetti A. The tumour suppressor CCDC6 is involved in ROS tolerance and neoplastic transformation by evading ferroptosis. Heliyon 2021; 7:e08399. [PMID: 34841108 PMCID: PMC8605351 DOI: 10.1016/j.heliyon.2021.e08399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/11/2021] [Accepted: 11/11/2021] [Indexed: 10/26/2022] Open
Abstract
Coiled-coil domain containing 6 (CCDC6) is a tumour suppressor gene involved in apoptosis and DNA damage response. CCDC6 is known to be functionally impaired upon gene fusions, somatic mutations, and altered protein turnover in several tumours. Testicular germ cell tumours are among the most common malignancies in young males. Despite the high cure rate, achieved through chemotherapy and/or surgery, drug resistance can still occur. In a human cellular model of testis Embryonal Carcinoma, the deficiency of CCDC6 was associated with defects in DNA repair via homologous recombination and sensitivity to PARP1/2 inhibitors. Same data were obtained in a panel of murine testicular cell lines, including Sertoli, Spermatogonia and Spermatocytes. In these cells, upon oxidative damage exposure, the absence of CCDC6 conferred tolerance to reactive oxygen species affecting regulated cell death pathways by apoptosis and ferroptosis. At molecular level, the loss of CCDC6 was associated with an enhancement of the xCT/SLC7A11 cystine antiporter expression which, by promoting the accumulation of ROS, interfered with the activation of ferroptosis pathway. In conclusion, our data suggest that the CCDC6 downregulation could aid the testis germ cells to be part of a pro-survival pathway that helps to evade the toxic effects of endogenous oxidants contributing to testicular neoplastic growth. Novel therapeutic options will be discussed.
Collapse
Affiliation(s)
- Francesco Morra
- Institute for the Experimental Endocrinology and Oncology, Research National Council, CNR, Naples, Italy
| | - Francesco Merolla
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | | | - Rosaria Catalano
- Institute for the Experimental Endocrinology and Oncology, Research National Council, CNR, Naples, Italy
| | - Renato Franco
- Pathology Unit, University of Campania "L. Vanvitelli", Naples, Italy
| | - Paolo Chieffi
- Department of Psychology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Angela Celetti
- Institute for the Experimental Endocrinology and Oncology, Research National Council, CNR, Naples, Italy
| |
Collapse
|
9
|
Liu J, Tokheim C, Lee JD, Gan W, North BJ, Liu XS, Pandolfi PP, Wei W. Genetic fusions favor tumorigenesis through degron loss in oncogenes. Nat Commun 2021; 12:6704. [PMID: 34795215 PMCID: PMC8602260 DOI: 10.1038/s41467-021-26871-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Chromosomal rearrangements can generate genetic fusions composed of two distinct gene sequences, many of which have been implicated in tumorigenesis and progression. Our study proposes a model whereby oncogenic gene fusions frequently alter the protein stability of the resulting fusion products, via exchanging protein degradation signal (degron) between gene sequences. Computational analyses of The Cancer Genome Atlas (TCGA) identify 2,406 cases of degron exchange events and reveal an enrichment of oncogene stabilization due to loss of degrons from fusion. Furthermore, we identify and experimentally validate that some recurrent fusions, such as BCR-ABL, CCDC6-RET and PML-RARA fusions, perturb protein stability by exchanging internal degrons. Likewise, we also validate that EGFR or RAF1 fusions can be stabilized by losing a computationally-predicted C-terminal degron. Thus, complementary to enhanced oncogene transcription via promoter swapping, our model of degron loss illustrates another general mechanism for recurrent fusion proteins in driving tumorigenesis.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Collin Tokheim
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Jonathan D Lee
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Wenjian Gan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Brian J North
- Department of Biomedical Sciences, Creighton University, Omaha, NE, 68178, USA
| | - X Shirley Liu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10124, Italy.
- Renown Institute for Cancer, Nevada System of Higher Education, Reno, NV, 89502, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
10
|
Poltronieri P, Celetti A, Palazzo L. Mono(ADP-ribosyl)ation Enzymes and NAD + Metabolism: A Focus on Diseases and Therapeutic Perspectives. Cells 2021; 10:128. [PMID: 33440786 PMCID: PMC7827148 DOI: 10.3390/cells10010128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
Mono(ADP-ribose) transferases and mono(ADP-ribosyl)ating sirtuins use NAD+ to perform the mono(ADP-ribosyl)ation, a simple form of post-translational modification of proteins and, in some cases, of nucleic acids. The availability of NAD+ is a limiting step and an essential requisite for NAD+ consuming enzymes. The synthesis and degradation of NAD+, as well as the transport of its key intermediates among cell compartments, play a vital role in the maintenance of optimal NAD+ levels, which are essential for the regulation of NAD+-utilizing enzymes. In this review, we provide an overview of the current knowledge of NAD+ metabolism, highlighting the functional liaison with mono(ADP-ribosyl)ating enzymes, such as the well-known ARTD10 (also named PARP10), SIRT6, and SIRT7. To this aim, we discuss the link of these enzymes with NAD+ metabolism and chronic diseases, such as cancer, degenerative disorders and aging.
Collapse
Affiliation(s)
- Palmiro Poltronieri
- Institute of Sciences of Food Productions, National Research Council of Italy, via Monteroni 7, 73100 Lecce, Italy
| | - Angela Celetti
- Institute for the Experimental Endocrinology and Oncology, National Research Council of Italy, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Luca Palazzo
- Institute for the Experimental Endocrinology and Oncology, National Research Council of Italy, Via Tommaso de Amicis 95, 80145 Naples, Italy
| |
Collapse
|
11
|
Somaschini A, Di Bella S, Cusi C, Raddrizzani L, Leone A, Carapezza G, Mazza T, Isacchi A, Bosotti R. Mining potentially actionable kinase gene fusions in cancer cell lines with the KuNG FU database. Sci Data 2020; 7:420. [PMID: 33257674 PMCID: PMC7705673 DOI: 10.1038/s41597-020-00761-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/29/2020] [Indexed: 12/02/2022] Open
Abstract
Inhibition of kinase gene fusions (KGFs) has proven successful in cancer treatment and continues to represent an attractive research area, due to kinase druggability and clinical validation. Indeed, literature and public databases report a remarkable number of KGFs as potential drug targets, often identified by in vitro characterization of tumor cell line models and confirmed also in clinical samples. However, KGF molecular and experimental information can sometimes be sparse and partially overlapping, suggesting the need for a specific annotation database of KGFs, conveniently condensing all the molecular details that can support targeted drug development pipelines and diagnostic approaches. Here, we describe KuNG FU (KiNase Gene FUsion), a manually curated database collecting detailed annotations on KGFs that were identified and experimentally validated in human cancer cell lines from multiple sources, exclusively focusing on in-frame KGF events retaining an intact kinase domain, representing potentially active driver kinase targets. To our knowledge, KuNG FU represents to date the largest freely accessible homogeneous and curated database of kinase gene fusions in cell line models.
Collapse
Affiliation(s)
- Alessio Somaschini
- NMS Oncology, Nerviano Medical Sciences, NMS Group, 20014, Nerviano, Milan, Italy
| | - Sebastiano Di Bella
- NMS Oncology, Nerviano Medical Sciences, NMS Group, 20014, Nerviano, Milan, Italy
| | - Carlo Cusi
- NMS Oncology, Nerviano Medical Sciences, NMS Group, 20014, Nerviano, Milan, Italy
| | - Laura Raddrizzani
- NMS Oncology, Nerviano Medical Sciences, NMS Group, 20014, Nerviano, Milan, Italy
| | - Antonella Leone
- NMS Oncology, Nerviano Medical Sciences, NMS Group, 20014, Nerviano, Milan, Italy
| | - Giovanni Carapezza
- NMS Oncology, Nerviano Medical Sciences, NMS Group, 20014, Nerviano, Milan, Italy
| | - Tommaso Mazza
- Bioinformatics Unit, IRCCS "Casa Sollievo della Sofferenza", Research Hospital, San Giovanni Rotondo, Italy
| | - Antonella Isacchi
- NMS Oncology, Nerviano Medical Sciences, NMS Group, 20014, Nerviano, Milan, Italy
| | - Roberta Bosotti
- NMS Oncology, Nerviano Medical Sciences, NMS Group, 20014, Nerviano, Milan, Italy.
| |
Collapse
|
12
|
Hua T, Ding J, Xu J, Fan Y, Liu Z, Lian J. Coiled-coil domain-containing 68 promotes non-small cell lung cancer cell proliferation in vitro. Oncol Lett 2020; 20:356. [PMID: 33133256 PMCID: PMC7590430 DOI: 10.3892/ol.2020.12220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 07/22/2020] [Indexed: 12/24/2022] Open
Abstract
Coiled-coil domain-containing 68 (CCDC68) is a novel secretory protein that acts as a tumor suppressor gene in several types of malignant tumors. However, the role of CCDC68 in the development of lung cancer has not been extensively studied. In the present study, to explore the biological functions of CCDC68 in NSCLC, we performed cell proliferation, viability and apoptosis assays on human lung cancer cell lines upon CCDC68 gene silencing with short hairpin RNA. The results demonstrated that following knockdown of CCDC68 expression, cell proliferation was decreased and the apoptotic rates were increased in A549 and H1299 cells. The role and mechanism of CCDC68 in malignant tumors, particularly in lung cancer, should be further explored, and CCDC68 may serve as a novel target for treatment of lung cancer.
Collapse
Affiliation(s)
- Tao Hua
- Department of Oncology, Xi'an Chest Hospital, Xi'an, Shaanxi 710100, P.R. China
| | - Jie Ding
- Department of Oncology, Xi'an Chest Hospital, Xi'an, Shaanxi 710100, P.R. China
| | - Jialing Xu
- Department of Oncology, Xi'an Chest Hospital, Xi'an, Shaanxi 710100, P.R. China
| | - Yu Fan
- Department of Oncology, Xi'an Chest Hospital, Xi'an, Shaanxi 710100, P.R. China
| | - Zejie Liu
- Department of Oncology, Xi'an Chest Hospital, Xi'an, Shaanxi 710100, P.R. China
| | - Juanwen Lian
- Department of Oncology, Xi'an Chest Hospital, Xi'an, Shaanxi 710100, P.R. China
| |
Collapse
|
13
|
MiR-19b-3p facilitates the proliferation and epithelial-mesenchymal transition, and inhibits the apoptosis of intrahepatic cholangiocarcinoma by suppressing coiled-coil domain containing 6. Arch Biochem Biophys 2020; 686:108367. [PMID: 32315652 DOI: 10.1016/j.abb.2020.108367] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/26/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is the second most common primary hepatocellular carcinoma, and microRNAs (miRNAs) play a vital role in its development. This study aimed to explore the molecular mechanism and clinical value of miR-19b-3p in ICC. METHODS From March 2014 to October 2016, 94 pairs of specimens of ICC tissues and adjacent tissues were collected. Moreover, 5 ml of peripheral blood of 342 ICC patients who underwent ICC resection were collected before and one week after surgery. Luciferase activity assay was performed to confirm the regulation of miR-19b-3p on coiled-coil domain containing 6 (CCDC6). BALB/c nude mice were injected with CCLP-1 cells which were transfected with NC, miR-19b-3p mimic, miR-19b-3p inhibitor, pcDNA-CCDC6, si-CCDC6 or miR-19b-3p mimic + pcDNA-CCDC6. RESULTS Results showed that miR-19b-3p levels were significantly higher in ICC tissues compared with adjacent tissues. Moreover, serum miR-19b-3p levels of ICC patients tended to decline after surgery, and were correlated with lymph node metastasis and histological grading of ICC. CCDC6, a new target gene of miR-19b-3p, was identified by four prediction databases. We confirmed that miR-19b-3p promoted cell proliferation and epithelial-mesenchymal transition (EMT), and inhibited apoptosis in ICC, while knockdown of CCDC6 reversed these effects. We also observed that miR-19b-3p/CCDC6 axis regulated the nuclear translocation of β-catenin. Furthermore, in vivo study also demonstrated that the miR-19b-3p/CCDC6 axis regulated EMT to promote ICC progression. CONCLUSION These results indicate that serum miR-19b-3p level is a crucial biomarker for ICC diagnosis and targeting miR-19b-3p-CCDC6 axis might be a promising strategy in ICC therapy.
Collapse
|
14
|
Li J, Li H, Zhu W, Zhou B, Ying J, Wu J, Zhang H, Sun H, Gao S. Deubiquitinase inhibitor degrasyn suppresses metastasis by targeting USP5-WT1-E-cadherin signalling pathway in pancreatic ductal adenocarcinoma. J Cell Mol Med 2020; 24:1370-1382. [PMID: 31845546 PMCID: PMC6991651 DOI: 10.1111/jcmm.14813] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/05/2019] [Accepted: 10/26/2019] [Indexed: 12/18/2022] Open
Abstract
Wilm's tumour-1 (WT1) is overexpressed in pancreatic ductal adenocarcinoma (PDAC) and enhances metastasis. Deubiquitination stabilizes target proteins, and inhibiting deubiquitination facilitates the degradation of target proteins. However, whether inhibiting deubiquitination of WT1 facilitates its degradation and presents anti-cancer ability in PDAC is unknown. Here, we found that deubiquitinase inhibitor degrasyn rapidly induced the degradation of endogenous and exogenous WT1 through enhancing ubiquitination of WT1 followed by the up-regulation of E-cadherin. Knockdown of WT1 by short hairpin RNAs (shRNAs) inhibited metastasis and overexpression of WT1 partially prevented degrasyn-induced anti-metastasis activity, suggesting that degrasyn presents anti-metastasis activity partially through degrading WT1 protein. We further identified that USP5 deubiquitinated WT1 and stabilized its expression. The higher expressions of USP5 and WT1 are associated with tumour metastasis. More importantly, degrasyn inhibited the activity of USP5 and overexpression of USP5 partially prevented degrasyn-induced degradation of WT1 protein, suggesting that degrasyn degraded WT1 protein through inhibiting the activity of USP5. Finally, degrasyn reduced the tumorigenicity in a xenograft mouse model and reduced the metastasis in vivo. Our results indicate that degrasyn presents strong anti-cancer activity through USP5-WT1-E-cadherin signalling in PDAC. Therefore, degrasyn holds promise as cancer therapeutic agent in PDAC with high expressions of USP5 and WT1.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cadherins/antagonists & inhibitors
- Cadherins/genetics
- Cadherins/metabolism
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/secondary
- Cell Proliferation
- Cyanoacrylates/pharmacology
- Deubiquitinating Enzymes/antagonists & inhibitors
- Endopeptidases/chemistry
- Endopeptidases/genetics
- Endopeptidases/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Mice
- Mice, Nude
- Neoplasm Invasiveness
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Prognosis
- Pyridines/pharmacology
- Tumor Cells, Cultured
- WT1 Proteins/antagonists & inhibitors
- WT1 Proteins/genetics
- WT1 Proteins/metabolism
- Xenograft Model Antitumor Assays
- Pancreatic Neoplasms
Collapse
Affiliation(s)
- Jiajia Li
- Department of Gastroenterologythe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Haiying Li
- Laboratory of Internal Medicinethe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Weijian Zhu
- Laboratory of Internal Medicinethe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Bin Zhou
- Laboratory of Internal Medicinethe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Jianchao Ying
- Laboratory of Internal Medicinethe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Jiansheng Wu
- Department of Gastroenterologythe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Huxiang Zhang
- Pathology Departmentthe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Hongwei Sun
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Shenmeng Gao
- Laboratory of Internal Medicinethe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| |
Collapse
|
15
|
Prelaj A, Ferrara R, Rebuzzi SE, Proto C, Signorelli D, Galli G, De Toma A, Randon G, Pagani F, Viscardi G, Brambilla M, Trevisan B, Ganzinelli M, Martinetti A, Gallucci R, Di Mauro RM, Molino G, Zilembo N, Torri V, de Braud FM, Garassino MC, Lo Russo G. EPSILoN: A Prognostic Score for Immunotherapy in Advanced Non-Small-Cell Lung Cancer: A Validation Cohort. Cancers (Basel) 2019; 11:E1954. [PMID: 31817541 PMCID: PMC6966664 DOI: 10.3390/cancers11121954] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Beyond programmed death ligand 1 (PD-L1), no other biomarkers for immunotherapy are used in daily practice. We previously created EPSILoN (Eastern Cooperative Oncology Group performance status (ECOG PS), smoking, liver metastases, lactate dehydrogenase (LDH), neutrophil-to-lymphocyte ratio (NLR)) score, a clinical/biochemical prognostic score, in 154 patients treated with second/further-line immunotherapy. This study's aim was to validate EPSILoN score in a different population group. METHODS 193 patients were included at National Cancer Institute of Milan (second-line immunotherapy, 61%; further-line immunotherapy, 39%). Clinical/laboratory parameters such as neutrophil-to-lymphocyte ratio and lactate dehydrogenase levels were collected. Kaplan-Meier and Cox hazard methods were used for survival analysis. RESULTS Overall median progression-free survival and median overall survival were 2.3 and 7.6 months, respectively. Multivariate analyses for Progression-Free Survival (PFS) identified heavy smokers (hazard ratio (HR) 0.71, p = 0.036) and baseline LDH < 400 mg/dL (HR 0.66, p = 0.026) as independent positive factors and liver metastases (HR 1.48, p = 0.04) and NLR ≥ 4 (HR 1.49, p = 0.029) as negative prognostic factors. These five factors were included in the EPSILoN score which was able to stratify patients in three different prognostic groups, high, intermediate and low, with PFS of 6.0, 3.8 and 1.9 months, respectively (HR 1.94, p < 0.001); high, intermediate and low prognostic groups had overall survival (OS) of 24.5, 8.9 and 3.4 months, respectively (HR 2.40, p < 0.001). CONCLUSIONS EPSILoN, combining five baseline clinical/blood parameters (ECOG PS, smoking, liver metastases, LDH, NLR), may help to identify advanced non-small-cell lung cancer (aNSCLC) patients who most likely benefit from immune checkpoint inhibitors (ICIs).
Collapse
Affiliation(s)
- Arsela Prelaj
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy; (R.F.); (C.P.); (D.S.); (G.G.); (A.D.T.); (G.R.); (F.P.); (G.V.); (M.B.); (B.T.); (M.G.); (A.M.); (R.G.); (R.M.D.M.); (G.M.); (N.Z.); (F.M.d.B.); (M.C.G.); (G.L.R.)
| | - Roberto Ferrara
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy; (R.F.); (C.P.); (D.S.); (G.G.); (A.D.T.); (G.R.); (F.P.); (G.V.); (M.B.); (B.T.); (M.G.); (A.M.); (R.G.); (R.M.D.M.); (G.M.); (N.Z.); (F.M.d.B.); (M.C.G.); (G.L.R.)
| | - Sara Elena Rebuzzi
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy;
| | - Claudia Proto
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy; (R.F.); (C.P.); (D.S.); (G.G.); (A.D.T.); (G.R.); (F.P.); (G.V.); (M.B.); (B.T.); (M.G.); (A.M.); (R.G.); (R.M.D.M.); (G.M.); (N.Z.); (F.M.d.B.); (M.C.G.); (G.L.R.)
| | - Diego Signorelli
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy; (R.F.); (C.P.); (D.S.); (G.G.); (A.D.T.); (G.R.); (F.P.); (G.V.); (M.B.); (B.T.); (M.G.); (A.M.); (R.G.); (R.M.D.M.); (G.M.); (N.Z.); (F.M.d.B.); (M.C.G.); (G.L.R.)
| | - Giulia Galli
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy; (R.F.); (C.P.); (D.S.); (G.G.); (A.D.T.); (G.R.); (F.P.); (G.V.); (M.B.); (B.T.); (M.G.); (A.M.); (R.G.); (R.M.D.M.); (G.M.); (N.Z.); (F.M.d.B.); (M.C.G.); (G.L.R.)
| | - Alessandro De Toma
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy; (R.F.); (C.P.); (D.S.); (G.G.); (A.D.T.); (G.R.); (F.P.); (G.V.); (M.B.); (B.T.); (M.G.); (A.M.); (R.G.); (R.M.D.M.); (G.M.); (N.Z.); (F.M.d.B.); (M.C.G.); (G.L.R.)
| | - Giovanni Randon
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy; (R.F.); (C.P.); (D.S.); (G.G.); (A.D.T.); (G.R.); (F.P.); (G.V.); (M.B.); (B.T.); (M.G.); (A.M.); (R.G.); (R.M.D.M.); (G.M.); (N.Z.); (F.M.d.B.); (M.C.G.); (G.L.R.)
| | - Filippo Pagani
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy; (R.F.); (C.P.); (D.S.); (G.G.); (A.D.T.); (G.R.); (F.P.); (G.V.); (M.B.); (B.T.); (M.G.); (A.M.); (R.G.); (R.M.D.M.); (G.M.); (N.Z.); (F.M.d.B.); (M.C.G.); (G.L.R.)
| | - Giuseppe Viscardi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy; (R.F.); (C.P.); (D.S.); (G.G.); (A.D.T.); (G.R.); (F.P.); (G.V.); (M.B.); (B.T.); (M.G.); (A.M.); (R.G.); (R.M.D.M.); (G.M.); (N.Z.); (F.M.d.B.); (M.C.G.); (G.L.R.)
| | - Marta Brambilla
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy; (R.F.); (C.P.); (D.S.); (G.G.); (A.D.T.); (G.R.); (F.P.); (G.V.); (M.B.); (B.T.); (M.G.); (A.M.); (R.G.); (R.M.D.M.); (G.M.); (N.Z.); (F.M.d.B.); (M.C.G.); (G.L.R.)
| | - Benedetta Trevisan
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy; (R.F.); (C.P.); (D.S.); (G.G.); (A.D.T.); (G.R.); (F.P.); (G.V.); (M.B.); (B.T.); (M.G.); (A.M.); (R.G.); (R.M.D.M.); (G.M.); (N.Z.); (F.M.d.B.); (M.C.G.); (G.L.R.)
| | - Monica Ganzinelli
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy; (R.F.); (C.P.); (D.S.); (G.G.); (A.D.T.); (G.R.); (F.P.); (G.V.); (M.B.); (B.T.); (M.G.); (A.M.); (R.G.); (R.M.D.M.); (G.M.); (N.Z.); (F.M.d.B.); (M.C.G.); (G.L.R.)
| | - Antonia Martinetti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy; (R.F.); (C.P.); (D.S.); (G.G.); (A.D.T.); (G.R.); (F.P.); (G.V.); (M.B.); (B.T.); (M.G.); (A.M.); (R.G.); (R.M.D.M.); (G.M.); (N.Z.); (F.M.d.B.); (M.C.G.); (G.L.R.)
| | - Rosaria Gallucci
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy; (R.F.); (C.P.); (D.S.); (G.G.); (A.D.T.); (G.R.); (F.P.); (G.V.); (M.B.); (B.T.); (M.G.); (A.M.); (R.G.); (R.M.D.M.); (G.M.); (N.Z.); (F.M.d.B.); (M.C.G.); (G.L.R.)
| | - Rosa Maria Di Mauro
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy; (R.F.); (C.P.); (D.S.); (G.G.); (A.D.T.); (G.R.); (F.P.); (G.V.); (M.B.); (B.T.); (M.G.); (A.M.); (R.G.); (R.M.D.M.); (G.M.); (N.Z.); (F.M.d.B.); (M.C.G.); (G.L.R.)
| | - Giuliano Molino
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy; (R.F.); (C.P.); (D.S.); (G.G.); (A.D.T.); (G.R.); (F.P.); (G.V.); (M.B.); (B.T.); (M.G.); (A.M.); (R.G.); (R.M.D.M.); (G.M.); (N.Z.); (F.M.d.B.); (M.C.G.); (G.L.R.)
| | - Nicoletta Zilembo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy; (R.F.); (C.P.); (D.S.); (G.G.); (A.D.T.); (G.R.); (F.P.); (G.V.); (M.B.); (B.T.); (M.G.); (A.M.); (R.G.); (R.M.D.M.); (G.M.); (N.Z.); (F.M.d.B.); (M.C.G.); (G.L.R.)
| | - Valter Torri
- Pharmacological Research Institute IRCSS Mario Negri, Via La Masa 19, 20156 Milan, Italy;
| | - Filippo Maria de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy; (R.F.); (C.P.); (D.S.); (G.G.); (A.D.T.); (G.R.); (F.P.); (G.V.); (M.B.); (B.T.); (M.G.); (A.M.); (R.G.); (R.M.D.M.); (G.M.); (N.Z.); (F.M.d.B.); (M.C.G.); (G.L.R.)
| | - Marina Chiara Garassino
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy; (R.F.); (C.P.); (D.S.); (G.G.); (A.D.T.); (G.R.); (F.P.); (G.V.); (M.B.); (B.T.); (M.G.); (A.M.); (R.G.); (R.M.D.M.); (G.M.); (N.Z.); (F.M.d.B.); (M.C.G.); (G.L.R.)
| | - Giuseppe Lo Russo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy; (R.F.); (C.P.); (D.S.); (G.G.); (A.D.T.); (G.R.); (F.P.); (G.V.); (M.B.); (B.T.); (M.G.); (A.M.); (R.G.); (R.M.D.M.); (G.M.); (N.Z.); (F.M.d.B.); (M.C.G.); (G.L.R.)
| |
Collapse
|
16
|
Wang M, Naganna N, Sintim HO. Identification of nicotinamide aminonaphthyridine compounds as potent RET kinase inhibitors and antitumor activities against RET rearranged lung adenocarcinoma. Bioorg Chem 2019; 90:103052. [DOI: 10.1016/j.bioorg.2019.103052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 01/22/2023]
|
17
|
Morra F, Merolla F, D’Abbiero D, Ilardi G, Campione S, Monaco R, Guggino G, Ambrosio F, Staibano S, Cerrato A, Visconti R, Celetti A. Analysis of CCDC6 as a novel biomarker for the clinical use of PARP1 inhibitors in malignant pleural mesothelioma. Lung Cancer 2019; 135:56-65. [DOI: 10.1016/j.lungcan.2019.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/22/2019] [Accepted: 07/12/2019] [Indexed: 01/20/2023]
|
18
|
Benayed R, Offin M, Mullaney K, Sukhadia P, Rios K, Desmeules P, Ptashkin R, Won H, Chang J, Halpenny D, Schram AM, Rudin CM, Hyman DM, Arcila ME, Berger MF, Zehir A, Kris MG, Drilon A, Ladanyi M. High Yield of RNA Sequencing for Targetable Kinase Fusions in Lung Adenocarcinomas with No Mitogenic Driver Alteration Detected by DNA Sequencing and Low Tumor Mutation Burden. Clin Cancer Res 2019; 25:4712-4722. [PMID: 31028088 DOI: 10.1158/1078-0432.ccr-19-0225] [Citation(s) in RCA: 324] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/15/2019] [Accepted: 04/23/2019] [Indexed: 12/23/2022]
Abstract
PURPOSE Targeted next-generation sequencing of DNA has become more widely used in the management of patients with lung adenocarcinoma; however, no clear mitogenic driver alteration is found in some cases. We evaluated the incremental benefit of targeted RNA sequencing (RNAseq) in the identification of gene fusions and MET exon 14 (METex14) alterations in DNA sequencing (DNAseq) driver-negative lung cancers. EXPERIMENTAL DESIGN Lung cancers driver negative by MSK-IMPACT underwent further analysis using a custom RNAseq panel (MSK-Fusion). Tumor mutation burden (TMB) was assessed as a potential prioritization criterion for targeted RNAseq. RESULTS As part of prospective clinical genomic testing, we profiled 2,522 lung adenocarcinomas using MSK-IMPACT, which identified 195 (7.7%) fusions and 119 (4.7%) METex14 alterations. Among 275 driver-negative cases with available tissue, 254 (92%) had sufficient material for RNAseq. A previously undetected alteration was identified in 14% (36/254) of cases, 33 of which were actionable (27 in-frame fusions, 6 METex14). Of these 33 patients, 10 then received matched targeted therapy, which achieved clinical benefit in 8 (80%). In the 32% (81/254) of DNAseq driver-negative cases with low TMB [0-5 mutations/Megabase (mut/Mb)], 25 (31%) were positive for previously undetected gene fusions on RNAseq, whereas, in 151 cases with TMB >5 mut/Mb, only 7% were positive for fusions (P < 0.0001). CONCLUSIONS Targeted RNAseq assays should be used in all cases that appear driver negative by DNAseq assays to ensure comprehensive detection of actionable gene rearrangements. Furthermore, we observed a significant enrichment for fusions in DNAseq driver-negative samples with low TMB, supporting the prioritization of such cases for additional RNAseq.See related commentary by Davies and Aisner, p. 4586.
Collapse
Affiliation(s)
- Ryma Benayed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael Offin
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kerry Mullaney
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Purvil Sukhadia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kelly Rios
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Patrice Desmeules
- Department of Pathology, Quebec Heart and Lung Institute, Quebec City, Quebec, Canada
| | - Ryan Ptashkin
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Helen Won
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jason Chang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Darragh Halpenny
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alison M Schram
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles M Rudin
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David M Hyman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maria E Arcila
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael F Berger
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ahmet Zehir
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mark G Kris
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexander Drilon
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
19
|
Liu Y, Liu T, Li N, Wang T, Pu Y, Lin R. Identification of a novel WNK1–ROS1 fusion in a lung adenocarcinoma sensitive to crizotinib. Lung Cancer 2019; 129:92-94. [DOI: 10.1016/j.lungcan.2018.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/12/2018] [Indexed: 10/27/2022]
|