1
|
Wan X, Wang L, Khan MA, Peng L, Sun X, Yi X, Wang Z, Chen K. NAT10-mediated N4-acetylcytidine modification in KLF9 mRNA promotes adipogenesis. Cell Death Differ 2025:10.1038/s41418-025-01483-x. [PMID: 40123006 DOI: 10.1038/s41418-025-01483-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 02/14/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025] Open
Abstract
Dysfunctional adipogenesis is a major contributor of obesity. N-acetyltransferase 10 (NAT10) plays a crucial role in regulating N4-acetylcysteine (ac4C) modification in tRNA, 18SrRNA, and mRNA. As the sole "writer" in the ac4C modification process, NAT10 enhances mRNA stability and translation efficiency. There are few reports on the relationship between NAT10 and adipogenesis, as well as obesity. Our study revealed a significant upregulation of NAT10 in adipose tissues of obese individuals and high-fat diet-fed mice. Furthermore, our findings revealed that the overexpression of NAT10 promotes adipogenesis, while its silencing inhibits adipogenesis in both human adipose tissue-derived stem cells (hADSCs) and 3T3-L1 cells. These results indicate the intimate relationship between NAT10 and obesity. After silencing mouse NAT10 (mNAT10), we identified 30 genes that exhibited both hypo-ac4C modification and downregulation in their expression, utilizing a combined approach of acRIP-sequencing (acRIP-seq) and RNA-sequencing (RNA-seq). Among these genes, we validated KLF9 as a target of NAT10 through acRIP-PCR. KLF9, a pivotal transcription factor that positively regulates adipogenesis. Our findings showed that NAT10 enhances the stability of KLF9 mRNA and further activates the CEBPA/B-PPARG pathway. Furthermore, a dual-luciferase reporter assay demonstrated that NAT10 can bind to three motifs of mouse KLF9 and one motif of human KLF9. In vivo studies revealed that adipose tissue-targeted mouse AAV-NAT10 (AAV-shRNA-mNAT10) inhibits adipose tissue expansion in mice. Additionally, Remodelin, a specific NAT10 inhibitor, significantly reduced body weight, adipocyte size, and adipose tissue expansion in high-fat diet-fed mice by inhibiting KLF9 mRNA ac4C modification. These findings provide novel insights and experimental evidence of the prevention and treatment of obesity, highlighting NAT10 and its downstream targets as potential therapeutic targets.
Collapse
Affiliation(s)
- Xinxing Wan
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Linghao Wang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Md Asaduzzaman Khan
- Department of Biochemistry and Microbiology, School of Health & Life Sciences, North South University, Dhaka, Bangladesh
| | - Lin Peng
- Department of Nephrology, The First Hospital of Changsha, Changsha, Hunan, PR China
| | - Xiaoying Sun
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Xuan Yi
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Zhouqi Wang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Ke Chen
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
2
|
Gao R, Hu Y, Yuan Q. ADAMTS12 serves as a novel prognostic biomarker and promotes proliferation and invasion in gastric cancer. Discov Oncol 2024; 15:837. [PMID: 39720953 DOI: 10.1007/s12672-024-01724-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024] Open
Abstract
Gastric cancer (GC) remains a prevalent and aggressive malignancy with a poor prognosis. This study aimed to identify diagnostic and prognostic biomarkers while exploring their potential functions in GC. A total of 598 upregulated and 506 downregulated genes were identified in GC patients. Among these, survival-related differentially expressed genes (DEGs), including ADAMTS12, F5, and VCAN, were highlighted. Pan-cancer analyses revealed their dysregulation across multiple tumor types. A novel prognostic signature, incorporating ADAMTS12 and F5, effectively stratified GC patients into low- and high-risk groups, demonstrating significant differences in overall survival and robust predictive performance. ADAMTS12, strongly associated with advanced clinical stages and poor prognosis, was validated in an independent cohort and exhibited promising diagnostic potential. RT-PCR and western blot analyses confirmed its high expression in GC tissues and cell lines. Functional assays further demonstrated that ADAMTS12 promotes GC cell proliferation and invasion. In summary, this study provides critical insights into the molecular landscape of GC, offering a potential prognostic tool and therapeutic target.
Collapse
Affiliation(s)
- Ruimei Gao
- Department of Gastroenterology, Qingdao Chengyang People's Hospital, Qingdao, China
| | - Yalan Hu
- Department of Anorectal Surgery, Qingdao Eighth People's Hospital, Qingdao, China
| | - Qiuxiang Yuan
- Department of Gastroenterology, Qingdao Chengyang People's Hospital, Qingdao, China.
| |
Collapse
|
3
|
Mengistu BA, Tsegaw T, Demessie Y, Getnet K, Bitew AB, Kinde MZ, Beirhun AM, Mebratu AS, Mekasha YT, Feleke MG, Fenta MD. Comprehensive review of drug resistance in mammalian cancer stem cells: implications for cancer therapy. Cancer Cell Int 2024; 24:406. [PMID: 39695669 DOI: 10.1186/s12935-024-03558-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
Cancer remains a significant global challenge, and despite the numerous strategies developed to advance cancer therapy, an effective cure for metastatic cancer remains elusive. A major hurdle in treatment success is the ability of cancer cells, particularly cancer stem cells (CSCs), to resist therapy. These CSCs possess unique abilities, including self-renewal, differentiation, and repair, which drive tumor progression and chemotherapy resistance. The resilience of CSCs is linked to certain signaling pathways. Tumors with pathway-dependent CSCs often develop genetic resistance, whereas those with pathway-independent CSCs undergo epigenetic changes that affect gene regulation. CSCs can evade cytotoxic drugs, radiation, and apoptosis by increasing drug efflux transporter activity and activating survival mechanisms. Future research should prioritize the identification of new biomarkers and signaling molecules to better understand drug resistance. The use of cutting-edge approaches, such as bioinformatics, genomics, proteomics, and nanotechnology, offers potential solutions to this challenge. Key strategies include developing targeted therapies, employing nanocarriers for precise drug delivery, and focusing on CSC-targeted pathways such as the Wnt, Notch, and Hedgehog pathways. Additionally, investigating multitarget inhibitors, immunotherapy, and nanodrug delivery systems is critical for overcoming drug resistance in cancer cells.
Collapse
Affiliation(s)
- Bemrew Admassu Mengistu
- Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia.
| | - Tirunesh Tsegaw
- Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Yitayew Demessie
- Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Kalkidan Getnet
- Department of Veterinary Epidemiology and Public Health, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Abebe Belete Bitew
- Department of Veterinary Epidemiology and Public Health, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Mebrie Zemene Kinde
- Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Asnakew Mulaw Beirhun
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Atsede Solomon Mebratu
- Department of Veterinary Pharmacy, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Yesuneh Tefera Mekasha
- Department of Veterinary Pharmacy, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Melaku Getahun Feleke
- Department of Veterinary Pharmacy, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Melkie Dagnaw Fenta
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine and Animal Science, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
4
|
Jemma A, Ardizzoia A, Redaelli S, Bentivegna A, Lavitrano M, Conconi D. Prognostic Relevance of Copy Number Losses in Ovarian Cancer. Genes (Basel) 2024; 15:1487. [PMID: 39596687 PMCID: PMC11593593 DOI: 10.3390/genes15111487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Aneuploidy is a prevalent cancer feature that occurs in many solid tumors. For example, high-grade serous ovarian cancer shows a high level of copy number alterations and genomic rearrangements. This makes genomic variants appealing as diagnostic or prognostic biomarkers, as well as for their easy detection. In this study, we focused on copy number (CN) losses shared by ovarian cancer stem cells (CSCs) to identify chromosomal regions that may be important for CSC features and, in turn, for patients' prognosis. METHODS Array-CGH and bioinformatic analyses on three CSCs subpopulations were performed. RESULTS Pathway and gene ontology analyses on genes involved in copy number loss in all CSCs revealed a significant decrease in mRNA surveillance pathway, as well as miRNA-mediated gene silencing. Then, starting from these CN losses, we validated their potential prognostic relevance by analyzing the TCGA cohort. Notably, losses of 4q34.3-q35.2, 8p21.2-p21.1, and 18q12.2-q23 were linked to increased genomic instability. Loss of 18q12.2-q23 was also related to a higher tumor stage and poor prognosis. Finally, specific genes mapping in these regions, such as PPP2R2A and TPGS2A, emerged as potential biomarkers. CONCLUSIONS Our findings highlight the importance of genomic alterations in ovarian cancer and their impact on tumor progression and patients' prognosis, offering advance in understanding of the application of numerical aberrations as prognostic ovarian cancer biomarkers.
Collapse
Affiliation(s)
- Andrea Jemma
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (A.J.); (A.A.); (S.R.); (A.B.); (M.L.)
| | - Alessandra Ardizzoia
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (A.J.); (A.A.); (S.R.); (A.B.); (M.L.)
- Fondazione Istituto di Oncologia Molecolare ETS (IFOM), The AIRC Institute for Molecular Oncology, 20139 Milan, Italy
| | - Serena Redaelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (A.J.); (A.A.); (S.R.); (A.B.); (M.L.)
| | - Angela Bentivegna
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (A.J.); (A.A.); (S.R.); (A.B.); (M.L.)
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (A.J.); (A.A.); (S.R.); (A.B.); (M.L.)
| | - Donatella Conconi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (A.J.); (A.A.); (S.R.); (A.B.); (M.L.)
| |
Collapse
|
5
|
Shaon MSH, Karim T, Ali MM, Ahmed K, Bui FM, Chen L, Moni MA. A robust deep learning approach for identification of RNA 5-methyluridine sites. Sci Rep 2024; 14:25688. [PMID: 39465261 PMCID: PMC11514282 DOI: 10.1038/s41598-024-76148-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024] Open
Abstract
RNA 5-methyluridine (m5U) sites play a significant role in understanding RNA modifications, which influence numerous biological processes such as gene expression and cellular functioning. Consequently, the identification of m5U sites can play a vital role in the integrity, structure, and function of RNA molecules. Therefore, this study introduces GRUpred-m5U, a novel deep learning-based framework based on a gated recurrent unit in mature RNA and full transcript RNA datasets. We used three descriptor groups: nucleic acid composition, pseudo nucleic acid composition, and physicochemical properties, which include five feature extraction methods ENAC, Kmer, DPCP, DPCP type 2, and PseDNC. Initially, we aggregated all the feature extraction methods and created a new merged set. Three hybrid models were developed employing deep-learning methods and evaluated through 10-fold cross-validation with seven evaluation metrics. After a comprehensive evaluation, the GRUpred-m5U model outperformed the other applied models, obtaining 98.41% and 96.70% accuracy on the two datasets, respectively. To our knowledge, the proposed model outperformed all the existing state-of-the-art technology. The proposed supervised machine learning model was evaluated using unsupervised machine learning techniques such as principal component analysis (PCA), and it was observed that the proposed method provided a valid performance for identifying m5U. Considering its multi-layered construction, the GRUpred-m5U model has tremendous potential for future applications in the biological industry. The model, which consisted of neurons processing complicated input, excelled at pattern recognition and produced reliable results. Despite its greater size, the model obtained accurate results, essential in detecting m5U.
Collapse
Affiliation(s)
| | - Tasmin Karim
- Department of Computer Science and Informatics, Oakland University, Rochester, MI, 48309, USA
| | - Md Mamun Ali
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada
- Department of Software Engineering, Daffodil Smart City (DSC), Daffodil International University, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Kawsar Ahmed
- Department of Electrical and Computer Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada.
- Group of Bio-photomatiχ, Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University, Santosh, 1902, Tangail, Bangladesh.
- Health Informatics Research Lab, Department of Computer Science and Engineering, Daffodil International University, Daffodil Smart City, Dhaka, 1216, Birulia, Bangladesh.
| | - Francis M Bui
- Department of Electrical and Computer Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada
| | - Li Chen
- Department of Electrical and Computer Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada
| | - Mohammad Ali Moni
- AI & Digital Health Technology, Artificial Intelligence & Cyber Future Institute, Charles Sturt University, Bathurst, NSW, 2795, Australia.
- AI & Digital Health Technology, Rural Health Research Institute, Charles Sturt University, Orange, NSW, 2800, Australia.
| |
Collapse
|
6
|
Jiang X, Zhan L, Tang X. RNA modifications in physiology and pathology: Progressing towards application in clinical settings. Cell Signal 2024; 121:111242. [PMID: 38851412 DOI: 10.1016/j.cellsig.2024.111242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
The potential to modify individual nucleotides through chemical means in order to impact the electrostatic charge, hydrophobic properties, and base pairing of RNA molecules is harnessed in the medical application of stable synthetic RNAs like mRNA vaccines and synthetic small RNA molecules. These modifications are used to either increase or decrease the production of therapeutic proteins. Additionally, naturally occurring biochemical alterations of nucleotides play a role in regulating RNA metabolism and function, thereby modulating essential cellular processes. Research elucidating the mechanisms through which RNA modifications govern fundamental cellular functions in multicellular organisms has enhanced our comprehension of how irregular RNA modification profiles can lead to human diseases. Collectively, these fundamental scientific findings have unveiled the molecular and cellular functions of RNA modifications, offering new opportunities for therapeutic intervention and paving the way for a variety of innovative clinical strategies.
Collapse
Affiliation(s)
- Xue Jiang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China
| | - Lijuan Zhan
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China.
| | - Xiaozhu Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
7
|
Zhou Y, Liu Z, Gong C, Zhang J, Zhao J, Zhang X, Liu X, Li B, Li R, Shi Z, Xie Y, Bao L. Targeting treatment resistance: unveiling the potential of RNA methylation regulators and TG-101,209 in pan-cancer neoadjuvant therapy. J Exp Clin Cancer Res 2024; 43:232. [PMID: 39160604 PMCID: PMC11331809 DOI: 10.1186/s13046-024-03111-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/27/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Tumor recurrence and mortality rates remain challenging in cancer patients despite comprehensive treatment. Neoadjuvant chemotherapy and immunotherapy aim to eliminate residual tumor cells, reducing the risk of recurrence. However, drug resistance during neoadjuvant therapy is a significant hurdle. Recent studies suggest a correlation between RNA methylation regulators (RMRs) and response to neoadjuvant therapy. METHODS Using a multi-center approach, we integrated advanced techniques such as single-cell transcriptomics, whole-genome sequencing, RNA sequencing, proteomics, machine learning, and in vivo/in vitro experiments. Analyzing pan-cancer cohorts, the association between neoadjuvant chemotherapy/immunotherapy effectiveness and RNA methylation using single-cell sequencing was investigated. Multi-omics analysis and machine learning algorithms identified genomic variations, transcriptional dysregulation, and prognostic relevance of RMRs, revealing distinct molecular subtypes guiding pan-cancer neoadjuvant therapy stratification. RESULTS Our analysis unveiled a strong link between neoadjuvant therapy efficacy and RNA methylation dynamics, supported by pan-cancer single-cell sequencing data. Integration of omics data and machine learning algorithms identified RMR genomic variations, transcriptional dysregulation, and prognostic implications in pan-cancer. High-RMR-expressing tumors displayed increased genomic alterations, an immunosuppressive microenvironment, poorer prognosis, and resistance to neoadjuvant therapy. Molecular investigations and in vivo/in vitro experiments have substantiated that the JAK inhibitor TG-101,209 exerts notable effects on the immune microenvironment of tumors, rendering high-RMR-expressing pan-cancer tumors, particularly in pancreatic cancer, more susceptible to chemotherapy and immunotherapy. CONCLUSIONS This study emphasizes the pivotal role of RMRs in pan-cancer neoadjuvant therapy, serving as predictive biomarkers for monitoring the tumor microenvironment, patient prognosis, and therapeutic response. Distinct molecular subtypes of RMRs aid individualized stratification in neoadjuvant therapy. Combining TG-101,209 adjuvant therapy presents a promising strategy to enhance the sensitivity of high-RMR-expressing tumors to chemotherapy and immunotherapy. However, further validation studies are necessary to fully understand the clinical utility of RNA methylation regulators and their impact on patient outcomes.
Collapse
Affiliation(s)
- Yaoyao Zhou
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin Medical University, Ministry of Education, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Ziyun Liu
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin Medical University, Ministry of Education, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Department of Breast Oncoplastic Surgery, Tianjin Medical University Cancer Institute, Tianjin, 300060, China
| | - Cheng Gong
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin Medical University, Ministry of Education, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jie Zhang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin Medical University, Ministry of Education, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jing Zhao
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xia Zhang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xiangyu Liu
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Department of Gynecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Bin Li
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Gastric Surgery, Key Laboratory of Digestive Cancer, Tianjin, China
| | - Rui Li
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Zhenyu Shi
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.
| | - Yongjie Xie
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| | - Li Bao
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, China.
| |
Collapse
|
8
|
Xu S, Zhang Y, Yang Y, Dong K, Zhang H, Luo C, Liu SM. A m 6A regulators-related classifier for prognosis and tumor microenvironment characterization in hepatocellular carcinoma. Front Immunol 2024; 15:1374465. [PMID: 39119345 PMCID: PMC11306056 DOI: 10.3389/fimmu.2024.1374465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Background Increasing evidence have highlighted the biological significance of mRNA N6-methyladenosine (m6A) modification in regulating tumorigenicity and progression. However, the potential roles of m6A regulators in tumor microenvironment (TME) formation and immune cell infiltration in liver hepatocellular carcinoma (LIHC or HCC) requires further clarification. Method RNA sequencing data were obtained from TCGA-LIHC databases and ICGC-LIRI-JP databases. Consensus clustering algorithm was used to identify m6A regulators cluster subtypes. Weighted gene co-expression network analysis (WGCNA), LASSO regression, Random Forest (RF), and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) were applied to identify candidate biomarkers, and then a m6Arisk score model was constructed. The correlations of m6Arisk score with immunological characteristics (immunomodulators, cancer immunity cycles, tumor-infiltrating immune cells (TIICs), and immune checkpoints) were systematically evaluated. The effective performance of nomogram was evaluated using concordance index (C-index), calibration plots, decision curve analysis (DCA), and receiver operating characteristic curve (ROC). Results Two distinct m6A modification patterns were identified based on 23 m6A regulators, which were correlated with different clinical outcomes and biological functions. Based on the constructed m6Arisk score model, HCC patients can be divided into two distinct risk score subgroups. Further analysis indicated that the m6Arisk score showed excellent prognostic performance. Patients with a high m6Arisk score was significantly associated with poorer clinical outcome, lower drug sensitivity, and higher immune infiltration. Moreover, we developed a nomogram model by incorporating the m6Arisk score and clinicopathological features. The application of the m6Arisk score for the prognostic stratification of HCC has good clinical applicability and clinical net benefit. Conclusion Our findings reveal the crucial role of m6A modification patterns for predicting HCC TME status and prognosis, and highlight the good clinical applicability and net benefit of m6Arisk score in terms of prognosis, immunophenotype, and drug therapy in HCC patients.
Collapse
Affiliation(s)
- Shaohua Xu
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Yi Zhang
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ying Yang
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kexin Dong
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hanfei Zhang
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chunhua Luo
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Song-Mei Liu
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Zhang T, Zhao F, Li J, Sun X, Zhang X, Wang H, Fan P, Lai L, Li Z, Sui T. Programmable RNA 5-methylcytosine (m5C) modification of cellular RNAs by dCasRx conjugated methyltransferase and demethylase. Nucleic Acids Res 2024; 52:2776-2791. [PMID: 38366553 PMCID: PMC11014266 DOI: 10.1093/nar/gkae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
5-Methylcytosine (m5C), an abundant RNA modification, plays a crucial role in regulating RNA fate and gene expression. While recent progress has been made in understanding the biological roles of m5C, the inability to introduce m5C at specific sites within transcripts has hindered efforts to elucidate direct links between specific m5C and phenotypic outcomes. Here, we developed a CRISPR-Cas13d-based tool, named reengineered m5C modification system (termed 'RCMS'), for targeted m5C methylation and demethylation in specific transcripts. The RCMS editors consist of a nuclear-localized dCasRx conjugated to either a methyltransferase, NSUN2/NSUN6, or a demethylase, the catalytic domain of mouse Tet2 (ten-eleven translocation 2), enabling the manipulation of methylation events at precise m5C sites. We demonstrate that the RCMS editors can direct site-specific m5C incorporation and demethylation. Furthermore, we confirm their effectiveness in modulating m5C levels within transfer RNAs and their ability to induce changes in transcript abundance and cell proliferation through m5C-mediated mechanisms. These findings collectively establish RCMS editors as a focused epitranscriptome engineering tool, facilitating the identification of individual m5C alterations and their consequential effects.
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000,China
| | - Feiyu Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000,China
| | - Jinze Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000,China
| | - Xiaodi Sun
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000,China
| | - Xiyun Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000,China
| | - Hejun Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000,China
| | - Peng Fan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000,China
| | - Liangxue Lai
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Zhanjun Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000,China
| | - Tingting Sui
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000,China
| |
Collapse
|
10
|
Zhang Z, Zhang Y. Transcriptional regulation of cancer stem cell: regulatory factors elucidation and cancer treatment strategies. J Exp Clin Cancer Res 2024; 43:99. [PMID: 38561775 PMCID: PMC10986082 DOI: 10.1186/s13046-024-03021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer stem cells (CSCs) were first discovered in the 1990s, revealing the mysteries of cancer origin, migration, recurrence and drug-resistance from a new perspective. The expression of pluripotent genes and complex signal regulatory networks are significant features of CSC, also act as core factors to affect the characteristics of CSC. Transcription is a necessary link to regulate the phenotype and potential of CSC, involving chromatin environment, nucleosome occupancy, histone modification, transcription factor (TF) availability and cis-regulatory elements, which suffer from ambient pressure. Especially, the expression and activity of pluripotent TFs are deeply affected by both internal and external factors, which is the foundation of CSC transcriptional regulation in the current research framework. Growing evidence indicates that regulating epigenetic modifications to alter cancer stemness is effective, and some special promoters and enhancers can serve as targets to influence the properties of CSC. Clarifying the factors that regulate CSC transcription will assist us directly target key stem genes and TFs, or hinder CSC transcription through environmental and other related factors, in order to achieve the goal of inhibiting CSC and tumors. This paper comprehensively reviews the traditional aspects of transcriptional regulation, and explores the progress and insights of the impact on CSC transcription and status through tumor microenvironment (TME), hypoxia, metabolism and new meaningful regulatory factors in conjunction with the latest research. Finally, we present opinions on omnidirectional targeting CSCs transcription to eliminate CSCs and address tumor resistance.
Collapse
Affiliation(s)
- Zhengyue Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, People's Republic of China
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China
| | - Yanjie Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, People's Republic of China.
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China.
| |
Collapse
|
11
|
Katopodi T, Petanidis S, Grigoriadou E, Anestakis D, Charalampidis C, Chatziprodromidou I, Floros G, Eskitzis P, Zarogoulidis P, Koulouris C, Sevva C, Papadopoulos K, Roulia P, Mantalovas S, Dagher M, Karakousis AV, Varsamis N, Vlassopoulos K, Theodorou V, Mystakidou CM, Katsios NI, Farmakis K, Kosmidis C. Immune Specific and Tumor-Dependent mRNA Vaccines for Cancer Immunotherapy: Reprogramming Clinical Translation into Tumor Editing Therapy. Pharmaceutics 2024; 16:455. [PMID: 38675116 PMCID: PMC11053579 DOI: 10.3390/pharmaceutics16040455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Extensive research into mRNA vaccines for cancer therapy in preclinical and clinical trials has prepared the ground for the quick development of immune-specific mRNA vaccines during the COVID-19 pandemic. Therapeutic cancer vaccines based on mRNA are well tolerated, and are an attractive choice for future cancer immunotherapy. Ideal personalized tumor-dependent mRNA vaccines could stimulate both humoral and cellular immunity by overcoming cancer-induced immune suppression and tumor relapse. The stability, structure, and distribution strategies of mRNA-based vaccines have been improved by technological innovations, and patients with diverse tumor types are now being enrolled in numerous clinical trials investigating mRNA vaccine therapy. Despite the fact that therapeutic mRNA-based cancer vaccines have not yet received clinical approval, early clinical trials with mRNA vaccines as monotherapy and in conjunction with checkpoint inhibitors have shown promising results. In this review, we analyze the most recent clinical developments in mRNA-based cancer vaccines and discuss the optimal platforms for the creation of mRNA vaccines. We also discuss the development of the cancer vaccines' clinical research, paying particular attention to their clinical use and therapeutic efficacy, which could facilitate the design of mRNA-based vaccines in the near future.
Collapse
Affiliation(s)
- Theodora Katopodi
- Laboratory of Medical Biology and Genetics, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.K.); (E.G.)
| | - Savvas Petanidis
- Laboratory of Medical Biology and Genetics, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.K.); (E.G.)
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University, Moscow 119992, Russia
| | - Eirini Grigoriadou
- Laboratory of Medical Biology and Genetics, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.K.); (E.G.)
| | - Doxakis Anestakis
- Department of Anatomy, Medical School, University of Cyprus, Nicosia 1678, Cyprus; (D.A.); (C.C.)
| | | | | | - George Floros
- Department of Electrical and Computer Engineering, University of Thessaly, 38334 Volos, Greece;
| | - Panagiotis Eskitzis
- Department of Obstetrics, University of Western Macedonia, 50100 Kozani, Greece;
| | - Paul Zarogoulidis
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece; (P.Z.); (C.K.); (C.S.); (K.P.); (S.M.); (M.D.); (A.V.K.); (C.K.)
| | - Charilaos Koulouris
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece; (P.Z.); (C.K.); (C.S.); (K.P.); (S.M.); (M.D.); (A.V.K.); (C.K.)
| | - Christina Sevva
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece; (P.Z.); (C.K.); (C.S.); (K.P.); (S.M.); (M.D.); (A.V.K.); (C.K.)
| | - Konstantinos Papadopoulos
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece; (P.Z.); (C.K.); (C.S.); (K.P.); (S.M.); (M.D.); (A.V.K.); (C.K.)
| | - Panagiota Roulia
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece; (P.Z.); (C.K.); (C.S.); (K.P.); (S.M.); (M.D.); (A.V.K.); (C.K.)
| | - Stylianos Mantalovas
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece; (P.Z.); (C.K.); (C.S.); (K.P.); (S.M.); (M.D.); (A.V.K.); (C.K.)
| | - Marios Dagher
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece; (P.Z.); (C.K.); (C.S.); (K.P.); (S.M.); (M.D.); (A.V.K.); (C.K.)
| | - Alexandros Vasileios Karakousis
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece; (P.Z.); (C.K.); (C.S.); (K.P.); (S.M.); (M.D.); (A.V.K.); (C.K.)
| | | | - Konstantinos Vlassopoulos
- Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.V.); (V.T.); (C.M.M.)
| | - Vasiliki Theodorou
- Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.V.); (V.T.); (C.M.M.)
| | - Chrysi Maria Mystakidou
- Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.V.); (V.T.); (C.M.M.)
| | - Nikolaos Iason Katsios
- Medical School, Faculty of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Konstantinos Farmakis
- Pediatric Surgery Clinic, General Hospital of Thessaloniki “G. Gennimatas”, Aristotle University of Thessaloniki, 54635 Thessaloniki, Greece;
| | - Christoforos Kosmidis
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece; (P.Z.); (C.K.); (C.S.); (K.P.); (S.M.); (M.D.); (A.V.K.); (C.K.)
| |
Collapse
|
12
|
Zhang Y, Lei Y, Dong Y, Chen S, Sun S, Zhou F, Zhao Z, Chen B, Wei L, Chen J, Meng Z. Emerging roles of RNA ac4C modification and NAT10 in mammalian development and human diseases. Pharmacol Ther 2024; 253:108576. [PMID: 38065232 DOI: 10.1016/j.pharmthera.2023.108576] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024]
Abstract
RNA ac4C modification is a novel and rare chemical modification observed in mRNA. Traditional biochemical studies had primarily associated ac4C modification with tRNA and rRNA until in 2018, Arango D et al. first reported the presence of ac4C modification on mRNA and demonstrated its critical role in mRNA stability and translation regulation. Furthermore, they established that the ac4C modification on mRNA is mediated by the classical N-acetyltransferase NAT10. Subsequent studies have underscored the essential implications of NAT10 and mRNA ac4C modification across both physiological and pathological regulatory processes. In this review, we aimed to explore the discovery history of RNA ac4C modification, its detection methods, and its regulatory mechanisms in disease and physiological development. We offer a forward-looking examination and discourse concerning the employment of RNA ac4C modification as a prospective therapeutic strategy across diverse diseases. Furthermore, we comprehensively summarize the functions and mechanisms of NAT10 in gene expression regulation and pathogenesis independent of RNA ac4C modification.
Collapse
Affiliation(s)
- Yigan Zhang
- Institute of Biomedical Research, Department of Infectious Diseases, Regulatory Mechanism and Targeted Therapy for Liver Cancer Shiyan Key Laboratory, Hubei rovincial Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Yumei Lei
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yanbin Dong
- Institute of Biophysics, Chinese Academy of Sciences, Key Laboratory of Nucleic Acid Biology, Chinese Academy of Sciences, Beijing, China
| | - Shuwen Chen
- School of Biomedical Engineering, Hubei University of Medicine, Shiyan, China
| | - Siyuan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Fange Zhou
- The First Clinical School of Hubei University of Medicine, Shiyan, China
| | - Zhiwen Zhao
- Department of Emergency Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Lv Wei
- Institute of Biophysics, Chinese Academy of Sciences, Key Laboratory of Nucleic Acid Biology, Chinese Academy of Sciences, Beijing, China.
| | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
| | - Zhongji Meng
- Institute of Biomedical Research, Department of Infectious Diseases, Regulatory Mechanism and Targeted Therapy for Liver Cancer Shiyan Key Laboratory, Hubei rovincial Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
| |
Collapse
|
13
|
Mattioli F, Worpenberg L, Li CT, Ibrahim N, Naz S, Sharif S, Firouzabadi SG, Vosoogh S, Saraeva-Lamri R, Raymond L, Trujillo C, Guex N, Antonarakis SE, Ansar M, Darvish H, Liu RJ, Roignant JY, Reymond A. Biallelic variants in NSUN6 cause an autosomal recessive neurodevelopmental disorder. Genet Med 2023; 25:100900. [PMID: 37226891 DOI: 10.1016/j.gim.2023.100900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023] Open
Abstract
PURPOSE 5-methylcytosine RNA modifications are driven by NSUN methyltransferases. Although variants in NSUN2 and NSUN3 were associated with neurodevelopmental diseases, the physiological role of NSUN6 modifications on transfer RNAs and messenger RNAs remained elusive. METHODS We combined exome sequencing of consanguineous families with functional characterization to identify a new neurodevelopmental disorder gene. RESULTS We identified 3 unrelated consanguineous families with deleterious homozygous variants in NSUN6. Two of these variants are predicted to be loss-of-function. One maps to the first exon and is predicted to lead to the absence of NSUN6 via nonsense-mediated decay, whereas we showed that the other maps to the last exon and encodes a protein that does not fold correctly. Likewise, we demonstrated that the missense variant identified in the third family has lost its enzymatic activity and is unable to bind the methyl donor S-adenosyl-L-methionine. The affected individuals present with developmental delay, intellectual disability, motor delay, and behavioral anomalies. Homozygous ablation of the NSUN6 ortholog in Drosophila led to locomotion and learning impairment. CONCLUSION Our data provide evidence that biallelic pathogenic variants in NSUN6 cause one form of autosomal recessive intellectual disability, establishing another link between RNA modification and cognition.
Collapse
Affiliation(s)
- Francesca Mattioli
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Lina Worpenberg
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Cai-Tao Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Nazia Ibrahim
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland; Department of Zoology, Lahore College for Women University, Jail Road Lahore, Pakistan
| | - Shagufta Naz
- Department of Zoology, Lahore College for Women University, Jail Road Lahore, Pakistan
| | - Saima Sharif
- Department of Zoology, Lahore College for Women University, Jail Road Lahore, Pakistan
| | - Saghar G Firouzabadi
- Neuroscience Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran; Nikagene Genetic Diagnostic Laboratory, Gorgan, Golestan, Iran
| | - Shohreh Vosoogh
- Clinical Research Development Unit (CRDU), Sayad Shirazi Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Laure Raymond
- Genetics Department, Laboratoire Eurofins Biomnis, Lyon, France
| | - Carlos Trujillo
- Facultad de Medicina, Departmento de Genetica, Universidad CES, Medellin, Colombia; Genome Unit, KFMRC, Jeddah, Saudi Arabia
| | - Nicolas Guex
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical Faculty, Geneva, Switzerland; Medigenome, Swiss Institute of Genomic Medicine, Geneva, Switzerland
| | - Muhammad Ansar
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Hossein Darvish
- Neuroscience Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ru-Juan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jean-Yves Roignant
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland; Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
14
|
Meng Q, Schatten H, Zhou Q, Chen J. Crosstalk between m6A and coding/non-coding RNA in cancer and detection methods of m6A modification residues. Aging (Albany NY) 2023; 15:6577-6619. [PMID: 37437245 PMCID: PMC10373953 DOI: 10.18632/aging.204836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/15/2023] [Indexed: 07/14/2023]
Abstract
N6-methyladenosine (m6A) is one of the most common and well-known internal RNA modifications that occur on mRNAs or ncRNAs. It affects various aspects of RNA metabolism, including splicing, stability, translocation, and translation. An abundance of evidence demonstrates that m6A plays a crucial role in various pathological and biological processes, especially in tumorigenesis and tumor progression. In this article, we introduce the potential functions of m6A regulators, including "writers" that install m6A marks, "erasers" that demethylate m6A, and "readers" that determine the fate of m6A-modified targets. We have conducted a review on the molecular functions of m6A, focusing on both coding and noncoding RNAs. Additionally, we have compiled an overview of the effects noncoding RNAs have on m6A regulators and explored the dual roles of m6A in the development and advancement of cancer. Our review also includes a detailed summary of the most advanced databases for m6A, state-of-the-art experimental and sequencing detection methods, and machine learning-based computational predictors for identifying m6A sites.
Collapse
Affiliation(s)
- Qingren Meng
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, The Second Hospital Affiliated with the Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Qian Zhou
- International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong Province, China
| | - Jun Chen
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, The Second Hospital Affiliated with the Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| |
Collapse
|
15
|
Guo X, Liu D, Huang Y, Deng Y, Wang Y, Mao J, Zhou Y, Xiong Y, Gao X. Revolutionizing viral disease vaccination: the promising clinical advancements of non-replicating mRNA vaccines. Virol J 2023; 20:64. [PMID: 37029389 PMCID: PMC10081822 DOI: 10.1186/s12985-023-02023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
The mRNA vaccine technology was developed rapidly during the global pandemic of COVID-19. The crucial role of the COVID-19 mRNA vaccine in preventing viral infection also have been beneficial to the exploration and application of other viral mRNA vaccines, especially for non-replication structure mRNA vaccines of viral disease with outstanding research results. Therefore, this review pays attention to the existing mRNA vaccines, which are of great value for candidates for clinical applications in viral diseases. We provide an overview of the optimization of the mRNA vaccine development process as well as the good immune efficacy and safety shown in clinical studies. In addition, we also provide a brief description of the important role of mRNA immunomodulators in the treatment of viral diseases. After that, it will provide a good reference or strategy for research on mRNA vaccines used in clinical medicine with more stable structures, higher translation efficiency, better immune efficacy and safety, shorter production time, and lower production costs than conditional vaccines to be used as preventive or therapeutic strategy for the control of viral diseases in the future.
Collapse
Affiliation(s)
- Xiao Guo
- School of Basic Medicine, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi, 563006 Guizhou People’s Republic of China
| | - Dongying Liu
- School of Basic Medicine, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi, 563006 Guizhou People’s Republic of China
| | - Yukai Huang
- School of Basic Medicine, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi, 563006 Guizhou People’s Republic of China
| | - Youcai Deng
- Department of Hematology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, People’s Republic of China
| | - Ying Wang
- Modern Medical Teaching and Research Section, Department of Tibetan Medicine, University of Tibetan Medicine, No. 10 Dangre Middle Rd, Chengguan District, Lhasa, 850000 Tibet Autonomous Region People’s Republic of China
| | - Jingrui Mao
- School of Basic Medicine, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi, 563006 Guizhou People’s Republic of China
| | - Yuancheng Zhou
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy. No, 6 Niusha Road, Jinjiang District, Chengdu, 610299 People’s Republic of China
| | - Yongai Xiong
- School of Pharmacy, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi, 563006 Guizhou People’s Republic of China
| | - Xinghong Gao
- School of Basic Medicine, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi, 563006 Guizhou People’s Republic of China
- Key Laboratory of Infectious Disease and Bio-Safety, Provincial Department of Education, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi, 563006 Guizhou People’s Republic of China
| |
Collapse
|
16
|
Xia M, Yan R, Wang W, Kong A, Zhang M, Miao Z, Ge W, Wan B, Xu X. The Tet2–Upf1 complex modulates mRNA stability under stress conditions. Front Genet 2023; 14:1158954. [PMID: 37091805 PMCID: PMC10117899 DOI: 10.3389/fgene.2023.1158954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
Introduction: Environmental stress promotes epigenetic alterations that impact gene expression and subsequently participate in the pathological processes of the disorder. Among epigenetic regulations, ten–eleven Translocation (Tet) enzymes oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) in DNA and RNA and function as critical players in the pathogenesis of diseases. Our previous results showed that chronic stress increases the expression of cytoplasmic Tet2 in the hippocampus of mice exposed to chronic mild stress (CMS). Whether the cytoplasmic Tet2 alters RNA 5hmC modification in chronic stress-related processes remains largely unknown.Methods: To explore the role of cytoplasmic Tet2 under CMS conditions, we established CMS mice model and detected the expression of RNA 5hmC by dot blot. We verified the interaction of Tet2 and its interacting protein by co-immunoprecipitation combined with mass spectrometry and screened downstream target genes by cluster analysis of Tet2 and upstream frameshift 1 (Upf1) interacting RNA. The expression of protein was detected by Western blot and the expression of the screened target genes was detected by qRT-PCR.Results: In this study, we found that increased cytoplasmic Tet2 expression under CMS conditions leads to increase in total RNA 5hmC modification. Tet2 interacted with the key non-sense-mediated mRNA decay (NMD) factor Upf1, regulated the stability of stress-related genes such as Unc5b mRNA, and might thereby affect neurodevelopment.Discussion: In summary, this study revealed that Tet2-mediated RNA 5hmC modification is involved in stress-related mRNA stability regulation and may serve as a potential therapeutic target for chronic stress-related diseases such as depression.
Collapse
Affiliation(s)
- Meiling Xia
- Departments of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Rui Yan
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Wenjuan Wang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Anqi Kong
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Meng Zhang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Zhigang Miao
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Wei Ge
- Institute of Neuroscience, Soochow University, Suzhou, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- *Correspondence: Wei Ge, ; Bo Wan, ; Xingshun Xu,
| | - Bo Wan
- Institute of Neuroscience, Soochow University, Suzhou, China
- *Correspondence: Wei Ge, ; Bo Wan, ; Xingshun Xu,
| | - Xingshun Xu
- Departments of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
- *Correspondence: Wei Ge, ; Bo Wan, ; Xingshun Xu,
| |
Collapse
|
17
|
Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther 2023; 8:9. [PMID: 36604431 PMCID: PMC9816309 DOI: 10.1038/s41392-022-01270-x] [Citation(s) in RCA: 360] [Impact Index Per Article: 180.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development and regulatory approval of tumor immunotherapies, including cancer vaccines, adoptive cell therapy and antibody-based therapies, especially for solid tumors. Neoantigens are newly formed antigens generated by tumor cells as a result of various tumor-specific alterations, such as genomic mutation, dysregulated RNA splicing, disordered post-translational modification, and integrated viral open reading frames. Neoantigens are recognized as non-self and trigger an immune response that is not subject to central and peripheral tolerance. The quick identification and prediction of tumor-specific neoantigens have been made possible by the advanced development of next-generation sequencing and bioinformatic technologies. Compared to tumor-associated antigens, the highly immunogenic and tumor-specific neoantigens provide emerging targets for personalized cancer immunotherapies, and serve as prospective predictors for tumor survival prognosis and immune checkpoint blockade responses. The development of cancer therapies will be aided by understanding the mechanism underlying neoantigen-induced anti-tumor immune response and by streamlining the process of neoantigen-based immunotherapies. This review provides an overview on the identification and characterization of neoantigens and outlines the clinical applications of prospective immunotherapeutic strategies based on neoantigens. We also explore their current status, inherent challenges, and clinical translation potential.
Collapse
|
18
|
RNADSN: Transfer-Learning 5-Methyluridine (m5U) Modification on mRNAs from Common Features of tRNA. Int J Mol Sci 2022; 23:ijms232113493. [PMID: 36362279 PMCID: PMC9655583 DOI: 10.3390/ijms232113493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
One of the most abundant non-canonical bases widely occurring on various RNA molecules is 5-methyluridine (m5U). Recent studies have revealed its influences on the development of breast cancer, systemic lupus erythematosus, and the regulation of stress responses. The accurate identification of m5U sites is crucial for understanding their biological functions. We propose RNADSN, the first transfer learning deep neural network that learns common features between tRNA m5U and mRNA m5U to enhance the prediction of mRNA m5U. Without seeing the experimentally detected mRNA m5U sites, RNADSN has already outperformed the state-of-the-art method, m5UPred. Using mRNA m5U classification as an additional layer of supervision, our model achieved another distinct improvement and presented an average area under the receiver operating characteristic curve (AUC) of 0.9422 and an average precision (AP) of 0.7855. The robust performance of RNADSN was also verified by cross-technical and cross-cellular validation. The interpretation of RNADSN also revealed the sequence motif of common features. Therefore, RNADSN should be a useful tool for studying m5U modification.
Collapse
|
19
|
Feng Q, Wang D, Xue T, Lin C, Gao Y, Sun L, Jin Y, Liu D. The role of RNA modification in hepatocellular carcinoma. Front Pharmacol 2022; 13:984453. [PMID: 36120301 PMCID: PMC9479111 DOI: 10.3389/fphar.2022.984453] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/11/2022] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly mortal type of primary liver cancer. Abnormal epigenetic modifications are present in HCC, and RNA modification is dynamic and reversible and is a key post-transcriptional regulator. With the in-depth study of post-transcriptional modifications, RNA modifications are aberrantly expressed in human cancers. Moreover, the regulators of RNA modifications can be used as potential targets for cancer therapy. In RNA modifications, N6-methyladenosine (m6A), N7-methylguanosine (m7G), and 5-methylcytosine (m5C) and their regulators have important regulatory roles in HCC progression and represent potential novel biomarkers for the confirmation of diagnosis and treatment of HCC. This review focuses on RNA modifications in HCC and the roles and mechanisms of m6A, m7G, m5C, N1-methyladenosine (m1A), N3-methylcytosine (m3C), and pseudouridine (ψ) on its development and maintenance. The potential therapeutic strategies of RNA modifications are elaborated for HCC.
Collapse
Affiliation(s)
- Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Tianyi Xue
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Yongjian Gao
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Liqun Sun
- Department of Pediatrics, First Hospital of Jilin University, Changchun, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Dianfeng Liu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
- *Correspondence: Dianfeng Liu,
| |
Collapse
|
20
|
Akinlalu AO, Njoku PC, Nzekwe CV, Oni RO, Fojude T, Faniyi AJ, Olagunju AS. Recent developments in the significant effect of mRNA modification (M6A) in glioblastoma and esophageal cancer. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
21
|
Zhang C, Liu N. N6-methyladenosine (m6A) modification in gynecological malignancies. J Cell Physiol 2022; 237:3465-3479. [PMID: 35802474 DOI: 10.1002/jcp.30828] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 12/27/2022]
Abstract
N6-methyladenosine (m6A) modification is one of the most abundant modifications in eukaryotic mRNA, regulated by m6A methyltransferase and demethylase. m6A modified RNA is specifically recognized and bound by m6A recognition proteins, which mediate splicing, maturation, exonucleation, degradation, and translation. In gynecologic malignancies, m6A RNA modification-related molecules are expressed aberrantly, significantly altering the posttranscriptional methylation level of the target genes and their stability. The m6A modification also regulates related metabolic pathways, thereby controlling tumor development. This review analyzes the composition and mode of action of m6A modification-related proteins and their biological functions in the malignant progression of gynecologic malignancies, which provide new ideas for the early clinical diagnosis and targeted therapy of gynecologic malignancies.
Collapse
Affiliation(s)
- Chunmei Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ning Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
22
|
Chen H, Zhao L, Meng Y, Qian X, Fan Y, Zhang Q, Wang C, Lin F, Chen B, Xu L, Huang W, Chen J, Wang X. Sulfonylurea receptor 1-expressing cancer cells induce cancer-associated fibroblasts to promote non-small cell lung cancer progression. Cancer Lett 2022; 536:215611. [PMID: 35240233 DOI: 10.1016/j.canlet.2022.215611] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 12/27/2022]
Abstract
Cancer-associated fibroblasts (CAFs) play a pivotal role in cancer progression; however, how CAFs are induced remains elusive. Sulfonylurea receptor 1 (SUR1) is a tumor-enhancer in non-small cell lung carcinoma (NSCLC). Here, we probed the influence of SUR1-expressing cancer cells on CAFs. Results showed that high SUR1 expression positively correlated with α-SMA positive staining of CAFs in tumor tissues and poor prognosis of NSCLC patients. SUR1 contributed to normal fibroblast (NF) transformation into CAFs and facilitated the growth and metastasis of NSCLC in vivo. Conditioned medium (CM) and exosomes from SUR1-expressing cancer cells induced CAFs and promoted fibroblast migration. In cancer cells, SUR1 promoted p70S6K-induced KH-type splicing regulatory protein (KHSRP) phosphorylation at S395 to inhibit the binding of KHSRP with let-7a precursor (pre-let-7a) and decreasing mature let-7a-5p expression in cancer cells and exosomes. Let-7a-5p delivered by exosomes blocked NF transformation into CAFs by targeting TGFBR1 to inactivate the TGF-β signaling pathway. Glibenclamide, which targets SUR1, restrained CAFs and suppressed tumor growth in patient-derived xenograft models. Furthermore, we found that let-7a-5p was decreased in the tissues and plasma exosomes of NSCLC patients. In summary, SUR1-expressing cancer cells induce NF transformation into CAFs in the tumor microenvironment and promote NSCLC progression by transferring less exosomal let-7a-5p. Glibenclamide is a promising anti-cancer drug, and plasma exosomal let-7a-5p level is a potential diagnostic biomarker for NSCLC patients. These findings provide new therapeutic strategies by targeting SUR1 in NSCLC.
Collapse
Affiliation(s)
- Hongling Chen
- Department of Pharmacology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Li Zhao
- Department of Pharmacology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yuting Meng
- Department of Pharmacology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xixi Qian
- Department of Pharmacology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Ya Fan
- Department of Pharmacology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Quanli Zhang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, Jiangsu, China
| | - Chao Wang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, Jiangsu, China
| | - Fan Lin
- Department of Cellular Biology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Lin Xu
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, Jiangsu, China.
| | - Wenbin Huang
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China.
| | - Jing Chen
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Xuerong Wang
- Department of Pharmacology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
23
|
Lu HJ, Li J, Yang G, Yi CJ, Zhang D, Yu F, Ma Z. Circular RNAs in stem cells: from basic research to clinical implications. Biosci Rep 2022; 42:BSR20212510. [PMID: 34908111 PMCID: PMC8738868 DOI: 10.1042/bsr20212510] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) are a special class of endogenous RNAs with a wide variety of pathophysiological functions via diverse mechanisms, including transcription, microRNA (miRNA) sponge, protein sponge/decoy, and translation. Stem cells are pluripotent cells with unique properties of self-renewal and differentiation. Dysregulated circRNAs identified in various stem cell types can affect stem cell self-renewal and differentiation potential by manipulating stemness. However, the emerging roles of circRNAs in stem cells remain largely unknown. This review summarizes the major functions and mechanisms of action of circRNAs in stem cell biology and disease progression. We also highlight circRNA-mediated common pathways in diverse stem cell types and discuss their diagnostic significance with respect to stem cell-based therapy.
Collapse
Affiliation(s)
- Hui-Juan Lu
- The First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, China
| | - Juan Li
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Guodong Yang
- Department of Oncology, Huanggang Central Hospital of Yangtze University, Huanggang, Hubei 438000, China
| | - Cun-Jian Yi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, China
| | - Daping Zhang
- The First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Fenggang Yu
- Institute of Life Science, Yinfeng Biological Group, Jinan 250000, China
| | - Zhaowu Ma
- The First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| |
Collapse
|
24
|
Wang X, Wang M, Dai X, Han X, Zhou Y, Lai W, Zhang L, Yang Y, Chen Y, Wang H, Zhao YL, Shen B, Zhang Y, Huang Y, Yang YG. RNA 5-methylcytosine regulates YBX2-dependent liquid-liquid phase separation. FUNDAMENTAL RESEARCH 2022; 2:48-55. [PMID: 38933916 PMCID: PMC11197489 DOI: 10.1016/j.fmre.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
5-Methylcytosine (m5C) is one of the most prevalent internal modifications of messenger RNA (mRNA) in higher eukaryotes. Here we report that Y box protein 2 (YBX2) serves as a novel mammalian m5C binding protein to undergo liquid-liquid phase separation (LLPS) both in vivo and in vitro, and this YBX2-dependent LLPS is enhanced by m5C marked RNA. Furthermore, the crystal structure assay revealed that W100, as a distinct m5C binding site of YBX2, is critical in mediating YBX2 phase separation. Our study resolved the relationship between RNA m5C and phase separation, providing a clue for a new regulatory layer of epigenetics.
Collapse
Affiliation(s)
- Xiuzhi Wang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengke Wang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyuan Dai
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xiao Han
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Weiyi Lai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Liyuan Zhang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Ying Yang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Yusheng Chen
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Hailin Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong-Liang Zhao
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yuhan Zhang
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Ying Huang
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Yun-Gui Yang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
25
|
Naz F, Shi M, Sajid S, Yang Z, Yu C. Cancer stem cells: a major culprit of intra-tumor heterogeneity. Am J Cancer Res 2021; 11:5782-5811. [PMID: 35018226 PMCID: PMC8727794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/25/2021] [Indexed: 06/14/2023] Open
Abstract
Cancer is recognized as a preeminent factor of the world's mortality. Although various modalities have been designed to cure this life-threatening ailment, a significant impediment in the effective output of cancer treatment is heterogeneity. Cancer is characterized as a heterogeneous health disorder that comprises a distinct group of transformed cells to assist anomalous proliferation of affected cells. Cancer stem cells (CSCs) are a leading cause of cancer heterogeneity that is continually transformed by cellular extrinsic and intrinsic factors. They intensify neoplastic cells aggressiveness by strengthening their dissemination, relapse and therapy resistance. Considering this viewpoint, in this review article we have discussed some intrinsic (transcription factors, cell signaling pathways, genetic alterations, epigenetic modifications, non-coding RNAs (ncRNAs) and epitranscriptomics) and extrinsic factors (tumor microenvironment (TME)) that contribute to CSC heterogeneity and plasticity, which may help scientists to meddle these processes and eventually improve cancer research and management. Besides, the potential role of CSCs heterogeneity in establishing metastasis and therapy resistance has been articulated which signifies the importance of developing novel anticancer therapies to target CSCs along with targeting bulk tumor mass to achieve an effective output.
Collapse
Affiliation(s)
- Faiza Naz
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
| | - Mengran Shi
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
| | - Salvia Sajid
- Department of Biotechnology, Jinnah University for WomenKarachi 74600, Pakistan
| | - Zhao Yang
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
- College of Life Science, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim UniversityAlar 843300, Xinjiang, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
| |
Collapse
|
26
|
EFNB1 Acts as a Novel Prognosis Marker in Glioblastoma through Bioinformatics Methods and Experimental Validation. JOURNAL OF ONCOLOGY 2021; 2021:4701680. [PMID: 34824583 PMCID: PMC8610726 DOI: 10.1155/2021/4701680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022]
Abstract
Purpose Ephrin B1 (EFNB1), the Eph-associated receptor tyrosine kinase ligand, is suggested to have an important function in neurodevelopment. However, its contribution to glioblastoma multiforme (GBM) remains uncertain. This study aimed to determine the prognostic power and immune implication of EFNB1 in GBM. Methods We first identified differentially coexpressed genes within GBM relative to noncarcinoma samples from GEO and TCGA databases by WGCNA. The STRING online database and the maximum cluster centrality (MCC) algorithm in Cytoscape software were used to design for predicting protein-protein interactions (PPI) and calculating pivot nodes, respectively. The expression of hub genes in cancer and noncancer tissues was verified by an online tool gene expression profile interactive analysis (GEPIA). Thereafter, the TISIDB online tool with Cox correlation regression method was employed to screen for immunomodulators associated with EFNB1 and to model the risk associated with immunomodulators. Results Altogether 201 differentially expressed genes (DEGs) were discovered. After that, 10 hub genes (CALB2, EFNB1, ENO2, EPHB4, NES, OBSCN, RAB9B, RPL23A, STMN2, and THY1) were incorporated to construct the PPI network. As revealed by survival analysis, EFNB1 upregulation predicted poor overall survival (OS) for GBM cases. Furthermore, we developed a prognostic risk signature according to the EFNB1-associated immunomodulators. Kaplan-Meier survival analysis and receiver operating characteristic method were adopted for analysis, which revealed that our signature showed favorable accuracy of prognosis prediction. Finally, EFNB1 inhibition was found to block cell proliferation and migration in GBM cells. Conclusion The above results indicate that EFNB1 participates in cancer immunity and progression, which is the candidate biomarker for GBM.
Collapse
|
27
|
Ji R, Zhang X. The Roles of RNA N6-Methyladenosine in Regulating Stem Cell Fate. Front Cell Dev Biol 2021; 9:765635. [PMID: 34805173 PMCID: PMC8602194 DOI: 10.3389/fcell.2021.765635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/20/2021] [Indexed: 01/12/2023] Open
Abstract
RNA N6-methyladenosine (m6A) modification has important regulatory roles in determining cell fate. The reversible methylation process of adding and removing m6A marks is dynamically regulated by a fine-tuned coordination of many enzymes and binding proteins. Stem cells have self-renewal and pluripotent potential and show broad prospects in regenerative medicine and other fields. Stem cells have also been identified in cancer, which is linked to cancer metastasis, therapy resistance, and recurrence. Herein, we aimed to review the molecular mechanism that controls the reversible balance of m6A level in stem cells and the effect of m6A modification on the balance between pluripotency and differentiation. Additionally, we also elaborated the association between aberrant m6A modification and the maintenance of cancer stem cells in many cancers. Moreover, we discussed about the clinical implications of m6A modification in cancer stem cells for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Runbi Ji
- The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
28
|
Pan K, Guo G, Xue X. Messenger RNA modifications: clinical clarification and significance. Epigenomics 2021; 13:1901-1903. [PMID: 34676794 DOI: 10.2217/epi-2021-0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Kan Pan
- First Clinical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Gangqiang Guo
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research & Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens & Immunity, Department of Microbiology & Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiangyang Xue
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research & Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens & Immunity, Department of Microbiology & Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
29
|
Sun J, Ping Y, Huang J, Zeng B, Ji P, Li D. N6-Methyladenosine-Regulated mRNAs: Potential Prognostic Biomarkers for Patients With Lung Adenocarcinoma. Front Cell Dev Biol 2021; 9:705962. [PMID: 34422827 PMCID: PMC8377381 DOI: 10.3389/fcell.2021.705962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Aberrant regulation of m6A mRNA modification can lead to changes in gene expression, thus contributing to tumorigenesis in several types of solid tumors. In this study, by integrating analyses of m6A methylation and mRNA expression, we identified 84 m6A-regulated mRNAs in lung adenocarcinoma (LUAD). Although the m6A methylation levels of total RNA in LUAD patient tumor tissue were reduced, the majority (75.2%) of m6A-regulated mRNAs were hypermethylated. The m6A-hypermethylated mRNAs were mainly enriched in terms related to transcription factor activity. We established a 10-m6A-regulated-mRNA signature score system through least absolute shrinkage and selection operator Cox regression analysis, with its predictive value validated by Kaplan–Meier curve and time-dependent receiver operating characteristic curves. RFXAP and KHDRBS2 from the signature also exhibited an independent prognostic value. The co-expression and interaction network analyses demonstrated the strong correlation between m6A regulators and the genes in the signature, further supporting the results of the m6A methylation modification patterns. These findings highlight the potential utility of integrating multi-omics data (m6A methylation level and mRNA expression) to accurately obtain potential prognostic biomarkers, which may provide important insights into developing novel and effective therapies for LUAD.
Collapse
Affiliation(s)
- Junjun Sun
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yili Ping
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingjuan Huang
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bingjie Zeng
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ping Ji
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dong Li
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
30
|
Zhou Y, Liao Y, Zhang C, Liu J, Wang W, Huang J, Du Q, Liu T, Zou Q, Huang H, Liu P, Ooi S, Chen R, Xia M, Jiang H, Xu M, Pan Y, Yao S. TAB2 Promotes the Stemness and Biological Functions of Cervical Squamous Cell Carcinoma Cells. Stem Cells Int 2021; 2021:6550388. [PMID: 34306095 PMCID: PMC8266450 DOI: 10.1155/2021/6550388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/12/2021] [Accepted: 06/11/2021] [Indexed: 01/06/2023] Open
Abstract
Cancer stem cells are a key population participating in the promotion of the cervical cancer progression through interacting with cancer cells. Existing studies have preliminary revealed that cervical cancer stem cells contribute to tumor recurrence and chemotherapy resistance. However, the specific mechanisms involved in regulating cell functions remain largely unknown. Here, we analyzed published data from public databases and our global transcriptome data, thus identifying cancer-related signaling pathways and molecules. According to our findings, upregulated TAB2 was correlated to stem cell-like properties of cervical cancer. Immunohistochemistry staining of TAB2 in normal and cervical cancer tissues was performed. The cell function experiments demonstrated that knockdown of TAB2 reduced the stemness of cervical cancer cells and, importantly, prevented cervical cancer progression. Collectively, the therapeutic scheme targeting TAB2 may provide an option for overcoming tumor relapse and chemoresistance of cervical cancer via obstructing stemness maintenance.
Collapse
Affiliation(s)
- Yijia Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| | - Yuandong Liao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| | - Chunyu Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| | - Junxiu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| | - Jiaming Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| | - Qiqiao Du
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| | - Tianyu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| | - Qiaojian Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| | - Hua Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| | - Pan Liu
- Department of Obstetrics and Gynecology, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, China
| | - Shiyin Ooi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| | - Run Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| | - Meng Xia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| | - Hongye Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| | - Manman Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| | - Yuwen Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| |
Collapse
|
31
|
Zhang W, Lin L, Xia L, Cai W, Dai W, Zou C, Yin L, Tang D, Xu Y, Dai Y. Multi-omics analyses of human colorectal cancer revealed three mitochondrial genes potentially associated with poor outcomes of patients. J Transl Med 2021; 19:273. [PMID: 34174878 PMCID: PMC8236205 DOI: 10.1186/s12967-021-02939-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 06/13/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The identification of novel functional biomarkers is essential for recognizing high-risk patients, predicting recurrence, and searching for appropriate treatment. However, no prognostic biomarker has been applied for colorectal cancer (CRC) in the clinic. METHODS Integrated with transcriptomic data from public databases, multi-omics examinations were conducted to search prognostic biomarkers for CRC. Moreover, the potential biological functions and regulatory mechanism of these predictive genes were also explored. RESULTS In this study, we revealed that three mitochondrial genes were associated with the poor prognosis of CRC. Integrated analyses of transcriptome and proteome of CRC patients disclosed numerous down-regulated mitochondrial genes at both mRNA and protein levels, suggesting a vital role of mitochondria in carcinogenesis. Combined with the bioinformatics studies of transcriptomic datasets of 538 CRC patients, three mitochondrial prognostic genes were eventually selected out, including HIGD1A, SUCLG2, and SLC25A24. The expression of HIGD1A exhibited a significant reduction in two subtypes of adenoma and six subtypes of CRC, while the down-regulation of SUCLG2 and SLC25A24 showed more advantages in rectal mucinous adenocarcinoma. Moreover, we unveiled that these three genes had common expressions and might collaboratively participate in the synthesis of ribosomes. Our original multi-omics datasets, including DNA methylation, structural variants, chromatin accessibility, and phosphoproteome, further depicted the altered modifications on their potential transcriptional factors. CONCLUSIONS In summary, HIGD1A, SUCLG2, and SLC25A24 might serve as predictive biomarkers for CRC. The biological activities they involved in and their upstream regulators we uncovered would provide a functional context for the further-in-depth mechanism study.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China.,The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Liewen Lin
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Ligang Xia
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Wanxia Cai
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Weier Dai
- College of Natural Science, University of Texas at Austin, Austin, 78721, USA
| | - Chang Zou
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Lianghong Yin
- Department of Nephrology, Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Donge Tang
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China.
| | - Yong Xu
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518028, China.
| | - Yong Dai
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China.
| |
Collapse
|
32
|
Khan P, Siddiqui JA, Lakshmanan I, Ganti AK, Salgia R, Jain M, Batra SK, Nasser MW. RNA-based therapies: A cog in the wheel of lung cancer defense. Mol Cancer 2021; 20:54. [PMID: 33740988 PMCID: PMC7977189 DOI: 10.1186/s12943-021-01338-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Lung cancer (LC) is a heterogeneous disease consisting mainly of two subtypes, non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), and remains the leading cause of death worldwide. Despite recent advances in therapies, the overall 5-year survival rate of LC remains less than 20%. The efficacy of current therapeutic approaches is compromised by inherent or acquired drug-resistance and severe off-target effects. Therefore, the identification and development of innovative and effective therapeutic approaches are critically desired for LC. The development of RNA-mediated gene inhibition technologies was a turning point in the field of RNA biology. The critical regulatory role of different RNAs in multiple cancer pathways makes them a rich source of targets and innovative tools for developing anticancer therapies. The identification of antisense sequences, short interfering RNAs (siRNAs), microRNAs (miRNAs or miRs), anti-miRs, and mRNA-based platforms holds great promise in preclinical and early clinical evaluation against LC. In the last decade, RNA-based therapies have substantially expanded and tested in clinical trials for multiple malignancies, including LC. This article describes the current understanding of various aspects of RNA-based therapeutics, including modern platforms, modifications, and combinations with chemo-/immunotherapies that have translational potential for LC therapies.
Collapse
Affiliation(s)
- Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Apar Kishor Ganti
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Division of Oncology-Hematology, Department of Internal Medicine, VA-Nebraska Western Iowa Health Care System, Omaha, NE, 68105, USA
- Division of Oncology-Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, 91010, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA.
| |
Collapse
|
33
|
Chen YS, Yang WL, Zhao YL, Yang YG. Dynamic transcriptomic m 5 C and its regulatory role in RNA processing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1639. [PMID: 33438329 DOI: 10.1002/wrna.1639] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
RNA 5-methylcytosine (m5 C) is a prevalent RNA modification in multiple RNA species, including messenger RNAs (mRNAs), transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), and noncoding RNAs (ncRNAs), and broadly distributed from archaea, prokaryotes to eukaryotes. The multiple detecting techniques of m5 C have been developed, such as m5 C-RIP-seq, miCLIP-seq, AZA-IP-seq, RNA-BisSeq, TAWO-seq, and Nanopore sequencing. These high-throughput techniques, combined with corresponding analysis pipeline, provide a precise m5 C landscape contributing to the deciphering of its biological functions. The m5 C modification is distributed along with mRNA and enriched around 5'UTR and 3'UTR, and conserved in tRNAs and rRNAs. It is dynamically regulated by its related enzymes, including methyltransferases (NSUN, DNMT, and TRDMT family members), demethylases (TET families and ALKBH1), and binding proteins (ALYREF and YBX1). So far, accumulative studies have revealed that m5 C participates in a variety of RNA metabolism, including mRNA export, RNA stability, and translation. Depletion of m5 C modification in the organism could cause dysfunction of mitochondria, drawback of stress response, frustration of gametogenesis and embryogenesis, abnormality of neuro and brain development, and has been implicated in cell migration and tumorigenesis. In this review, we provide a comprehensive summary of dynamic regulatory elements of RNA m5 C, including methyltransferases (writers), demethylases (erasers), and binding proteins (readers). We also summarized the related detecting technologies and biological functions of the RNA 5-methylcytosine, and provided future perspectives in m5 C research. This article is categorized under: RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Yu-Sheng Chen
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,China National Center For Bioinformation, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Lan Yang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,China National Center For Bioinformation, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Yong-Liang Zhao
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,China National Center For Bioinformation, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yun-Gui Yang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,China National Center For Bioinformation, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
34
|
Stockert JA, Weil R, Yadav KK, Kyprianou N, Tewari AK. Pseudouridine as a novel biomarker in prostate cancer. Urol Oncol 2021; 39:63-71. [PMID: 32712138 PMCID: PMC7880613 DOI: 10.1016/j.urolonc.2020.06.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/16/2020] [Accepted: 06/21/2020] [Indexed: 01/25/2023]
Abstract
Epitranscriptomic analysis has recently led to the profiling of modified nucleosides in cancer cell biological matrices, helping to elucidate their functional roles in cancer and reigniting interest in exploring their use as potential markers of cancer development and progression. Pseudouridine, one of the most well-known and the most abundant of the RNA nucleotide modifications, is the C5-glycoside isomer of uridine and its distinctive physiochemical properties allows it to perform many essential functions. Pseudouridine functionally (a) confers rigidity to local RNA structure by enhancing RNA stacking, engaging in a cooperative effect on neighboring nucleosides that overall contributes to RNA stabilization (b) refines the structure of tRNAs, which influences their decoding activity (c) facilitates the accuracy of decoding and proofreading during translation and efficiency of peptide bond formation, thus collectively improving the fidelity of protein biosynthesis and (e) dynamically regulates mRNA coding and translation. Biochemical synthesis of pseudouridine is carried out by pseudouridine synthases. In this review we discuss the evidence supporting an association between elevated pseudouridine levels with the incidence and progression of human prostate cancer and the translational significance of the value of this modified nucleotide as a novel biomarker in prostate cancer progression to advanced disease.
Collapse
Affiliation(s)
- Jennifer A Stockert
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Rachel Weil
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Kamlesh K Yadav
- Department of Engineering Medicine, Texas A&M Health Science Center College of Medicine, Houston, TX 77030
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, NY 10029.
| | - Ashutosh K Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| |
Collapse
|
35
|
Vågbø CB, Slupphaug G. RNA in DNA repair. DNA Repair (Amst) 2020; 95:102927. [DOI: 10.1016/j.dnarep.2020.102927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/22/2022]
|
36
|
Li J, Zhang C, Yuan X, Ren Z, Yu Z. Correlations between stemness indices for hepatocellular carcinoma, clinical characteristics, and prognosis. Am J Transl Res 2020; 12:5496-5510. [PMID: 33042433 PMCID: PMC7540154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Recent studies have shown that cancer stem cells (CSCs) are involved in the occurrence and development of hepatocellular carcinoma (HCC). However, potential mechanisms for this have not yet been elucidated. We constructed a model based on the Progenitor Cell Biology Consortium database to generate stemness indices. We then utilized RNA-seq data and clinical information from the Cancer Genome Atlas (CGA) and International Cancer Genome Consortium (ICGC) for model predictions and verification. An mRNA gene expression-based stemness index (mRNAsi) and a DNA methylation-based stemness index (mDNAsi) were both calculated through one-class logistic regression. By applying univariate Cox regression analysis, we found that the mRNAsi and the mDNAsi correlated significantly with overall survival. Functional prediction analyses were used to characterize implicated genes and their degree of involvement as network hubs through protein-protein interaction analysis, and Spearman's rank correlation coefficient test was used to assess the relationship between hub genes and indices for stemness. The mRNAsi values for CGA and ICGC carcinoma samples correlated significantly with negative clinical characteristics and overall survival, whereas gene and protein-protein interaction analyses revealed that SNAP25, KPT19, GABBR1, and EPCAM were negatively associated with clinical mDNAsi scores. Collectively, the data suggest that our new stemness model based on related genes may predict patient prognoses.
Collapse
Affiliation(s)
- Juan Li
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, P.R. China
- Department of Infectious Diseases, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, P.R. China
| | - Chunting Zhang
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, P.R. China
- Department of Infectious Diseases, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, P.R. China
| | - Xin Yuan
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, P.R. China
- Department of Infectious Diseases, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, P.R. China
| | - Zhigang Ren
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, P.R. China
- Department of Infectious Diseases, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, P.R. China
| | - Zujiang Yu
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, P.R. China
- Department of Infectious Diseases, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, P.R. China
| |
Collapse
|
37
|
Wang Q, Zhang Q, Huang Y, Zhang J. m 1A Regulator TRMT10C Predicts Poorer Survival and Contributes to Malignant Behavior in Gynecological Cancers. DNA Cell Biol 2020; 39:1767-1778. [PMID: 32833542 DOI: 10.1089/dna.2020.5624] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
N1-methyladenosine (m1A) is an important post-transcriptional modification in RNA, and plays critical roles in cellular functions. However, the relationship between m1A regulators and clinical significance of gynecological cancers remains unknown. In this study, we systematically analyzed RNA-seq and clinical data from several public database. Cell proliferation and migration assays were performed to verify the function of the m1A writer TRMT10C in cancer cells. We observed genetic alterations and dysregulated expressions of m1A regulators in gynecological cancer samples. We demonstrated that several m1A regulators could serve as prognostic biomarkers for gynecological cancer patients. The high correlations among the expression of m1A, N6-methyladenosine (m6A), and 5mC regulators were also revealed. Gene set enrichment analysis indicated that the mechanism of TRMT10C in regulating tumorigenesis was related to a variety of cancer-related pathways. Moreover, silencing TRMT10C suppressed the proliferation, colony formation, and migration of ovarian cancer and cervical cancer cells. In summary, our results highlight the importance of m1A regulators in regulating oncogenesis, and indicate that targeting specific m1A regulators might be a potential therapeutic strategy for gynecological cancers.
Collapse
Affiliation(s)
- Qingying Wang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, P.R. China
| | - Qinyi Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Yanjuan Huang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, P.R. China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, P.R. China
| |
Collapse
|