1
|
Júnior AQDS, Rodrigues GDS, Barroso ADS, Figueiredo PLB, Machado FP, Ferreira MA, Fernandes CP, dos Santos GB, Mourão RHV. Essential Oil of Lippia origanoides Kunth: Nanoformulation, Anticholinesterase Activity, and Molecular Docking. Molecules 2025; 30:1554. [PMID: 40286153 PMCID: PMC11990080 DOI: 10.3390/molecules30071554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 04/29/2025] Open
Abstract
This study investigates the therapeutic potential of Lippia origanoides essential oil (LOEO) in neurological and pharmaceutical applications. The chemical composition of LOEO was analyzed using gas chromatography-mass spectrometry (GC-MS), revealing major constituents, such as carvacrol, thymol, and γ-gurjunene, known for their antioxidant and antimicrobial properties. LOEO demonstrated significant acetylcholinesterase (AChE)-inhibitory activity, particularly in a nanoformulation that enhances bioavailability and stability. Additionally, the major constituent carvacrol, when tested in isolation, also exhibited AChE-inhibitory activity comparable to that of the nanoformulation. Molecular docking analysis indicated strong binding affinities between LOEO compounds and AChE, supporting its therapeutic potential for neurodegenerative diseases like Alzheimer's. Additionally, in silico pharmacokinetic predictions revealed favorable absorption and blood-brain barrier penetration profiles for key constituents. Despite promising results, this study acknowledges the need for in vivo validation and long-term stability assessments of the nanoformulation. Future research should focus on pharmacodynamic studies and evaluating the oil's effectiveness in animal models. These findings highlight LOEO as a valuable candidate for developing natural therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Antônio Quaresma da Silva Júnior
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede Bionorte, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil;
- Laboratório de Bioprospecção e Biologia Experimental, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil; (G.d.S.R.); (A.d.S.B.)
| | - Gabriela dos Santos Rodrigues
- Laboratório de Bioprospecção e Biologia Experimental, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil; (G.d.S.R.); (A.d.S.B.)
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Oeste do Pará, Santarém 68035-110, PA, Brazil;
| | - Adenilson de Sousa Barroso
- Laboratório de Bioprospecção e Biologia Experimental, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil; (G.d.S.R.); (A.d.S.B.)
| | - Pablo Luis Baia Figueiredo
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede Bionorte, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil;
- Laboratório de Química dos Produtos Naturais, Universidade do Estado do Pará, Belém 66095-015, PA, Brazil
| | - Francisco Paiva Machado
- Laboratório de Tecnologia de Produtos Naturais—LTPN, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói 24241-000, RJ, Brazil; (F.P.M.); (M.A.F.)
- Programa de Pós-Graduação em Ciências Aplicadas a Produtos para a Saúde, Universidade Federal Fluminense, Niterói 24241-000, RJ, Brazil
| | - Mikaela Amaral Ferreira
- Laboratório de Tecnologia de Produtos Naturais—LTPN, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói 24241-000, RJ, Brazil; (F.P.M.); (M.A.F.)
| | - Caio Pinho Fernandes
- Laboratory of Phytopharmaceutical Nanobiotechnology, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil;
| | - Gabriela B. dos Santos
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Oeste do Pará, Santarém 68035-110, PA, Brazil;
| | - Rosa Helena V. Mourão
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede Bionorte, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil;
- Laboratório de Bioprospecção e Biologia Experimental, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil; (G.d.S.R.); (A.d.S.B.)
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Oeste do Pará, Santarém 68035-110, PA, Brazil;
| |
Collapse
|
2
|
Henrique Moniz AM, Xavier Junior FH, Melo Martins Silva G, Reis de Melo ACG, Silva MMCL, Paiva WS, Rocha HAO, da Costa LAMA, Melo Filho AAD, Oliveira RDP. Lippia origanoides essential oil increases longevity and ameliorates β-amyloid peptide-induced toxicity in Caenorhabditis elegans. Nat Prod Res 2025; 39:695-703. [PMID: 38041623 DOI: 10.1080/14786419.2023.2287183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/10/2023] [Accepted: 11/18/2023] [Indexed: 12/03/2023]
Abstract
Lippia origanoides essential oil (LOEO) is extensively utilised as food preservative due to its antioxidant and antibacterial activities. In this study, the antioxidant and anti-ageing effects of LOEO was investigated in vivo using the nematode Caenorhabditis elegans. The gas chromatography-mass spectrometry analysis indicated that the main components of LOEO are carvacrol and thymol. LOEO treatment improved physiological parameters such as pharyngeal pumping, locomotion and body size indicating that is not toxic to C. elegans. LOEO treatment showed antioxidant effect in C. elegans by reducing endogenous ROS (Reactive Oxygen Species) production and increasing their survival under oxidative stress. Finally, LOEO treatment significantly extended C. elegans lifespan and alleviated the paralysis induced by β-amyloid peptide overexpression in the muscle. This work demonstrates for the first time LOEO antioxidant and anti-ageing properties on an organism level providing a valuable proof of principle to support further studies in the development of nutraceuticals or antioxidant phytotherapy.
Collapse
Affiliation(s)
- Ana Maria Henrique Moniz
- Rede Norte de Biotecnologia (BIONORTE), Universidade Federal de Roraima, Boa Vista, Brazil
- Secretaria Estadual de Educação e Cultura (SEED), Boa Vista, Brazil
- Departamento de Farmácia, Faculdades Cathedral, Boa Vista, Brazil
| | - Francisco Humberto Xavier Junior
- Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa, Brazil
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos (PPGPNSB), Universidade Federal da Paraíba, João Pessoa, Brazil
| | | | - Ana Cristina Gonçalves Reis de Melo
- Núcleo de Pesquisa e Pós-graduação em Ciências e Tecnologia, Laboratório de Química Ambiental e Automação e Instrumentação, Universidade Federal de Roraima, Boa Vista, Brazil
| | | | - Weslley Souza Paiva
- Programa de Pós Graduação em Bioquímica e Biologia Molecular, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Programa de Pós Graduação em Bioquímica e Biologia Molecular, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Luiz Antônio Mendonça Alves da Costa
- Rede Norte de Biotecnologia (BIONORTE), Universidade Federal de Roraima, Boa Vista, Brazil
- Departamento de química, Universidade Federal de Roraima, Boa Vista, Brazil
| | - Antônio Alves de Melo Filho
- Rede Norte de Biotecnologia (BIONORTE), Universidade Federal de Roraima, Boa Vista, Brazil
- Departamento de química, Universidade Federal de Roraima, Boa Vista, Brazil
| | - Riva de Paula Oliveira
- Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
3
|
Tareen FK, Catenacci L, Perteghella S, Sorrenti M, Bonferoni MC. Carvacrol Essential Oil as a Neuroprotective Agent: A Review of the Study Designs and Recent Advances. Molecules 2024; 30:104. [PMID: 39795159 PMCID: PMC11721141 DOI: 10.3390/molecules30010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/23/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
Neurodegenerative diseases were mostly perceived as diseases of ageing populations, but now-a-days, these diseases pose a threat to populations of all age groups despite significant improvements in quality of life. Almost all essential oils (EOs) have been reported to have some neuroprotective abilities and have been used as supplements for good mental health over the centuries. This review highlights the therapeutic potential of one such monoterpene phenolic EO, carvacrol (CV), that has the potential to be used as a main therapeutic intervention for neurodegenerative disorders. Three libraries, Google Scholar, PubMed, and ScienceDirect, were explored for research studies related to the neuroprotective roles of CV. All the research articles from these libraries were sorted out, with the first article tracing back to 2009, and the latest article was published in 2024. The positive effects of CV in the treatment of Alzheimer's and Parkinson's Diseases, multiple sclerosis, ischemia, and behavioural disorders have been supported with evidence. This review not only focused on study designs and the pharmacological pathways taken by CV for neuroprotection but also focused on demographics, illustrating the trend of CV research studies in certain countries and the preferences for the use of in vitro or in vivo models in studies. Our review provides useful evidence about the neuroprotective potential of CV; however, a lack of studies was observed regarding CV encapsulation in proper dosage forms, in particular nanoparticles, which could be further explored for CV delivery to the central nervous system.
Collapse
Affiliation(s)
| | | | | | - Milena Sorrenti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (F.K.T.); (L.C.); (S.P.); (M.C.B.)
| | | |
Collapse
|
4
|
da Silva AT, Cândido AECM, Júnior EDCM, do É GN, Moura MPS, Souza RDFS, Guimarães ML, Peixoto RDM, de Oliveira HP, da Costa MM. Bactericidal and Synergistic Effects of Lippia origanoides Essential Oil and Its Main Constituents against Multidrug-Resistant Strains of Acinetobacter baumannii. ACS OMEGA 2024; 9:43927-43939. [PMID: 39493982 PMCID: PMC11525495 DOI: 10.1021/acsomega.4c07565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024]
Abstract
Bacterial resistance in Acinetobacter baumannii is a significant public health challenge, as these bacteria can evade multiple antibiotics, leading to difficult-to-treat infections with high mortality rates. As part of the search for alternatives, essential oils from medicinal plants have shown promising antibacterial potential due to their diverse chemical constituents. This study evaluated the antibacterial, antibiofilm, and synergistic activities of the essential oil of Lippia origanoides (EOLo) and its main constituents against multidrug-resistant clinical isolates of A. baumannii. Additionally, the antibacterial and antibiofilm potential of a nanoemulsion containing carvacrol (NE-CAR) was assessed. EOLo was extracted through hydrodistillation, and its components were identified via gas chromatography coupled with mass spectrometry. The A. baumannii isolates (n = 9) were identified and tested for antimicrobial susceptibility using standard disk diffusion methods. Antibacterial activity was determined by broth microdilution, while antibiofilm activity was measured using colorimetric methods with crystal violet and scanning electron microscopy. Synergism tests with antibiotics (meropenem, ciprofloxacin, gentamicin, and ampicillin+sulbactam) were performed using the checkerboard method. The primary constituents of EOLo included carvacrol (48.44%), p-cymene (14.58%), and thymol (10.16%). EOLo, carvacrol, and thymol demonstrated significant antibacterial activity, with carvacrol showing the strongest effect. They were also effective in reducing biofilm formation, as was NE-CAR. The combinations with antibiotics revealed significant synergistic effects, lowering the minimum inhibitory concentration of the tested antibiotics. Therefore, this study confirms the notable antibacterial activity of the essential oil of L. origanoides and its constituents, especially carvacrol, suggesting its potential as a therapeutic alternative for A. baumannii infections.
Collapse
Affiliation(s)
- Alisson T. da Silva
- Animal
Microbiology and Immunology Laboratory, Universidade Federal do Vale do São Francisco (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco 56300-000, Brazil
| | - Ana Elisa C. M. Cândido
- Animal
Microbiology and Immunology Laboratory, Universidade Federal do Vale do São Francisco (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco 56300-000, Brazil
| | - Edilson do C. M. Júnior
- Animal
Microbiology and Immunology Laboratory, Universidade Federal do Vale do São Francisco (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco 56300-000, Brazil
| | - Gutiele N. do É
- Animal
Microbiology and Immunology Laboratory, Universidade Federal do Vale do São Francisco (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco 56300-000, Brazil
| | - Marigilson P. S. Moura
- College
of Pharmaceutical Sciences (CFARM), Universidade
Federal do Vale do São Francisco (UNIVASF), Av. José de Sá Maniçoba, Centro, Petrolina, Pernambuco 56304-205, Brazil
| | - Renata de F. S. Souza
- Animal
Microbiology and Immunology Laboratory, Universidade Federal do Vale do São Francisco (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco 56300-000, Brazil
| | - Milena L. Guimarães
- Laboratory
of Impedance Spectroscopy and Organic Materials, Institute of Materials
Science, Universidade Federal do Vale do
São Francisco (UNIVASF), Juazeiro, Bahia 48902-300, Brazil
| | - Rodolfo de M. Peixoto
- Animal
Microbiology and Immunology Laboratory, Universidade Federal do Vale do São Francisco (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco 56300-000, Brazil
| | - Helinando P. de Oliveira
- Laboratory
of Impedance Spectroscopy and Organic Materials, Institute of Materials
Science, Universidade Federal do Vale do
São Francisco (UNIVASF), Juazeiro, Bahia 48902-300, Brazil
| | - Mateus M. da Costa
- Animal
Microbiology and Immunology Laboratory, Universidade Federal do Vale do São Francisco (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco 56300-000, Brazil
| |
Collapse
|
5
|
Bedoya-Agudelo JP, López-Carvajal JE, Quiguanás-Guarín ES, Cardona N, Padilla-Sanabria L, Castaño-Osorio JC. Assessment of Antimicrobial and Cytotoxic Activities of Liposomes Loaded with Curcumin and Lippia origanoides Essential Oil. Biomolecules 2024; 14:851. [PMID: 39062565 PMCID: PMC11275147 DOI: 10.3390/biom14070851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Introduction: Curcumin and Lippia origanoides essential oils have a broad spectrum of biological activities; however, their physicochemical instability, low solubility, and high volatility limit their therapeutic use. Encapsulation in liposomes has been reported as a feasible approach to increase the physicochemical stability of active substances, protect them from interactions with the environment, modulate their release, reduce their volatility, improve their bioactivity, and reduce their toxicity. To date, there are no reports on the co-encapsulation of curcumin and Lippia origanoides essential oils in liposomes. Therefore, the objective of this work is to prepare and physiochemical characterize liposomes loaded with the mixture of these compounds and to evaluate different in vitro biological activities. (2) Methods: Liposomes were produced using the thin-layer method and physiochemical characteristics were calculated. The antimicrobial and cytotoxic activities of both encapsulated and non-encapsulated compounds were evaluated. (3) Results: Empty and loaded nanometric-sized liposomes were obtained that are monodisperse and have a negative zeta potential. They inhibited the growth of Staphylococcus aureus and did not exhibit cytotoxic activity against mammalian cells. (4) Conclusions: Encapsulation in liposomes was demonstrated to be a promising strategy for natural compounds possessing antimicrobial activity.
Collapse
Affiliation(s)
- Juan Pablo Bedoya-Agudelo
- Molecular Immunology Group (GYMOL), Center of Biomedical Research, Faculty of Health Sciences, Quindío University, Armenia 630003, Colombia; (J.P.B.-A.); (J.E.L.-C.); (E.S.Q.-G.); (J.C.C.-O.)
| | - Jhon Esteban López-Carvajal
- Molecular Immunology Group (GYMOL), Center of Biomedical Research, Faculty of Health Sciences, Quindío University, Armenia 630003, Colombia; (J.P.B.-A.); (J.E.L.-C.); (E.S.Q.-G.); (J.C.C.-O.)
| | - Edwin Stiven Quiguanás-Guarín
- Molecular Immunology Group (GYMOL), Center of Biomedical Research, Faculty of Health Sciences, Quindío University, Armenia 630003, Colombia; (J.P.B.-A.); (J.E.L.-C.); (E.S.Q.-G.); (J.C.C.-O.)
| | - Nestor Cardona
- Group of Investigation in Oral Health, Faculty of Dentistry, Antonio Nariño University, Armenia 630001, Colombia;
| | - Leonardo Padilla-Sanabria
- Molecular Immunology Group (GYMOL), Center of Biomedical Research, Faculty of Health Sciences, Quindío University, Armenia 630003, Colombia; (J.P.B.-A.); (J.E.L.-C.); (E.S.Q.-G.); (J.C.C.-O.)
| | - Jhon Carlos Castaño-Osorio
- Molecular Immunology Group (GYMOL), Center of Biomedical Research, Faculty of Health Sciences, Quindío University, Armenia 630003, Colombia; (J.P.B.-A.); (J.E.L.-C.); (E.S.Q.-G.); (J.C.C.-O.)
| |
Collapse
|
6
|
Lopes APR, Andrade AL, Pinheiro ADA, de Sousa LS, Malveira EA, Oliveira FFM, de Albuquerque CC, Teixeira EH, de Vasconcelos MA. Lippia grata Essential Oil Acts Synergistically with Ampicillin Against Staphylococcus aureus and its Biofilm. Curr Microbiol 2024; 81:176. [PMID: 38755426 DOI: 10.1007/s00284-024-03690-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024]
Abstract
Antimicrobial resistance (AMR) presents a global challenge as microorganisms evolve to withstand the effects of antibiotics. In addition, the improper use of antibiotics significantly contributes to the AMR acceleration. Essential oils have garnered attention for their antimicrobial potential. Indeed, essential oils extracted from plants contain compounds that exhibit antibacterial activity, including against resistant microorganisms. Hence, this study aimed to evaluate the antimicrobial and antibiofilm activity of the essential oil (EO) extracted from Lippia grata and its combination with ampicillin against Staphylococcus aureus strains (ATCC 25923, ATCC 700698, and JKD6008). The plant material (leaves) was gathered in Mossoro, RN, and the EO was obtained using the hydrodistillation method with the Clevenger apparatus. The antimicrobial activity of the EO was assessed through minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. Antibiofilm activity was evaluated by measuring biomass using crystal violet (CV) staining, viable cell counting, and analysis of preformed biofilms. In addition, the synergistic effects of the EO in combination with ampicillin were examined by scanning electron and confocal microscopy. The EO displayed a MIC value of 2.5 mg/mL against all tested S. aureus strains and an MBC only against S. aureus JKD6008 at 2.5 mg/mL. L. grata EO caused complete biofilm inhibition at concentrations ranging from 10 to 0.312 mg/mL against S. aureus ATCC 25923 and 10 to 1.25 mg/mL against S. aureus ATCC 700698 and S. aureus JKD6008. In the viable cell quantification assay, there was a reduction in CFU ranging from 1.0 to 8.0 logs. The combination of EO with ampicillin exhibited a synergistic effect against all strains. Moreover, the combination showed a significantly inhibiting biofilm formation and eradicating preformed biofilms. Furthermore, the EO and ampicillin (individually and in combination) altered the cellular morphology of S. aureus cells. Regarding the mechanism, the results revealed that L. grata EO increased membrane permeability and caused significant membrane damage. Concerning the synergy mechanism, the results revealed that the combination of EO and ampicillin increases membrane permeability and causes considerable membrane damage, further inhibiting bacteria synergistically. The findings obtained here suggest that L. grata EO in combination with ampicillin could be a viable treatment option against S. aureus infections, including MRSA strain.
Collapse
Affiliation(s)
| | - Alexandre Lopes Andrade
- Laboratório Integrado de Biomoléculas, Departamento de Patologia E Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Aryane de Azevedo Pinheiro
- Laboratório Integrado de Biomoléculas, Departamento de Patologia E Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil
- Centro Universitário Inta - UNINTA, Itapipoca, CE, Brazil
| | - Leonardo Silva de Sousa
- Laboratório Integrado de Biomoléculas, Departamento de Patologia E Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Ellen Araújo Malveira
- Laboratório Integrado de Biomoléculas, Departamento de Patologia E Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | | | | | - Edson Holanda Teixeira
- Laboratório Integrado de Biomoléculas, Departamento de Patologia E Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Mayron Alves de Vasconcelos
- Faculdade de Ciências Exatas E Naturais, Universidade do Estado do Rio Grande do Norte, Mossoró, RN, Brazil.
- Laboratório Integrado de Biomoléculas, Departamento de Patologia E Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
- Faculdade de Educação de Itapipoca, Universidade Estadual do Ceará, Itapipoca, CE, Brazil.
| |
Collapse
|
7
|
Tiwari S, Upadhyay N, Singh BK, Dubey NK, Dwivedy AK, Singh VK. Nanoencapsulated
Lippia origanoides
essential oil: physiochemical characterisation and assessment of its bio‐efficacy against fungal and aflatoxin contamination as novel green preservative. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shikha Tiwari
- Centre of Advanced study in Botany Banaras Hindu University Varanasi 221005 India
| | - Neha Upadhyay
- Centre of Advanced study in Botany Banaras Hindu University Varanasi 221005 India
| | - Bijendra Kumar Singh
- Centre of Advanced study in Botany Banaras Hindu University Varanasi 221005 India
| | - Nawal K. Dubey
- Centre of Advanced study in Botany Banaras Hindu University Varanasi 221005 India
| | - Abhishek K. Dwivedy
- Centre of Advanced study in Botany Banaras Hindu University Varanasi 221005 India
| | - Vipin Kumar Singh
- Centre of Advanced study in Botany Banaras Hindu University Varanasi 221005 India
| |
Collapse
|
8
|
Ribeiro FP, Santana de Oliveira M, de Oliveira Feitosa A, Santana Barbosa Marinho P, Moacir do Rosario Marinho A, de Aguiar Andrade EH, Favacho Ribeiro A. Chemical Composition and Antibacterial Activity of the Lippia origanoides Kunth Essential Oil from the Carajás National Forest, Brazil. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:9930336. [PMID: 34712353 PMCID: PMC8548111 DOI: 10.1155/2021/9930336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/23/2021] [Accepted: 10/07/2021] [Indexed: 11/24/2022]
Abstract
Species of the genus Lippia are rich in essential oils and have shown antibacterial properties, which may be related to oils' chemical composition. The present work aimed to evaluate the antimicrobial potential of Lippia origanoides Kunth against two bacteria strains: Escherichia coli and Staphylococcus aureus. Leaf essential oils were obtained by hydrodistillation in a modified Clevenger-type apparatus, and their chemical composition was determined by gas chromatography coupled to mass spectrometry (GC/MS) and flame ionization detection (GC/FID). We identified 28 compounds, representing 98.87% of the total concentration of the essential oil. The compounds identified at the highest concentrations were 1,8-cineole (35.04%), carvacrol (11.32%), p-cymene (8.53%), α-pinene (7.17%), and γ-terpinene (7.16%). The leaf essential oil of L. origanoides showed antibacterial action on biological isolates of Escherichia coli and Staphylococcus aureus. For Escherichia coli, the oil presented bactericidal action at concentrations of 5-20 μL/mL. Regarding Staphylococcus aureus, the bactericidal effect was noted at 20 μL/mL and the bacteriostatic action was noted around 2.5-10 μL/mL. Given the results obtained, L. origanoides essential oil showed promising biological potential against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, thus encouraging further studies on substances isolated from this species to contribute to the development of new antimicrobial drugs.
Collapse
Affiliation(s)
- Fabiana Paiva Ribeiro
- Faculty of Chemistry, Federal University of Pará, Ananindeua Campus, Tv. We Vinte e Seis, 2, Coqueiro, Ananindeua, Portugal 67130-660, Brazil
| | - Mozaniel Santana de Oliveira
- Adolpho Ducke Laboratory, Botany Coordination, Emílio Goeldi Museum, Av. Perimetral, 1901, Terra Firme, Belém, Portugal 66077-830, Brazil
| | - André de Oliveira Feitosa
- Faculty of Chemistry, Federal University of Pará, R. Augusto Corrêa, 01-Guamá, Belém, Portugal 66075-110, Brazil
| | | | | | - Eloisa Helena de Aguiar Andrade
- Adolpho Ducke Laboratory, Botany Coordination, Emílio Goeldi Museum, Av. Perimetral, 1901, Terra Firme, Belém, Portugal 66077-830, Brazil
- Faculty of Chemistry, Federal University of Pará, R. Augusto Corrêa, 01-Guamá, Belém, Portugal 66075-110, Brazil
| | - Alcy Favacho Ribeiro
- Faculty of Chemistry, Federal University of Pará, Ananindeua Campus, Tv. We Vinte e Seis, 2, Coqueiro, Ananindeua, Portugal 67130-660, Brazil
| |
Collapse
|
9
|
Effect of Essential Oils on the Inhibition of Biofilm and Quorum Sensing in Salmonella enteritidis 13076 and Salmonella typhimurium 14028. Antibiotics (Basel) 2021; 10:antibiotics10101191. [PMID: 34680772 PMCID: PMC8532617 DOI: 10.3390/antibiotics10101191] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022] Open
Abstract
The emergence of multidrug-resistant microorganisms represents a global challenge that has led to a search for new antimicrobial compounds. Essential oils (EOs) from medicinal aromatic plants are a potential alternative for conventional antibiotics. In this study, the antimicrobial and anti-biofilm potential of 15 EOs was evaluated on planktonic and biofilm-associated cells of Salmonella enterica serovar Enteritidis ATCC 13076 (S. enteritidis) and Salmonella enterica serovar Typhimurium ATCC 14028 (S. typhimurium). In total, 4 out of 15 EOs showed antimicrobial activity and 6 EOs showed anti-biofilm activity against both strains. The EO from the Lippia origanoides chemotype thymol-carvacrol II (LTC II) presented the lowest minimum inhibitory concentration (MIC50 = 0.37 mg mL-1) and minimum bactericidal concentration (MBC = 0.75 mg mL-1) values. This EO also presented the highest percentage of biofilm inhibition (>65%) on both microorganisms, which could be confirmed by scanning electron microscopy (SEM) images. Transcriptional analysis showed significant changes in the expression of the genes related to quorum sensing and the formation of the biofilm. EOs could inhibit the expression of genes involved in the quorum sensing mechanism (luxR, luxS, qseB, sdiA) and biofilm formation (csgA, csgB, csgD, flhD, fliZ, and motB), indicating their potential use as anti-biofilm antimicrobial agents. However, further studies are needed to elucidate the action mechanisms of essential oils on the bacterial cells under study.
Collapse
|
10
|
Sollecito N, Alves R, Beletti M, Pereira E, Miranda M, Silva J, Borges A. Morphometry of bovine blastocysts produced in vitro in culture media with antioxidants cysteamine or oily extract of Lippia origanoides. ARQ BRAS MED VET ZOO 2021. [DOI: 10.1590/1678-4162-12217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT This study aimed to evaluate the ultrastructural morphometry of bovine embryos produced in vitro grown at different concentrations of antioxidants. After in vitro maturation and fertilization, the presumptive zygotes were assigned into five treatments. T1) without the addition of any antioxidants (negative control); T2) addition of 50μM/mL cysteamine; and T3, T4 and T5) adding 2.5μg/mL, 5.0μg/mL or 10.0μg/mL of the antioxidants derived from the oily extract from Lippia origanoides, respectively. On D7 of culture, the embryos in the blastocyst stage were fixed and prepared for electron transmission microscopy. These were evaluated for the proportion of cytoplasm-to-nucleus, cytoplasm-to-mitochondria, cytoplasm-to-vacuoles, cytoplasm-to-autophagic vacuoles and cytoplasm-to-lipid droplets. Blastocysts cultured in media containing oily extract of Lippia origanoides presented morphological characteristics such as high cell:mitochondria ratio and low cell:vacuoles and cell:autophagic vacuole ratio, possibly been morphological indicators of embryonic quality. Inner cell mass (ICM) from blastocysts cultured in media without any antioxidants had the highest cell:vacuole ratio. Similar results were found in the trophectoderm (TE) cells of blastocysts from treatment 2. Embryo culture media supplemented with antioxidants derived from Lippia origanoides oil produced embryos with a higher cytoplasmic proportion of organelles, such as mitochondria. Also, treatments without any antioxidants or with the addition of cysteamine presented cytoplasmic vacuolization, a characteristic related to production of poor-quality embryos.
Collapse
Affiliation(s)
| | - R.N. Alves
- Universidade Federal de Uberlândia, Brazil
| | | | | | | | | | - A.M. Borges
- Universidade Federal de Minas Gerais, Brazil
| |
Collapse
|
11
|
Samba N, Aitfella-Lahlou R, Nelo M, Silva L, Coca. R, Rocha P, López Rodilla JM. Chemical Composition and Antibacterial Activity of Lippia multiflora Moldenke Essential Oil from Different Regions of Angola. Molecules 2020; 26:molecules26010155. [PMID: 33396345 PMCID: PMC7795161 DOI: 10.3390/molecules26010155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022] Open
Abstract
The purpose of the study was to determine the chemical composition and antibacterial activity of Lippia multiflora Moldenke essential oils (EOs) collected in different regions of Angola. Antibacterial activity was evaluated using the agar wells technique and vapour phase test. Analysis of the oils by GC/MS identified thirty-five components representing 67.5 to 100% of the total oils. Monoterpene hydrocarbons were the most prevalent compounds, followed by oxygenated monoterpenes. The content of the compounds varied according to the samples. The main components were Limonene, Piperitenone, Neral, Citral, Elemol, p-cymene, Transtagetone, and Artemisia ketone. Only one of the eleven samples contained Verbenone as the majority compound. In the vapour phase test, a single oil was the most effective against all the pathogens studied. The principal component analysis (PCA) and hierarchical cluster analysis (HCA) of components of the selected EOs and inhibition zone diameter values of agar wells technique allowed us to identify a variability between the plants from the two provinces, but also intraspecific variability between sub-groups within a population. Each group of essential oils constituted a chemotype responsible for their bacterial inhibition capacity. The results presented here suggest that Angolan Lippia multiflora Moldenke has antibacterial properties and could be a potential source of antimicrobial agents for the pharmaceutical and food industry.
Collapse
Affiliation(s)
- Nsevolo Samba
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.A.-L.); (M.N.); (L.S.); (R.C.); (P.R.)
- Department of Clinical Analysis and Public Health, University Kimpa Vita, Uige 77, Angola
- Correspondence: (N.S.); (J.M.L.R.); Tel.: +351-926-687-782 (N.S.); +351-275-319-765 (J.M.L.R.)
| | - Radhia Aitfella-Lahlou
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.A.-L.); (M.N.); (L.S.); (R.C.); (P.R.)
- Laboratory of Valorisation and Conservation of Biological Resources, Biology Department, Faculty of Sciences, University M’Hamed Bougara, 35000 Boumerdes, Algeria
| | - Mpazu Nelo
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.A.-L.); (M.N.); (L.S.); (R.C.); (P.R.)
| | - Lucia Silva
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.A.-L.); (M.N.); (L.S.); (R.C.); (P.R.)
- Fiber Materials and Environmental Technologies (FibEnTech), University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Rui Coca.
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.A.-L.); (M.N.); (L.S.); (R.C.); (P.R.)
| | - Pedro Rocha
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.A.-L.); (M.N.); (L.S.); (R.C.); (P.R.)
| | - Jesus Miguel López Rodilla
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.A.-L.); (M.N.); (L.S.); (R.C.); (P.R.)
- Fiber Materials and Environmental Technologies (FibEnTech), University of Beira Interior, 6201-001 Covilhã, Portugal
- Correspondence: (N.S.); (J.M.L.R.); Tel.: +351-926-687-782 (N.S.); +351-275-319-765 (J.M.L.R.)
| |
Collapse
|
12
|
Silva Damasceno ET, Almeida RR, de Carvalho SYB, de Carvalho GSG, Mano V, Pereira AC, de Lima Guimarães LG. Lippia origanoides Kunth. essential oil loaded in nanogel based on the chitosan and ρ-coumaric acid: Encapsulation efficiency and antioxidant activity. INDUSTRIAL CROPS AND PRODUCTS 2018; 125:85-94. [DOI: 10.1016/j.indcrop.2018.08.074] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Mansouri N, Aoun L, Dalichaouche N, Hadri D. Yields, chemical composition, and antimicrobial activity of two Algerian essential oils against 40 avian multidrug-resistant Escherichia coli strains. Vet World 2018; 11:1539-1550. [PMID: 30587886 PMCID: PMC6303501 DOI: 10.14202/vetworld.2018.1539-1550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/26/2018] [Indexed: 01/18/2023] Open
Abstract
AIM The aim of this study is to investigate, in vitro, a possible antibacterial activity of Algerian essential oils (EOs) of Thyme (Thymus vulgaris L.) and that of Coriander (Coriandrum sativum L.) against multidrug-resistant avian Escherichia coli strains and this in a perspective of their future use as a substitute for antibiotics (ATBs). MATERIALS AND METHODS In addition to the reference strain of E. coli ATCC 25922, 40 strains of avian E. coli have been isolated (24 strains of broilers and 16 of turkeys), their antimicrobial resistance profile was determined by antibiogram tests against 21 ATBs whereupon they were subjected to the action of two Algerian EOs; the EO of Thyme (T. vulgaris L.) and that of Coriander (C. sativum L.), which oils were extracted by hydrodistillation and analyzed by Gas Chromatography coupled to Mass Spectrometry (GC-MS) and this for the determination of their chemical composition. The antibacterial activity, resulting in zones of inhibition, was evaluated by carrying out, in triplicate, aromatograms for both pure EO and that which has been diluted to 15% in Dimethyl Sulfoxide (DMSO), while the minimum inhibitory concentrations (MIC) of the two EOs were highlighted by the method of liquid macrodilution. RESULTS Antibiogram performance demonstrated an alarming state of antimicrobial resistance, the multidrug resistance rate was estimated at 100% for the broilers chicken strains and at 81.25% for strains isolated from turkeys, hydrodistillation allowed to obtained EOs with yields estimated at 1.22±0.26% for Thyme EO and 0.23±0.15% for the essence of Coriander, the GC-MS analysis identified 19 main compounds and showed that the majority chemical components were Carvacrol (73.03%) for Thyme volatile oil and Linalool (60.91%) for Coriander EO, aromatograms and the determination of MIC concluded that the EO of Thyme showed a greater antibacterial activity with an average of the zones of inhibition estimated at 26.75±0.426 mm and MIC ranging from 0.07 to 0.93 mg/ml against an average of the inhibition zones evaluated at 17.05±0.383 mm and MICs evaluated between 0.6 and 10 mg/ml for the EO of Coriander. CONCLUSION In aviculture, these results seem to be very promising in the case where we think about the replacement of ATBs by EOs, in vivo studies would be very interesting to confirm or invalidate this hypothesis.
Collapse
Affiliation(s)
- Narimene Mansouri
- Laboratory Research of Epidemiologic Monitoring, Health, Production, Reproduction, Experimentation and Cellular Therapy of Domestic and Wild Animals, Department of Veterinary Medicine, University of Chadli Bendjedid, El-Tarf, Algeria
| | - Leila Aoun
- Laboratory Research of Epidemiologic Monitoring, Health, Production, Reproduction, Experimentation and Cellular Therapy of Domestic and Wild Animals, Department of Veterinary Medicine, University of Chadli Bendjedid, El-Tarf, Algeria
| | - Nabila Dalichaouche
- Regional Veterinary Laboratory of El-Tarf, National Institute of Veterinary Medicine, Minister of Agriculture, Algeria
| | - Douniazed Hadri
- Department of Veterinary Medicine, University of Chadli Bendjedid, El-Tarf, Algeria
| |
Collapse
|
14
|
da Silva JKR, Pinto LC, Burbano RMR, Montenegro RC, Andrade EHA, Maia JGS. Composition and cytotoxic and antioxidant activities of the oil of Piper aequale Vahl. Lipids Health Dis 2016; 15:174. [PMID: 27717404 PMCID: PMC5054595 DOI: 10.1186/s12944-016-0347-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/30/2016] [Indexed: 11/30/2022] Open
Abstract
Background Piper aequale Vahl is a small shrub that grows in the shadow of large trees in the Carajás National Forest, Municipality of Parauapebas, Para state, Brazil. The local people have used the plant against rheumatism and inflammation. Methods The essential oil of the aerial parts was extracted and analyzed by GC and GC-MS. The MTT colorimetric assay was used to measuring the cytotoxic activity of the oil against human cancer lines. The determination of antioxidant activity of the oil was conducted by DPPH radical scavenging assay. Results The main constituents were δ-elemene (18.92 %), β-pinene (15.56 %), α-pinene (12.57 %), cubebol (7.20 %), β-atlantol (5.87 %), and bicyclogermacrene (5.51 %), totalizing 65.63 % of the oil. The oil displayed a strong in vitro cytotoxic activity against the human cancer cell lines HCT-116 (colon) and ACP03 (gastric) with IC50values of 8.69 μg/ml and 1.54 μg/ml, respectively. The oil has induced the apoptosis in a gastric cancer cells in all tested concentration (0.75–3.0 μg/ml), after 72 h of treatment, when compared to negative control (p < 0.001). Also, the oil showed a significant antioxidant activity (280.9 ± 22.2 mg TE/ml), when analyzed as Trolox equivalent, and a weak acetylcholinesterase inhibition, with a detection limit of 100 ng, when compared to the physostigmine standard (1.0 ng). Conclusion The higher cell growth inhibition induced by the oil of P. aequale is probably due to its primary terpene compounds, which were previously reported in the proliferation inhibition, in stimulation of apoptosis and induction of cell cycle arrest in malignant cells.
Collapse
Affiliation(s)
- Joyce Kelly R da Silva
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, 66075-900, Belém, PA, Brazil.
| | - Laine C Pinto
- Laboratório de Citogenética Humana, Universidade Federal do Pará, 66075-900, Belém, PA, Brazil
| | - Rommel M R Burbano
- Laboratório de Citogenética Humana, Universidade Federal do Pará, 66075-900, Belém, PA, Brazil
| | - Raquel C Montenegro
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, 66075-900, Belém, PA, Brazil.,Laboratório de Citogenética Humana, Universidade Federal do Pará, 66075-900, Belém, PA, Brazil
| | - Eloísa Helena A Andrade
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, 66075-900, Belém, PA, Brazil
| | - José Guilherme S Maia
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, 66075-900, Belém, PA, Brazil.,Programa de Pós-Graduação em Recursos Naturais da Amazônia, Universidade Federal do Oeste do Pará, 68035-110, Santarém, PA, Brazil
| |
Collapse
|
15
|
Chraibi M, Farah A, Lebrazi S, El Amine O, Iraqui Houssaini M, Fikri-Benbrahim K. Antimycobacterial natural products from Moroccan medicinal plants: Chemical composition, bacteriostatic and bactericidal profile of Thymus satureioides and Mentha pulegium essential oils. Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2016.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|