1
|
Liao J, Bi S, Fang Z, Deng Q, Chen Y, Sun L, Jiang Y, Huang L, Gooneratne R. Docosahexaenoic Acid Promotes Cd Excretion by Restoring the Abundance of Parabacteroides in Cd-Exposed Mice. Molecules 2023; 28:4217. [PMID: 37241957 PMCID: PMC10222105 DOI: 10.3390/molecules28104217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
As a common harmful pollutant, cadmium (Cd) can easily enter the human body through the food chain, posing a major threat to human health. Gut microbiota play a key role in Cd absorption. Docosahexaenoic acid (DHA) is thought to have a potential role in the treatment of Cd poisoning. This study investigated the therapeutic effect and mechanism of DHA in Cd-exposed mice from the perspective of the gut microbiota. The results showed that DHA significantly increased the Cd content in feces and decreased the Cd accumulation in the organs of mice. The gut microbiota results showed that DHA significantly restored the abundance of Parabacteroides in the gut microbiota of Cd-exposed mice. Parabacteroides distasonis (P. distasonis), a representative strain of the Parabacteroides, also showed Cd- and toxicity-reduction capabilities. P. distasonis significantly restored the gut damage caused by Cd exposure. At the same time, P. distasonis reduced the Cd content in the liver, spleen, lung, kidneys, gut, and blood to varying degrees and significantly increased the Cd content in feces. The succinic acid produced by P. distasonis plays an important role in promoting Cd excretion in Cd-exposed mice. Therefore, these results suggest that P. distasonis may have a potential role in DHA-mediated Cd excretion in Cd-exposed mice.
Collapse
Affiliation(s)
- Jianzhen Liao
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.B.); (Q.D.); (Y.C.); (L.S.); (L.H.)
| | - Siyuan Bi
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.B.); (Q.D.); (Y.C.); (L.S.); (L.H.)
- Shenzhen Jinyue Test Technology Co., Ltd., Shenzhen 510100, China
| | - Zhijia Fang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.B.); (Q.D.); (Y.C.); (L.S.); (L.H.)
| | - Qi Deng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.B.); (Q.D.); (Y.C.); (L.S.); (L.H.)
| | - Yinyan Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.B.); (Q.D.); (Y.C.); (L.S.); (L.H.)
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.B.); (Q.D.); (Y.C.); (L.S.); (L.H.)
| | - Yongqing Jiang
- Shenzhen Jinyue Test Technology Co., Ltd., Shenzhen 510100, China
- Shenzhen Lvshiyuan Biotechnology Co., Ltd., Shenzhen 510100, China
| | - Linru Huang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.B.); (Q.D.); (Y.C.); (L.S.); (L.H.)
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand;
| |
Collapse
|
2
|
Nguyen HD. Combination of Donepezil and Memantine Attenuated Cognitive Impairment Induced by Mixed Endocrine-Disrupting Chemicals: an In Silico Study. Neurotox Res 2022; 40:2072-2088. [PMID: 36367679 DOI: 10.1007/s12640-022-00591-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/06/2022] [Accepted: 10/08/2022] [Indexed: 11/13/2022]
Abstract
Little is known about the effects of endocrine-disrupting chemicals (EDCs) and the combination of memantine and donepezil on the pathogenesis of cognitive impairment. Here, we aimed to identify in silico the molecular mechanisms of the combination of memantine and donepezil that combat cognitive impairment induced by nine common EDCs using GeneMania, AutoDock Vina, Metascape, SwissADME, MIENTURNET, and miRNAsong. We observed that the mixture of memantine and donepezil had therapeutic effects on mixed EDC-induced cognitive impairment via five genes (TNF, ACHE, BAX, IL1B, and CASP3). With ACHE and TNF, donepezil and memantine both had a high docking score, respectively. The predominant connections among five mutual genes were physical interactions (77.6%). The major pathways associated with memantine and donepezil countering cognitive impairment generated by mixed EDCs were discovered to be "AGE-RAGE signaling pathway in diabetic complications," "pro-survival signaling of neuroprotectin D1," and "non-alcoholic fatty liver disease." The miRNAs and transcription factors implicated in memantine and donepezil protecting against mixed EDCs were hsa-miR-128-3p and hsa-miR-34a-5p, NFKB1, NFKB2, IRF8, and E2F4. The sponges' tertiary structure predictions for two major miRNAs were provided. The physicochemical and pharmacokinetic properties of memantine and donepezil highlighted the need for a therapeutic combination of these medications to treat cognitive impairment.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea.
| |
Collapse
|
3
|
Chen Z, Lu Q, Wang J, Cao X, Wang K, Wang Y, Wu Y, Yang Z. The function of omega-3 polyunsaturated fatty acids in response to cadmium exposure. Front Immunol 2022; 13:1023999. [PMID: 36248838 PMCID: PMC9558127 DOI: 10.3389/fimmu.2022.1023999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Throughout history, pollution has become a part of our daily life with the improvement of life quality and the advancement of industry and heavy industry. In recent years, the adverse effects of heavy metals, such as cadmium (Cd), on human health have been widely discussed, particularly on the immune system. Here, this review summarizes the available evidence on how Cd exposure may affect health. By analyzing the general manifestations of inflammation caused by Cd exposure, we find that the role of omega-3 (n-3) polyunsaturated fatty acids (PUFAs) in vivo can counteract Cd-induced harm. Additionally, we elucidate the effects of n-3 PUFAs on the immune system, and analyze their prophylactic and therapeutic effects on Cd exposure. Overall, this review highlights the role of n-3 PUFAs in the pathological changes induced by Cd exposure. Although n-3 PUFAs remain to be verified whether they can be used as therapeutic agents, as rehabilitation therapy, supplementation with n-3 PUFAs is reliable and effective.
Collapse
Affiliation(s)
- Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Qinyue Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiacheng Wang
- College of Medical, Yangzhou University, Yangzhou, China
| | - Xiang Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kun Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yuhao Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yanni Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
- *Correspondence: Zhangping Yang,
| |
Collapse
|
4
|
Shabani P, Ghazizadeh Z, Gorgani-Firuzjaee S, Molazem M, Rajabi S, Vahdat S, Azizi Y, Doosti M, Aghdami N, Baharvand H. Cardioprotective effects of omega-3 fatty acids and ascorbic acid improve regenerative capacity of embryonic stem cell-derived cardiac lineage cells. Biofactors 2019; 45:427-438. [PMID: 30907984 DOI: 10.1002/biof.1501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 02/15/2019] [Indexed: 12/23/2022]
Abstract
One of the major issues in cell therapy of myocardial infarction (MI) is early death of engrafted cells in a harsh oxidative stress environment, which limits the potential therapeutic utility of this strategy in the clinical setting. Increasing evidence implicates beneficial effects of omega-3 fatty acids including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and ascorbic acid (AA) in cardiovascular diseases, in particular their role in ameliorating fibrosis. In the current study, we aim to assess the cytoprotective role of EPA + DHA and AA in protecting embryonic stem cell (ESC)-derived cardiac lineage cells and amelioration of fibrosis. Herein, we have shown that preincubation of the cells with EPA + DHA + AA prior to H2 O2 treatment attenuated generation of reactive oxygen species (ROS) and enhanced cell viability. Gene expression analysis revealed that preincubation with EPA + DHA + AA followed by H2 O2 treatment, upregulated heme oxygenase-1 (HO-1) along with cardiac markers (GATA4, myosin heavy chain, α isoform [MYH6]), connexin 43 [CX43]) and attenuated oxidative stress-induced upregulation of fibroblast markers (vimentin and collagen type 1 [Col1]). Alterations in gene expression patterns were followed by marked elevation of cardiac troponin (TNNT2) positive cells and reduced numbers of vimentin positive cells. An injection of EPA + DHA + AA-pretreated ESC-derived cardiac lineage cells into the ischemic myocardium of a rat model of MI significantly reduced fibrosis compared to the vehicle group. This study provided evidence that EPA + DHA + AA may be an appropriate preincubation regimen for regenerative purposes. © 2019 BioFactors, 45(3):427-438, 2019.
Collapse
Affiliation(s)
- Parisa Shabani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Zaniar Ghazizadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sattar Gorgani-Firuzjaee
- Department of Laboratory Sciences, Faculty of Para Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad Molazem
- Department of Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sarah Rajabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sadaf Vahdat
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Yaser Azizi
- Physiology Research Center, Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Doosti
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasser Aghdami
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
5
|
Ferain A, Bonnineau C, Neefs I, De Saeyer N, Lemaire B, Cornet V, Larondelle Y, De Schamphelaere KAC, Debier C, Rees JF. Exploring the interactions between polyunsaturated fatty acids and cadmium in rainbow trout liver cells: a genetic and proteomic study. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 205:100-113. [PMID: 30352337 DOI: 10.1016/j.aquatox.2018.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) have key biological roles in fish cells. We recently showed that the phospholipid composition of rainbow trout liver cells (RTL-W1 cell line) modulates their tolerance to an acute cadmium (Cd) challenge. Here, we investigated (i) the extent to which PUFAs and Cd impact fatty acid homeostasis and metabolism in these cells and (ii) possible mechanisms by which specific PUFAs may confer cytoprotection against Cd. First, RTL-W1 cells were cultivated for one week in growth media spiked with 50 μmol L-1 of either alpha-linolenic acid (ALA, 18:3n-3), eicosapentaenoic acid (EPA, 20:5n-3), linoleic acid (LA, 18:2n-6) or arachidonic acid (AA, 20:4n-6) in order to modulate their fatty acid profile. Then, the cells were challenged with Cd (0, 50 or 100 μmol L-1) for 24 h prior to assaying viability, fatty acid profile, intracellular Cd content, proteomic landscape and expression levels of genes involved in fatty acid metabolism, synthesis of PUFA-derived signalling molecules and stress response. We observed that the fatty acid supply and, to a lesser extent, the exposure to Cd influenced cellular fatty acid homeostasis and metabolism. The cellular fatty acid composition of fish liver cells modulated their tolerance to an acute Cd challenge. Enrichments in ALA, EPA, and, to a lesser extent, AA conferred cytoprotection while enrichment in LA had no impact on cell viability. The present study ruled out the possibility that cytoprotection reflects a decreased Cd burden. Our results rather suggest that the PUFA-derived cytoprotection against Cd occurs through a reduction of the oxidative stress induced by Cd and a differential induction of the eicosanoid cascade, with a possible role of peroxiredoxin and glutaredoxin (antioxidant enzymes) as well as cytosolic phospholipase A2 (enzyme initiating the eicosanoid cascade).
Collapse
Affiliation(s)
- Aline Ferain
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium.
| | - Chloé Bonnineau
- Irstea, UR RiverLy, Centre de Lyon-Villeurbanne, 5, 69625 Villeurbanne, France
| | - Ineke Neefs
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium
| | - Nancy De Saeyer
- Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Benjamin Lemaire
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium
| | - Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur, B-5000 Namur, Belgium
| | - Yvan Larondelle
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium
| | - Karel A C De Schamphelaere
- Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Cathy Debier
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium
| | - Jean-François Rees
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
6
|
Ferain A, De Saeyer N, Larondelle Y, Rees JF, Debier C, De Schamphelaere KAC. Body lipid composition modulates acute cadmium toxicity in Daphnia magna adults and juveniles. CHEMOSPHERE 2018; 205:328-338. [PMID: 29704840 DOI: 10.1016/j.chemosphere.2018.04.091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/15/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Long chain polyunsaturated fatty acids (LC-PUFAs) such as eicosapentaenoic acid (EPA, 20:5n-3) affect zooplankton fitness and ability to cope with environmental stressors. However, the impact of LC-PUFAs on zooplankton sensitivity to chemical stressors is unknown. Here, we aimed to document the interaction between EPA and cadmium (Cd), as model chemical stressor, in Daphnia magna. A life-history experiment was performed in which daphnid neonates were raised into adulthood on three diets of different lipid composition: (i) algae mix; (ii) algae mix supplemented with control liposomes; (iii) algae mix supplemented with liposomes containing EPA. Juveniles (3rd, 4th and 5th brood) released by daphnids during this life-history experiment were sampled, challenged with Cd during 48 h and their immobility was assessed. At the end of this life-history experiment, another immobilisation test was performed with adults from each treatment. Daphnids absorbed, incorporated and transferred ingested EPA to their offspring. Liposome feeding increased adult tolerance to Cd. The presence of EPA in liposomes did not increase adult tolerance to Cd. Offspring's tolerance to Cd was influenced by the brood number and the maternal diet. It was positively correlated with the PUFA level in body neutral lipids, especially alpha-linolenic acid (ALA, 18:3n-3) and negatively correlated with the saturated fatty acid level in body neutral lipids, especially stearic acid (18:0). Overall, these results emphasize the importance of dietary lipids and maternal transfer of body lipids in D. magna sensitivity to Cd and highlight the need to take into account these parameters in ecotoxicological studies and risk assessment.
Collapse
Affiliation(s)
- Aline Ferain
- Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium; Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Nancy De Saeyer
- Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Yvan Larondelle
- Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium
| | - Jean-François Rees
- Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium
| | - Cathy Debier
- Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium
| | - Karel A C De Schamphelaere
- Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
7
|
Sampels S, Kroupova HK, Linhartova P. Effect of cadmium on uptake of iron, zinc and copper and mRNA expression of metallothioneins in HepG2 cells in vitro. Toxicol In Vitro 2017; 44:372-376. [PMID: 28802572 DOI: 10.1016/j.tiv.2017.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/20/2017] [Accepted: 08/08/2017] [Indexed: 12/30/2022]
Abstract
The intake of cadmium contaminated fish was mimicked by incubating human hepatoblastoma cells (Cell line HepG2) with a combination of different levels of cadmium (0-5μM) plus the n-3 fatty acids docosahexaenoic acid and eicosapentaenoic acid, which are typical for fish. Uptake of cadmium, iron, copper and zinc was measured by ICP-MS. In addition mRNA expression of two metallothioneins (mt1 g and mt1 m) was evaluated by real-time PCR. The obtained data shows that the presence of cadmium increases the uptake of iron and zinc into the HepG2 cells while the uptake of copper remains unaffected. The presence of the chosen fatty acids did not affect the uptake of either cadmium or iron, zinc and copper. The presence of already 1μM cadmium increased the mRNA expression of mt1 g and mt1 m significantly, while the fatty acids did not interfere with the effect of cadmium.
Collapse
Affiliation(s)
- Sabine Sampels
- Institute of Aquaculture and Protection of Waters, Husova tř. 458/102, 370 05 České Budějovice, Czech Republic; Swedish University of Agricultural Sciences, Department of Molecular Sciences, P.O. Box 7015, 75007 Uppsala, Sweden.
| | - Hana Kocour Kroupova
- Research Institute of fish Culture and Hydrobiology, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Pavla Linhartova
- Institute of Aquaculture and Protection of Waters, Husova tř. 458/102, 370 05 České Budějovice, Czech Republic; ERA Chair, CEITEC, Masaryk University, Kamenice 753/5, A35/143, 625 00 Brno, Czech Republic
| |
Collapse
|
8
|
Mahdavi S, Khodarahmi P, Roodbari NH. Effects of cadmium on Bcl-2/Bax expression ratio in rat cortex brain and hippocampus. Hum Exp Toxicol 2017; 37:321-328. [DOI: 10.1177/0960327117703687] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To investigate the underlying mechanism of neurotoxicity of cadmium, we examined the effects of intraperitoneal injection of cadmium on messenger RNA (mRNA) expression of Bcl-2 (B-cell lymphoma 2) and Bax (Bcl2-associated x) genes and caspase-3/7 activation in rat hippocampus and frontal cortex. Twenty-eight male Wistar rats weighing 200–250 g were randomly divided into four groups. Control group received saline and three other groups received cadmium at doses of 1, 2 and 4 mg/kg (body weight) for 15 successive days. One day after the last injection, the hippocampus and frontal cortex were dissected and removed and then the expression of Bcl-2 and Bax genes was evaluated using real-time polymerase chain reaction and apoptotic studies was done using caspase-3/7 activation assay. Cadmium reduced the mRNA level of Bcl-2 in the control group at doses of 1 ( p < 0.01), 2 and 4 mg/kg ( p < 0.001) in rat hippocampus and cortex cells. The mRNA level of Bax increased significantly compared to the control group at the doses of 1 ( p < 0.05), 2 and 4 mg/kg ( p < 0.001) in rat hippocampus. The mRNA level of Bax was increased significantly compared to the control group at the doses of 2 and 4 mg/kg ( p < 0.001) in rat cortex cells. Cadmium increased caspase-3/7 activity at doses of 1, 2 and 4 mg/kg in rat hippocampus. Caspase-3/7 activity was increased significantly at dose of 4 mg/kg in rat cortex. This decreased Bcl-2/Bax mRNA ratio induces cell apoptosis. Apoptotic effect of cadmium may be through the mitochondrial pathway by the activation of caspase-3/7.
Collapse
Affiliation(s)
- S Mahdavi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - P Khodarahmi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - NH Roodbari
- Department of Biology, Sciences and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
9
|
LINHARTOVA P, GAZO I, SAMPELS S. Combined Incubation of Cadmium, Docosahexaenoic and Eicosapentaenoic Acid Affecting the Oxidative Stress and Antioxidant Response in Human Hepatocytes In Vitro. Physiol Res 2016; 65:609-616. [DOI: 10.33549/physiolres.933247] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human hepatocellular cells Hep G2 were used to investigate the effects of the intake of contaminated fish on oxidative stress. Uptake of heavy metal contaminated fish was mimicked by incubating the cells with a combination of cadmium chloride (Cd2+) as possible contaminant and a combination of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) as important fatty acids (FA) specific for fish. The main aim of this study was to determine the effects of these co-incubations (FA, Cd2+) on lipid and protein oxidation. In addition we also evaluated the antioxidant response of the cells using two different methods (SOD and TAC). Pre-incubation with the chosen FA significantly reduced the oxidative stress caused by incubation with Cd2+. We measured an increased level of carbonyl proteins (CP) in the cells pre-incubated with bovine serum albumin (BSA) and post-incubated with Cd2+.
Collapse
Affiliation(s)
- P. LINHARTOVA
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Czech Republic
| | | | | |
Collapse
|