1
|
Nunes RS, Freitas Mariano KC, Pieretti JC, Dos Reis RA, Seabra AB. Innovative nitric oxide-releasing nanomaterials: Current progress, trends, challenges, and perspectives in cardiovascular therapies. Nitric Oxide 2025; 156:67-81. [PMID: 40139304 DOI: 10.1016/j.niox.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/23/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Cardiovascular diseases remain the leading cause of death worldwide, imposing a substantial impact on healthcare systems due to high morbidity, mortality, and associated economic costs. Nitric oxide (NO), a key signaling molecule in the cardiovascular system, plays a critical role in regulating vascular homeostasis, angiogenesis, and inflammation. Despite its therapeutic potential, direct NO delivery in the cardiovascular system is limited by its reactivity, short half-life, and poor bioavailability. The development of NO-releasing nanomaterials addresses these challenges by enabling controlled, targeted, and sustained NO delivery, mitigating systemic toxicity and improving therapeutic outcomes. This review provides a comprehensive overview of recent advancements in the design, functionalization, and application of NO-releasing nanomaterials for cardiovascular therapies. Key topics include the use of in vitro and in vivo models to evaluate efficacy in conditions such as myocardial ischemia-reperfusion injury, thrombosis, and atherosclerosis, as well as the role of stimuli-responsive systems and hybrid nanomaterials in enhancing delivery precision. Advances in nanotechnology, such as stimuli-responsive systems and hybrid functionalized nanomaterials for targeted delivery, have enhanced the precision and effectiveness of NO therapeutic effects for treating a wide spectrum of cardiovascular conditions. However, challenges like scalable production, biocompatibility, and integration with existing therapies remain. Future research should focus on interdisciplinary approaches to optimize these materials for clinical translation, ensuring accessibility and addressing the global problem of cardiovascular diseases.
Collapse
Affiliation(s)
- Renan S Nunes
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), 09210-580, Santo André, SP, Brazil.
| | - Kelli C Freitas Mariano
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), 09210-580, Santo André, SP, Brazil
| | - Joana C Pieretti
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), 09210-580, Santo André, SP, Brazil
| | - Roberta A Dos Reis
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), 09210-580, Santo André, SP, Brazil
| | - Amedea B Seabra
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), 09210-580, Santo André, SP, Brazil.
| |
Collapse
|
2
|
Chen XC, Gai MT, He CH, Zhao BH, Liu F, Ma X, Ma YT, Gao XM, Chen BD. Recombinant dsAAV9-mediated Endogenous Overexpression of Macrophage Migration Inhibitory Factor Alleviates Myocardial Ischemia-Reperfusion Injury via Activating AMPK and ERK1/2 Signaling Pathways. Cardiovasc Drugs Ther 2025:10.1007/s10557-024-07662-1. [PMID: 39747743 DOI: 10.1007/s10557-024-07662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE To investigate the protective effect and mechanism of enhanced expression of endogenous macrophage migration inhibitory factor (MIF) on cardiac ischemia-reperfusion (I/R) injury. METHODS A recombinant double-stranded adeno-associated virus serotype 9 with MIF or green fluorescent protein (GFP) genes (dsAAV9-MIF/GFP) was transduced into mice and neonatal rat ventricular myocytes (NRVMs). The models of cardiac 60 min ischemia and 24 h reperfusion and 12 h hypoxia/12 h reoxygenation (H/R) were established in mice and NRVMs, respectively. Infarct size, cardiac remodeling, and related signaling pathways were assessed. RESULTS The dsAAV9 vector demonstrated strong transduction efficacy and cardiac affinity. Cardiac overexpression of MIF led to a 35.3% reduction in infarct size and improved cardiac function following I/R injury. In the dsAAV9-MIF group, the AMP-activated protein kinase (AMPK) signaling pathway was activated, and autophagy was enhanced during the ischemic period. During reperfusion, the extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling pathway was upregulated, leading to reduced cardiac apoptosis. In vitro, transfection with MIF in NRVMs also upregulated AMPK and ERK1/2 signaling during hypoxia and reoxygenation, respectively. Furthermore, MIF overexpression significantly improved autophagy and mitochondrial function, evidenced by an increased LC3-II/I ratio and enhanced mitochondrial membrane potential (ΔΨm), with these effects reversed by the AMPK inhibitor compound C. Additionally, MIF overexpression led to a 60% reduction in the apoptosis rate of cardiomyocytes subjected to H/R and decreased the Bax/Bcl-2 ratio, partially through the ERK1/2 signaling pathway. CONCLUSION Enhanced endogenous MIF expression via the dsAAV9 vector provides significant cardioprotection against I/R injury by activating the AMPK and ERK1/2 signaling pathways. Our findings suggest that targeting MIF may represent a viable therapeutic strategy for severe and prolonged I/R injury.
Collapse
Affiliation(s)
- Xiao-Cui Chen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute, Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China
- College of Basic Medicine of Xinjiang Medical University, Urumqi, China
| | - Min-Tao Gai
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute, Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China
| | - Chun-Hui He
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute, Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China
| | - Bang-Hao Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute, Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China
| | - Fen Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute, Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China
| | - Xiang Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute, Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China
| | - Yi-Tong Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute, Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China
| | - Xiao-Ming Gao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute, Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China.
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China.
| | - Bang-Dang Chen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute, Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China.
- College of Basic Medicine of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
3
|
He F, Yu J, Ma S, Zhao W, Wang Q, He H, Zhang M, Wang J, Lu Z. MiR-34a promotes mitochondrial pathway of apoptosis in human salivary gland epithelial cells by activating NF-κB signaling. Arch Biochem Biophys 2024; 758:110063. [PMID: 38880321 DOI: 10.1016/j.abb.2024.110063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/10/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
To investigate the potential molecular mechanism of miR-34a in Sjögren's syndrome (SS). Transmission electron microscopy was used to observe the salivary gland tissues of mild and severe SS patients. SS mouse model was constructed and injected with miR-34a antagonist. HSGE cells were transfected with miR-34a mimic. Starbase predicted miR-34a binding sites and validated them with dual-luciferase reporter assays. Immunohistochemistry, HE staining, CCK-8, TUNEL assay, flow cytometry, immunofluorescence and Western Blot were used to investigate the effects of miR-34a on NF-κB signaling and mitochondrial pathway of apoptosis in HSGE cells. Severe SS patients showed obvious mitochondrial damage and apoptosis in salivary glands. MiR-34a was overexpressed and NF-κB signaling is activated in salivary glands of severe SS patients. Inhibition of miR-34a alleviated salivary gland injury in SS mice, as well as inhibited the activation of NF-κB signaling and mitochondrial pathway of apoptosis. In conclusion, miR-34a promoted NF-κB signaling by targeting IκBα, thereby causing mitochondrial pathway apoptosis and aggravating SS-induced salivary gland damage.
Collapse
Affiliation(s)
- Fang He
- Department of Rheumatology and Immunology, The First People's Hospital of Yunnan Province, China
| | - Juan Yu
- Department of Rheumatology and Immunology, The First People's Hospital of Yunnan Province, China
| | - Sha Ma
- Department of Rheumatology and Immunology, The First People's Hospital of Yunnan Province, China
| | - Weiqing Zhao
- Department of Rheumatology and Immunology, The First People's Hospital of Yunnan Province, China
| | - Qi Wang
- Department of Hematology, The First People's Hospital of Yunnan Province, China
| | - Haitao He
- Department of Hematology, The First People's Hospital of Yunnan Province, China
| | - Mingxing Zhang
- Department of Rheumatology and Immunology, The First People's Hospital of Yunnan Province, China
| | - Juan Wang
- Department of Rheumatology and Immunology, The First People's Hospital of Yunnan Province, China
| | - Zhixiang Lu
- Department of Hematology, The First People's Hospital of Yunnan Province, China.
| |
Collapse
|
4
|
Strontium Ranelate Inhibits Osteoclastogenesis through NF-κB-Pathway-Dependent Autophagy. Bioengineering (Basel) 2023; 10:bioengineering10030365. [PMID: 36978756 PMCID: PMC10045081 DOI: 10.3390/bioengineering10030365] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/17/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
Strontium ranelate (SR) is a pharmaceutical agent used for the prevention and treatment of osteoporosis and fragility fracture. However, little attention has been paid to the effect of SR on alveolar bone remodeling during orthodontic tooth movement and its underlying mechanism. Here, we investigated the influence of SR on orthodontic tooth movement and tooth resorption in Sprague–Dawley rats and the relationship between the nuclear factor–kappa B (NF-κB) pathway, autophagy, and osteoclastogenesis after the administration of SR in vitro and in vivo. In this study, it was found that SR reduced the expression of autophagy-related proteins at the pressure side of the first molars during orthodontic tooth movement. Similarly, the expression of these autophagy-related proteins and the size and number of autophagosomes were downregulated by SR in vitro. The results also showed that SR reduced the number of osteoclasts and suppressed orthodontic tooth movement and root resorption in rats, which could be partially restored using rapamycin, an autophagy inducer. Autophagy was attenuated after pre-osteoclasts were treated with Bay 11-7082, an NF-κB pathway inhibitor, while SR reduced the expression of the proteins central to the NF-κB pathway. Collectively, this study revealed that SR might suppress osteoclastogenesis through NF-κB-pathway-dependent autophagy, resulting in the inhibition of orthodontic tooth movement and root resorption in rats, which might offer a new insight into the treatment of malocclusion and bone metabolic diseases.
Collapse
|
5
|
Signaling pathways of inflammation in myocardial ischemia/reperfusion injury. CARDIOLOGY PLUS 2022. [DOI: 10.1097/cp9.0000000000000008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
6
|
Hong JH, Zhang HG. Transcription Factors Involved in the Development and Prognosis of Cardiac Remodeling. Front Pharmacol 2022; 13:828549. [PMID: 35185581 PMCID: PMC8849252 DOI: 10.3389/fphar.2022.828549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/14/2022] [Indexed: 01/09/2023] Open
Abstract
To compensate increasing workload, heart must work harder with structural changes, indicated by increasing size and changing shape, causing cardiac remodeling. However, pathological and unlimited compensated cardiac remodeling will ultimately lead to decompensation and heart failure. In the past decade, numerous studies have explored many signaling pathways involved in cardiac remodeling, but the complete mechanism of cardiac remodeling is still unrecognized, which hinders effective treatment and drug development. As gene transcriptional regulators, transcription factors control multiple cellular activities and play a critical role in cardiac remodeling. This review summarizes the regulation of fetal gene reprogramming, energy metabolism, apoptosis, autophagy in cardiomyocytes and myofibroblast activation of cardiac fibroblasts by transcription factors, with an emphasis on their potential roles in the development and prognosis of cardiac remodeling.
Collapse
|
7
|
Qiu L, Liu X, Li W, Liu Z, Xu C, Xia H. Downregulation of p300/CBP-associated factor inhibits cardiomyocyte apoptosis via suppression of NF-κB pathway in ischaemia/reperfusion injury rats. J Cell Mol Med 2021; 25:10224-10235. [PMID: 34601814 PMCID: PMC8572777 DOI: 10.1111/jcmm.16959] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/11/2021] [Accepted: 09/19/2021] [Indexed: 12/20/2022] Open
Abstract
Cardiomyocyte apoptosis is the main reason of cardiac injury after myocardial ischaemia-reperfusion (I/R) injury (MIRI), but the role of p300/CBP-associated factor (PCAF) on myocardial apoptosis in MIRI is unknown. The aim of this study was to investigate the main mechanism of PCAF modulating cardiomyocyte apoptosis in MIRI. The MIRI model was constructed by ligation of the rat left anterior descending coronary vessel for 30 min and reperfusion for 24 h in vivo. H9c2 cells were harvested after induced by hypoxia for 6 h and then reoxygenation for 24 h (H/R) in vitro. The RNA interference PCAF expression adenovirus was transfected into rat myocardium and H9c2 cells. The area of myocardial infarction, cardiac function, myocardial injury marker levels, apoptosis, inflammation and oxidative stress were detected respectively. Both I/R and H/R remarkably upregulated the expression of PCAF, and downregulation of PCAF significantly attenuated myocardial apoptosis, inflammation and oxidative stress caused by I/R and H/R. In addition, downregulation of PCAF inhibited the activation of NF-κB signalling pathway in cardiomyocytes undergoing H/R. Pretreatment of lipopolysaccharide, a NF-κB pathway activator, could blunt these protective effects of PCAF downregulation on myocardial apoptosis in MIRI. These results highlight that downregulation of PCAF could reduce cardiomyocyte apoptosis by inhibiting the NF-κB pathway, thereby providing protection for MIRI. Therefore, PCAF might be a promising target for protecting against cardiac dysfunction induced by MIRI.
Collapse
Affiliation(s)
- Liqiang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiaoxiong Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wenjing Li
- Department of Integrated Traditional Chinese and Western Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Zhebo Liu
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changwu Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
8
|
He L, Wang Z, Zhou R, Xiong W, Yang Y, Song N, Qian J. Dexmedetomidine exerts cardioprotective effect through miR-146a-3p targeting IRAK1 and TRAF6 via inhibition of the NF-κB pathway. Biomed Pharmacother 2021; 133:110993. [PMID: 33220608 DOI: 10.1016/j.biopha.2020.110993] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Myocardial ischemia/reperfusion (I/R) injury is a common cause of mortality. Cardiac miR-146a is emerging as a potent regulator of myocardial function. Dexmedetomidine preconditioning provides cardioprotective effects, of which mechanisms related to miR-146a-3p are unclear. METHODS A myocardial I/R model in rats and a cellular anoxia/reoxygenation (A/R) model in H9C2 cells were established and preconditioned with dexmedetomidine or not. H9C2 cells were transfected with mimics, inhibitor, or negative controls of miR-146a-3p, and siRNAs of IRAK1 or TRAF6. Relative expressions of miR-146a-3p were determined by quantitative real-time polymerase chain reaction. The apoptosis rates and reactive oxygen species (ROS) levels in H9C2 cells were examined by flow cytometry. Protein expressions of IRAK1, TRAF6, cleaved Caspase-3, BAX, BCL-2, NF-κB p65, phosphorylated NF-κB p65 (p-NF-κB p65), IκBα, and phosphorylated IκBα (p-IκBα) in H9C2 cells were detected by Western blot. RESULTS Dexmedetomidine decreased myocardial infarction size and apoptosis rates of H9C2 cells. Dexmedetomidine upregulated expression of miR-146a-3p. Dexmedetomidine significantly decreased protein expressions of IRAK1, TRAF6, cleaved Caspase-3, BAX, and NF-κB p65, but increased expressions of BCL-2 in H9C2 cells. miR-146a-3p overexpression strengthened the anti-apoptotic effect induced by dexmedetomidine in H9C2 cells via decreasing protein levels of IRAK1, TRAF6, cleaved Caspase-3, BAX, NF-κB p65, p-NF-κB p65, and p-IκBα and increasing protein level of BCL-2. Downregulation of miR-146a-3p reversed the changes in these proteins in H9C2 cells. Expressions of NF-κB p65 and p-NF-κB p65 were further decreased following knockdown of IRAK1 or TRAF6. ROS emission was significantly increased after A/R, while significantly decreased following dexmedetomidine preconditioning in H9C2 cells transfected with siIRAK1 or siTRAF6. CONCLUSION miR-146a-3p targeting IRAK1 and TRAF6 through inhibition of NF-κB signaling pathway and ROS emission is involved in cardioprotection induced by dexmedetomidine pretreatment.
Collapse
Affiliation(s)
- Liang He
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China; Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming Medical University, Kunming, Yunnan Province, 650051, China
| | - Zhuoran Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China
| | - Rui Zhou
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China
| | - Wei Xiong
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China
| | - Yuqiao Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China
| | - Ning Song
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China
| | - Jinqiao Qian
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China.
| |
Collapse
|