1
|
Li H, Xu Y, Wang A, Zhao C, Zheng M, Xiang C. Integrative bioinformatics and machine learning approach unveils potential biomarkers linking coronary atherosclerosis and fatty acid metabolism-associated gene. J Cardiothorac Surg 2025; 20:70. [PMID: 39825440 PMCID: PMC11742484 DOI: 10.1186/s13019-024-03199-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/22/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Atherosclerosis (AS) is increasingly recognized as a chronic inflammatory disease that significantly compromises vascular health and acts as a major contributor to cardiovascular diseases. Advancements in lipidomics and metabolomics have unveiled the complex role of fatty acid metabolism (FAM) in both healthy and pathological states. However, the specific roles of fatty acid metabolism-related genes (FAMGs) in shaping therapeutic approaches, especially in AS, remain largely unexplored and are a subject of ongoing research. METHODS This study employed advanced bioinformatics techniques to identify and validate FAMGs associated with AS. We conducted differential expression analysis on a select list of 49 candidate FAMGs. GSEA and GSVA were utilized to elucidate the potential biological roles and pathways of these FAMGs. Subsequently, Lasso regression and SVM-RFE were applied to identify key hub genes and assess the diagnostic efficacy of seven FAMGs in distinguishing AS. The study also explored the correlation between these hub FAMGs and clinical features of AS. Validation of the expression levels of the seven FAMGs was performed using datasets GSE43292 and GSE9820. RESULTS The study pinpointed seven FAMGs with a close association to AS: ACSBG2, ELOVL4, ACSL3, CPT2, ALDH2, HSD17B10, and CPT1B. Analysis of their biological functions underscored their significant involvement in critical processes such as fatty acid metabolism, small molecule catabolism, and nucleoside bisphosphate metabolism. The diagnostic potential of these seven FAMGs in AS differentiation showed promising results. CONCLUSIONS This research has successfully identified seven key FAMGs implicated in AS, offering novel insights into the pathophysiology of the disease. These findings not only contribute to our understanding of AS but also present potential biomarkers for the disease, opening avenues for more effective monitoring and progression tracking of AS.
Collapse
Affiliation(s)
- Hong Li
- Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, 257091, Shandong, People's Republic of China
| | - Yongyun Xu
- Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, 257091, Shandong, People's Republic of China
| | - Aiting Wang
- Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, 257091, Shandong, People's Republic of China
| | - Chuanxin Zhao
- Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, 257091, Shandong, People's Republic of China
| | - Man Zheng
- Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, 257091, Shandong, People's Republic of China
| | - Chunyan Xiang
- Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, 257091, Shandong, People's Republic of China.
| |
Collapse
|
2
|
Li P, Wang F, Yue A, Xuan Y, Huang Y, Xu J, Weng J, Li Y, Sun K. LncRNA uc003pxg.1 Interacts With miR-339-5p Promote Vascular Endothelial Cell Proliferation, Migration and Angiogenesis. Korean Circ J 2024; 55:55.e15. [PMID: 39733458 DOI: 10.4070/kcj.2024.0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/29/2024] [Accepted: 10/09/2024] [Indexed: 12/31/2024] Open
Abstract
BACKGROUND AND OBJECTIVES This study aimed to investigate the roles of lncRNA uc003pxg.1 and miR-339-5p in regulating the occurrence and development of coronary heart disease. METHODS First, the expression levels of uc003pxg.1 and miR-339-5p were verified in peripheral blood mononuclear cells of clinical samples. Then, the target gene was identified using high-throughput sequencing combined with bioinformatics. Human umbilical vein endothelial cells (HUVECs) were transfected with si-uc003pxg.1, miR-339-5p mimic and miR-339-5p inhibitor, and the expression of related genes was detected by reverse transcription-quantitative polymerase chain reaction and western blotting. EdU, CCK-8, Cell scratch and Transwell assays were used to analyze the effects of uc003pxg.1 and miR-339-5p on cell proliferation and migration. RESULTS The expression of uc003pxg.1 and miR-339-5p was negatively correlated in clinical samples and HUVECs. The si-uc003pxg.1 and miR-339-5p mimic decreased the proliferation and migration of HUVECs and decreased the expression of transforming growth factor (TGF)-β1 and α-smooth muscle actin (SMA). The protein expression levels of TGF-β1, α-SMA, CD31, collagen I, collagen III and endoglin were decreased, and angiogenesis was weakened. The miR-339-5p inhibitor had the opposite effect. CONCLUSIONS Our study revealed that upregulation of uc003pxg.1 and downregulation of miR-339-5p in vitro promote cell proliferation, cell migration and angiogenesis and upregulate the expression of TGF-β1, α-SMA, CD31, collagen I, collagen III and endoglin, which may lead to the development of vascular atherosclerosis.
Collapse
Affiliation(s)
- Ping Li
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, P. R. China
- Department of Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, P. R. China
| | - Feng Wang
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, P. R. China
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, P. R. China
| | - Anna Yue
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, P. R. China
| | - Yanling Xuan
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Ying Huang
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, P. R. China
- Department of Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, P. R. China
| | - Jingyi Xu
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, P. R. China
- Department of Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, P. R. China
| | - Jiayi Weng
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, P. R. China
| | - Yuan Li
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, P. R. China.
| | - Kangyun Sun
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, P. R. China.
| |
Collapse
|
3
|
Tang W, Gu Z, Guo J, Lin M, Tao H, Jia D, Jia P. Activins and Inhibins in Cardiovascular Pathophysiology. Biomolecules 2024; 14:1462. [PMID: 39595638 PMCID: PMC11592067 DOI: 10.3390/biom14111462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Activins and inhibins, members of the transforming growth factor β (TGFβ) superfamily, were initially recognized for their opposing effects on the secretion of follicle-stimulating hormone. Subsequent research has demonstrated their broader biological roles across various tissue types. Primarily, activins and inhibins function through the classical TGFβ SMAD signaling pathway, but studies suggest that they also act through other pathways, with their specific signaling being complex and context-dependent. Recent research has identified significant roles for activins and inhibins in the cardiovascular system. Their actions in other systems and their signaling pathways show strong correlations with the development and progression of cardiovascular diseases, indicating potential broader roles in the cardiovascular system. This review summarizes the progress in research on the biological functions and mechanisms of activins and inhibins and their signaling pathways in cardiovascular diseases, offering new insights for the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Dalin Jia
- Department of Cardiology, The First Hospital of China Medical University, Shenyang 110001, China; (W.T.); (Z.G.); (J.G.); (M.L.); (H.T.)
| | - Pengyu Jia
- Department of Cardiology, The First Hospital of China Medical University, Shenyang 110001, China; (W.T.); (Z.G.); (J.G.); (M.L.); (H.T.)
| |
Collapse
|
4
|
Li H, Wang X, Zhai M, Xu C, Chen X. Exploration of the influence of GOLGA8B on prostate cancer progression and the resistance of castration-resistant prostate cancer to cabazitaxel. Discov Oncol 2024; 15:152. [PMID: 38730195 PMCID: PMC11087400 DOI: 10.1007/s12672-024-00973-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Castration-resistant prostate cancer (CRPC) represents the final stage of prostate cancer (PCa). Cabazitaxel, a taxane chemotherapy drug, is used in treating CRPC. However, patients with CRPC eventually develop resistance to cabazitaxel, and the underlying mechanism remains unclear. Here, we aimed to investigate potential genetic alterations that may play a role in CRPC resistance to cabazitaxel. Using microarray data from the GSE158494 dataset, we identified ten critical genes (CXCL8, ITGB8, CLIP4, MAP1B, WIPI1, MMP13, CXCL1, C1S, GOLGA8B, and CXCL6) associated with CRPC cell resistance to cabazitaxel. The potential function of these key genes in PCa progression was analyzed using different databases, including Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), and Chinese Prostate Cancer Genome and Epigenome Atlas (CPGEA). Our findings revealed altered expression of these genes in the development of PCa. Furthermore, CXCL1 and GOLGA8B were found to influence the disease-free survival (DFS) status of patients with PCa, with GOLGA8B affecting the overall prognosis in patients with PCa. Additionally, GOLGA8B expression was associated with the infiltration of various immune cells in PCa, and it was upregulated in clinical PCa and CRPC samples. Through CCK-8 assays, we established that GOLGA8B could influence the sensitivity of CRPC cells to cabazitaxel and docetaxel. In conclusion, we identified GOLGA8B as a crucial gene that influences PCa progression and contributes to CRPC resistance to cabazitaxel.
Collapse
Affiliation(s)
- Haopeng Li
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Xin'an Wang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Menghe Zhai
- Department of Urology, Jiaxing Second Hospital, 397 North Huancheng Road, Jiaxing, 314000, Zhejiang, China.
| | - Chengdang Xu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China.
| | - Xi Chen
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China.
| |
Collapse
|
5
|
Bu F, Qin X, Wang T, Li N, Zheng M, Wu Z, Ma K. Unlocking potential biomarkers bridging coronary atherosclerosis and pyrimidine metabolism-associated genes through an integrated bioinformatics and machine learning approach. BMC Cardiovasc Disord 2024; 24:148. [PMID: 38454353 PMCID: PMC10921789 DOI: 10.1186/s12872-024-03819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND This study delves into the intricate landscape of atherosclerosis (AS), a chronic inflammatory disorder with significant implications for cardiovascular health. AS poses a considerable burden on global healthcare systems, elevating both mortality and morbidity rates. The pathological underpinnings of AS involve a marked metabolic disequilibrium, particularly within pyrimidine metabolism (PyM), a crucial enzymatic network central to nucleotide synthesis and degradation. While the therapeutic relevance of pyrimidine metabolism in diverse diseases is acknowledged, the explicit role of pyrimidine metabolism genes (PyMGs) in the context of AS remains elusive. Utilizing bioinformatics methodologies, this investigation aims to reveal and substantiate PyMGs intricately linked with AS. METHODS A set of 41 candidate PyMGs was scrutinized through differential expression analysis. GSEA and GSVA were employed to illuminate potential biological pathways and functions associated with the identified PyMGs. Simultaneously, Lasso regression and SVM-RFE were utilized to distill core genes and assess the diagnostic potential of four quintessential PyMGs (CMPK1, CMPK2, NT5C2, RRM1) in discriminating AS. The relationship between key PyMGs and clinical presentations was also explored. Validation of the expression levels of the four PyMGs was performed using the GSE43292 and GSE9820 datasets. RESULTS This investigation identified four PyMGs, with NT5C2 and RRM1 emerging as key players, intricately linked to AS pathogenesis. Functional analysis underscored their critical involvement in metabolic processes, including pyrimidine-containing compound metabolism and nucleotide biosynthesis. Diagnostic evaluation of these PyMGs in distinguishing AS showcased promising results. CONCLUSION In conclusion, this exploration has illuminated a constellation of four PyMGs with a potential nexus to AS pathogenesis. These findings unveil emerging biomarkers, paving the way for novel approaches to disease monitoring and progression, and providing new avenues for therapeutic intervention in the realm of atherosclerosis.
Collapse
Affiliation(s)
- Fanli Bu
- Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, 257091, People's Republic of China
| | - Xiao Qin
- Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, 257091, People's Republic of China
| | - Tiantian Wang
- Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, 257091, People's Republic of China
| | - Na Li
- Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, 257091, People's Republic of China
| | - Man Zheng
- Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, 257091, People's Republic of China
| | - Zixuan Wu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kai Ma
- Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, 257091, People's Republic of China.
| |
Collapse
|
6
|
Saita E, Kishimoto Y, Aoyama M, Ohmori R, Kondo K, Momiyama Y. Low Plasma Levels of Soluble Endoglin and Cardiovascular Events in Patients Undergoing Coronary Angiography. Biomedicines 2023; 11:2975. [PMID: 38001975 PMCID: PMC10669441 DOI: 10.3390/biomedicines11112975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
TGF-β is recognized as playing a protective role against atherosclerosis. Endoglin is a receptor for TGF-β, and its expression is upregulated in atherosclerotic plaques. Endoglin is secreted from the cell membrane into the circulation as a soluble form (sEng). We previously reported that plasma sEng levels were low in patients with coronary artery disease (CAD). However, the prognostic value of sEng levels has not been clarified. We investigated the association between plasma sEng levels and cardiovascular events in 403 patients who had an elective coronary angiography and were then followed up. Cardiovascular events were defined as cardiovascular death, myocardial infarction, unstable angina, heart failure, stroke, or coronary revascularization. Of the 403 patients, 209 (52%) had CAD. Plasma sEng levels were lower in patients with CAD than in those without CAD (median 4.26 vs. 4.41 ng/mL, p < 0.025). During a mean follow-up period of 7.5 ± 4.5 years, cardiovascular events occurred in 79 patients. Compared with 324 patients without events, 79 with events had lower sEng levels (3.95 vs. 4.39 ng/mL) and more often had an sEng level < 3.9 ng/mL (47% vs. 28%) (p < 0.02). A Kaplan-Meier analysis showed lower event-free survival in patients with sEng < 3.9 ng/mL than in those with ≥3.9 ng/mL (p < 0.02). In a multivariate Cox proportional hazards analysis, the sEng level (<3.9 ng/mL) was an independent predictor of cardiovascular events (hazard ratio: 1.59; 95%CI: 1.01-2.49). Furthermore, only among the 209 patients with CAD, the sEng level was also a predictor of further cardiovascular events (hazard ratio: 2.07; 95%CI: 1.24-3.45). Thus, low plasma sEng levels were found to be associated with an increased risk of cardiovascular events in patients with CAD and patients undergoing coronary angiography.
Collapse
Affiliation(s)
- Emi Saita
- Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yoshimi Kishimoto
- Department of Food Science and Human Nutrition, Faculty of Agriculture, Setsunan University, 45-1 Na-gaotouge-cho, Hirakata 573-0101, Japan
| | - Masayuki Aoyama
- Department of Cardiovascular Medicine, Toho University Graduate School of Medicine, 5-21-16 Omorinishi, Ota-ku, Tokyo 143-8540, Japan
- Department of Cardiology, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo 152-8902, Japan
| | - Reiko Ohmori
- Faculty of Regional Design, Utsunomiya University, 350 Minecho, Tochigi 321-8505, Japan
| | - Kazuo Kondo
- Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Yukihiko Momiyama
- Department of Cardiology, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo 152-8902, Japan
| |
Collapse
|
7
|
He S, Fu Y, Li C, Gan X, Wang Y, Zhou H, Jiang R, Zhang Q, Jia Q, Chen X, Jia EZ. Interaction between the expression of hsa_circRPRD1A and hsa_circHERPUD2 and classical coronary risk factors promotes the development of coronary artery disease. BMC Med Genomics 2023; 16:131. [PMID: 37316908 DOI: 10.1186/s12920-023-01540-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/10/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Recent studies suggest that classical coronary risk factors play a significant role in the pathogenesis of coronary artery disease. Our study aims to explore the interaction of circRNA with classical coronary risk factors in coronary atherosclerotic disease. METHOD Combined analysis of RNA sequencing results from coronary segments and peripheral blood mononuclear cells of patients with coronary atherosclerotic disease was employed to identify critical circRNAs. Competing endogenous RNA networks were constructed by miRanda-3.3a and TargetScan7.0. The relative expression quantity of circRNA in peripheral blood mononuclear cells was determined by qRT-PCR in a large cohort including 256 patients and 49 controls. Spearman's correlation test, receiver operating characteristic curve analysis, multivariable logistic regression analysis, one-way analysis of variance, and crossover analysis were performed. RESULTS A total of 34 circRNAs were entered into our study, hsa_circRPRD1A, hsa_circHERPUD2, hsa_circLMBR1, and hsa_circDHTKD1 were selected for further investigation. A circRNA-miRNA-mRNA network is composed of 20 microRNAs and 66 mRNAs. The expression of hsa_circRPRD1A (P = 0.004) and hsa_circHERPUD2 (P = 0.003) were significantly down-regulated in patients with coronary artery disease compared to controls. The area under the curve of hsa_circRPRD1A and hsa_circHERPUD2 is 0.689 and 0.662, respectively. Univariate and multivariable logistic regression analyses identified hsa_circRPRD1A (OR = 0.613, 95%CI:0.380-0.987, P = 0.044) as a protective factor for coronary artery disease. Based on the additive model, crossover analysis demonstrated that there was an antagonistic interaction between the expression of hsa_circHERPUD2 and alcohol consumption in subjects with coronary artery disease. CONCLUSION Our findings imply that hsa_circRPRD1A and hsa_circHERPUD2 could be used as biomarkers for the diagnosis of coronary artery disease and provide epidemiological support for the interactions between circRNAs and classical coronary risk factors.
Collapse
Affiliation(s)
- Shu He
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, Jiangsu Province, 210029, China
| | - Yahong Fu
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, Jiangsu Province, 210029, China
| | - Chengcheng Li
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, Jiangsu Province, 210029, China
| | - Xiongkang Gan
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, Jiangsu Province, 210029, China
| | - Yanjun Wang
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, Jiangsu Province, 210029, China
| | - Hanxiao Zhou
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, Jiangsu Province, 210029, China
| | - Rongli Jiang
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, Jiangsu Province, 210029, China
| | - Qian Zhang
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, Jiangsu Province, 210029, China
| | - Qiaowei Jia
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, Jiangsu Province, 210029, China
| | - Xiumei Chen
- Department of Geriatric, the First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, Jiangsu Province, 210029, China.
- Department of Cardiovascular Medicine, Liyang People's Hospital, Liyang, Jiangsu province, 213300, China.
| | - En-Zhi Jia
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, Jiangsu Province, 210029, China.
| |
Collapse
|
8
|
Wang K, Huang XT, Miao YP, Bai XL, Jin F. MiR-148a-3p attenuates apoptosis and inflammation by targeting CNTN4 in atherosclerosis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1201. [PMID: 36544657 PMCID: PMC9761171 DOI: 10.21037/atm-22-3768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022]
Abstract
Background Atherosclerosis (AS) seriously affects human health. The role of microRNAs (miRNAs) in the pathogenesis and progression of AS has become a focus of research. Our goal was to identify the biological effect of differentially expressed miRNAs (DE-miRNAs) in AS. Methods To analyze differentially expressed genes (DEGs), including differentially expressed mRNAs (DE-mRNAs) and DE-miRNAs, in AS by using the Gene Expression Omnibus (GEO) database and limma package. DEGs protein-protein interaction (PPI) network and functional enrichment analysis were constructed by using the search tool for the retrieval of interacting genes/proteins (STRING) database, Cytoscape software and Cytoscape plugin "ClueGO2.5.6". We established a coexpression network of dysregulated miRNAs and mRNAs to predict the function of miRNAs by using miRWalk database and Pearson correlation coefficient (PCC) analysis. Cellular experiments were used to validate the results of bioinformatics. Results First, 69 common DEGs were obtained from datasets GSE43292 and GSE97210 using the limma package in R. Next, a DEG PPI network was constructed. Functional enrichment analysis of DEGs showed that 11 functional pathways were significantly enriched, such as positive regulation of monocyte chemotaxis. Seven common DE-miRNAs were obtained from the GSE99685 dataset and DE-mRNAs predicted miRNAs through the miRWalk database. The miRNA-mRNA network constructed using Cytoscape software suggested that miR-148a-3p targeted contactin 4 (CNTN4). Quantitative real-time polymerase chain reaction (qRT-PCR) assay results indicated that miR-148a-3p was downregulated and CNTN4 was upregulated in the THP-1 + phorbol 12-myristate 13-acetate (PMA) + oxidized low-density lipoprotein (oxLDL) group compared with the THP-1 + PMA group. qRT-PCR, flow cytometry, and enzyme-linked immunosorbent assay (ELISA) found that upregulated miR-148a-3p significantly inhibited the expression of CNTN4, cell apoptosis, and interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) concentrations in oxLDL-induced THP-1 macrophages. In addition, a dual-luciferase reporter assay demonstrated that CNTN4 was a target gene of miR-148a-3p. Conclusions Overall, these findings suggested that miR-148a-3p inhibited oxLDL-induced cell apoptosis and inflammation via targeting CNTN4 in THP-1 macrophages.
Collapse
Affiliation(s)
- Kai Wang
- Department of Neurosurgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xi-Tong Huang
- Department of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Yan-Ping Miao
- Department of Radiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xiao-Long Bai
- Department of Radiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Feng Jin
- Department of Radiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|