1
|
Du D, Zhong H, Huang Z, Gao M, Su R, Xu M, Shi L, Hu J, Cao H. Polysaccharides isolated from shufeng jiedu capsules by cross-flow ultrafiltration show anti-inflammatory effects on LPS-stimulated RAW264.7 cells and zebrafish inflammatory models. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119817. [PMID: 40250639 DOI: 10.1016/j.jep.2025.119817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/02/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shufeng Jiedu Capsules (SFJDC) is a traditional Chinese patent medicine comprising eight traditional Chinese medicines (TCM). SFJDC is known for its anti-inflammatory and antipyretic effects and is mainly used in clinics to treat upper respiratory tract infections. Currently, studies on the active ingredients of the SFJDC all focus on small-molecule compounds. In contrast, bio-macromolecules, such as the anti-inflammatory activities of polysaccharides in SFJDC, have not been studied, and the composition of the polysaccharides in SFJDC is also unclear. AIM OF THE STUDY This study aimed to isolate active polysaccharides from Shufeng Jiedu capsules and determine their structural properties and anti-inflammatory activities. MATERIALS AND METHODS The polysaccharides with different molecular weights were prepared by organic solvent extraction, alcohol precipitation, dialysis, and cross-flow ultrafiltration. The structural characterization of polysaccharides was clarified by high-performance size exclusion chromatography (HPGPC), ion chromatography (IC), and Fourier transform infrared spectroscopy (FT-IR). Enzyme-linked immunosorbent assay (ELISA) and quantitative real-time PCR (qRT-PCR) assay were used to investigate the anti-inflammatory effects of polysaccharides on Lipopolysaccharides (LPS)-stimulated RAW264.7 cells. The in vivo study was employed on the CuSO4-induced and LPS-stimulated zebrafish inflammatory models, and the survival analysis, observation of neutrophil migration, hematoxylin-eosin (H&E) staining, and qRT-PCR assays were used to investigate the in vivo anti-inflammatory effect of polysaccharides. RESULTS The crude polysaccharides SFJDC-CP were obtained from the mixed aqueous extract of SFJDC with a yield of 38.72 %. Both SFJDC and SFJDC-CP dose-dependently inhibited the secretion of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β in LPS-stimulated RAW264.7 cells, and SFJDC-CP was more effective at a lower dosage. SFJDC-CP was further separated into three fractions, SFJDC-CP1-CP3, by cross-flow ultrafiltration apparatus with nominal molecular weight cut-offs of 100 kDa, 50 kDa, and 10 kDa membrane cassettes, and the yields were approximately 58.19 %, 10.88 %, and 30.94 %, respectively. The MWs of the SFJDC-CP and its SFJDC-CP1-CP3 were 35.7 kDa, 149.1 kDa, 34.5 kDa, and 15.1 kDa, respectively. The four polysaccharides were composed of rhamnose, arabinose, galactose, glucose, and galacturonic acid in different molar ratios. Non-toxic concentrations of the four polysaccharides ranged from 12.5 to 200 μg/mL. The four polysaccharides significantly reduced the mRNA expression levels and release of IL-1β, IL-6, and TNF-α (P < 0.0001) in LPS-stimulated RAW264.7 cells. Polysaccharides also decreased inflammatory cell infiltration and neutrophil migration (P < 0.05 or P < 0.001) in both CuSO4-induced and LPS-microinjected zebrafish inflammatory models. Additionally, they effectively inhibited the mRNA levels of IL-6 and TNF-α in LPS-infected zebrafish (P < 0.01 or P < 0.001). CONCLUSIONS Polysaccharides isolated from Shufeng Jiedu capsules have demonstrated anti-inflammatory effects on LPS-stimulated RAW264.7 cells and zebrafish inflammatory models. This study provided preliminary evidence that polysaccharides are one of the main anti-inflammatory ingredients of Shufeng Jiedu capsules. Additionally, it may provide valuable perspectives for investigating polysaccharides in other TCM formulations, particularly those obtained through aqueous extraction methods.
Collapse
Affiliation(s)
- Dongsheng Du
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, PR China.
| | - Hongjiao Zhong
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, PR China
| | - Ziyi Huang
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Mingzhu Gao
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, PR China
| | - Ruirui Su
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, PR China
| | - Mengqiu Xu
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, PR China
| | - Lei Shi
- Wannan Medical College, Wuhu, 241002, Anhui, PR China
| | - Jie Hu
- Wuhu Food and Drug Inspection Center, Wuhu 241008, Anhui, PR China
| | - Huihui Cao
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
2
|
Arya SB, Collie SP, Xu Y, Fernandez M, Sexton JZ, Mosalaganti S, Coulombe PA, Parent CA. Neutrophils secrete exosome-associated DNA to resolve sterile acute inflammation. Nat Cell Biol 2025:10.1038/s41556-025-01671-4. [PMID: 40404894 DOI: 10.1038/s41556-025-01671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 04/09/2025] [Indexed: 05/24/2025]
Abstract
Acute inflammation, characterized by a rapid influx of neutrophils, is a protective response that can lead to chronic inflammatory diseases when left unresolved. We previously showed that secretion of LTB4-containing exosomes via nuclear envelope-derived multivesicular bodies is required for effective neutrophil infiltration during inflammation. Here we report that the co-secretion of these exosomes with nuclear DNA facilitates the resolution of the neutrophil infiltrate in a mouse skin model of sterile inflammation. Activated neutrophils exhibit rapid and repetitive DNA secretion as they migrate directionally using a mechanism distinct from suicidal neutrophil extracellular trap release and cell death. Packaging of DNA in the lumen of nuclear envelope-multivesicular bodies is mediated by lamin B receptor and chromatin decondensation. These findings advance our understanding of neutrophil functions during inflammation and the physiological relevance of DNA secretion.
Collapse
Affiliation(s)
- Subhash B Arya
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Samuel P Collie
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yang Xu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Martin Fernandez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Z Sexton
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Shyamal Mosalaganti
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Pierre A Coulombe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carole A Parent
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Potempa M, Hart PC, Rajab IM, Potempa LA. Redefining CRP in tissue injury and repair: more than an acute pro-inflammatory mediator. Front Immunol 2025; 16:1564607. [PMID: 40093010 PMCID: PMC11906453 DOI: 10.3389/fimmu.2025.1564607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Most early studies investigating the role of C-reactive protein (CRP) in tissue damage determined it supported pro-hemostatic and pro-inflammatory activities. However, these findings were not universal, as other data suggested CRP inhibited these same processes. A potential explanation for these disparate observations finally emerged with the recognition that CRP undergoes context-dependent conformational changes in vivo, and each of its three isoforms - pentameric CRP (pCRP), modified pentameric CRP (pCRP*), and monomeric CRP (mCRP) - have different effects. In this review, we consider this new paradigm and re-evaluate the role of CRP and its isoforms in the tissue repair process. Indeed, a growing body of evidence points toward the involvement of CRP not just in hemostasis and inflammation, but also in the resolution of inflammation and in tissue regeneration. Additionally, we briefly discuss the shortcomings of the currently available diagnostic tests for CRP and highlight the need for change in how CRP is currently utilized in clinical practice.
Collapse
Affiliation(s)
| | - Peter C. Hart
- College of Science, Health, and Pharmacy, Roosevelt University, Schaumburg, IL, United States
| | - Ibraheem M. Rajab
- College of Science, Health, and Pharmacy, Roosevelt University, Schaumburg, IL, United States
| | - Lawrence A. Potempa
- Acphazin Inc., Deerfield, IL, United States
- College of Science, Health, and Pharmacy, Roosevelt University, Schaumburg, IL, United States
| |
Collapse
|
4
|
Ding J. Mendelian randomization reveals causal relationships between cytokines and male reproductive diseases. J Reprod Immunol 2025; 169:104465. [PMID: 40023096 DOI: 10.1016/j.jri.2025.104465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
This study aims to explore the causal links between cytokines and four male reproductive disorders, namely abnormal spermatozoa (AS), male infertility, erectile dysfunction (ED), and hyperplasia of prostate (HP), employing a two-sample Mendelian randomization (MR) approach. Genetic associations with male reproductive diseases were derived from the IEU OpenGWAS project, with cytokine data from two GWASs focused on the human proteome and cytokines. Estimations were derived using inverse variance weighting, MR-Egger regression, weighted median, weighted model, and simple mode. Furthermore, the robustness of the findings was evaluated through Cochran's Q-test, MR-Egger regression, and leave-one-out sensitivity analysis. Fifteen unique cytokines were identified as having causal relationships with the risk of four male reproductive disorders. Specifically, for AS, interleukin-22 (IL-22), IL-12, and macrophage migration inhibitory factor were negatively correlated with AS, while tumor necrosis factor β levels were positively correlated with AS. In the context of male infertility, IL-2 receptor antagonist levels, IL-34, and granulocyte-colony stimulating factor levels were positively linked to male infertility, whereas IL-21 showed a negative relationship. Regarding ED, IL-19, IL-1β, and eotaxin levels were negatively associated with ED risk, while macrophage inflammatory protein 1β (MIP-1β) levels and interferon gamma-induced protein 10 levels were positively associated. As for HP, stromal-cell-derived factor 1α levels and MIP-1α levels revealed negative associations with HP. In conclusion, this MR analysis revealed that several cytokines were causally associated with male reproductive diseases and could be valuable in offering new insights for further mechanistic and clinical investigations of cytokines-associated male reproductive diseases.
Collapse
Affiliation(s)
- Jie Ding
- Department of Reproductive Medicine, The Affiliated Hospital of Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 400020, China.
| |
Collapse
|
5
|
Shao Y, Zheng Q, Zhang X, Li P, Gao X, Zhang L, Xu J, Meng L, Tian Y, Zhang Q, Zhou G. Targeted nuclear degranulation of neutrophils promotes the progression of pneumonia in ulcerative colitis. PRECISION CLINICAL MEDICINE 2024; 7:pbae028. [PMID: 39540022 PMCID: PMC11560370 DOI: 10.1093/pcmedi/pbae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/02/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
Background Both intestinal and pulmonary systems are parts of the mucosal immune system, comprising ∼80% of all immune cells. These immune cells migrate or are transported between various mucosal tissues to maintain tissue homeostasis. Methods In this study, we isolated neutrophils from the peripheral blood of patients and utilized immunofluorescence, flow cytometry, and Western blotting to confirm the incidence of "nucleus-directed degranulation" in vitro. Subsequently, we conducted a precise analysis using arivis software. Furthermore, using the DSS mouse model of colitis and tissue clearing technologies, we validated the "targeted nuclear degranulation" of neutrophils and their migration to the lungs in an inflammatory intestinal environment. Result In this study, we found that among patients with ulcerative colitis, the migration of neutrophils with "targeted nuclear degranulation" from the intestinal mucosa to the lungs significantly exacerbates lung inflammation during pulmonary infections. Notably, patients with ulcerative colitis exhibited a higher abundance of neutrophils with targeted nuclear degranulation. Using DSS mice, we observed that neutrophils with targeted nuclear degranulation from the intestinal mucosa migrated to the lung and underwent activation during pulmonary infections. These neutrophils rapidly released a high amount of neutrophil extracellular traps to mediate the progression of lung inflammation. Alterations in the neutrophil cytoskeleton and its interaction with the nuclear membrane represent the primary mechanisms underlying targeted nuclear degranulation. Conclusion This study revealed that neutrophils accelerate lung inflammation progression in colitis, offering new insights and potential treatment targets for lung infections for patients with colitis.
Collapse
Affiliation(s)
- Yiming Shao
- Taishan Scholars Laboratory, Affiliated Hospital of Jining Medical University, Jining 272000, China
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jining Medical University, Jining 272000, China
| | - Qibing Zheng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jining Medical University, Jining 272000, China
| | - Xiaobei Zhang
- Taishan Scholars Laboratory, Affiliated Hospital of Jining Medical University, Jining 272000, China
| | - Ping Li
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China
| | - Xingxin Gao
- Department of Burns and Plastic Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning 530000, China
| | - Liming Zhang
- Department of Burns and Plastic Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning 530000, China
| | - Jiahong Xu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jining Medical University, Jining 272000, China
| | - Lingchao Meng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jining Medical University, Jining 272000, China
| | - Yanyun Tian
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jining Medical University, Jining 272000, China
| | - Qinqin Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jining Medical University, Jining 272000, China
| | - Guangxi Zhou
- Taishan Scholars Laboratory, Affiliated Hospital of Jining Medical University, Jining 272000, China
| |
Collapse
|
6
|
Arya SB, Collie SP, Xu Y, Fernandez M, Sexton JZ, Mosalaganti S, Coulombe PA, Parent CA. Neutrophils secrete exosome-associated DNA to resolve sterile acute inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.21.590456. [PMID: 38712240 PMCID: PMC11071349 DOI: 10.1101/2024.04.21.590456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Acute inflammation, characterized by a rapid influx of neutrophils, is a protective response that can lead to chronic inflammatory diseases when left unresolved. Secretion of LTB 4 -containing exosomes is required for effective neutrophil infiltration during inflammation. In this study, we show that neutrophils release nuclear DNA in a non-lytic, rapid, and repetitive manner, via a mechanism distinct from suicidal NET release and cell death. The packaging of nuclear DNA occurs in the lumen of nuclear envelope (NE)-derived multivesicular bodies (MVBs) that harbor the LTB 4 synthesizing machinery and is mediated by the lamin B receptor (LBR) and chromatin decondensation. Disruption of secreted exosome-associated DNA (SEAD) in a model of sterile inflammation in mouse skin amplifies and prolongs the presence of neutrophils, impeding the onset of resolution. Together, these findings advance our understanding of neutrophil functions during inflammation and the physiological significance of NETs, with implications for novel treatments for inflammatory disorders.
Collapse
|
7
|
Wang M, Jin Z, Huang H, Cheng X, Zhang Q, Tang Y, Zhu X, Zong Z, Li H, Ning Z. Neutrophil hitchhiking: Riding the drug delivery wave to treat diseases. Drug Dev Res 2024; 85:e22169. [PMID: 38477422 DOI: 10.1002/ddr.22169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/06/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
Neutrophils are a crucial component of the innate immune system and play a pivotal role in various physiological processes. From a physical perspective, hitchhiking is considered a phenomenon of efficient transportation. The combination of neutrophils and hitchhikers has given rise to effective delivery systems both in vivo and in vitro, thus neutrophils hitchhiking become a novel approach to disease treatment. This article provides an overview of the innovative and feasible application of neutrophils as drug carriers. It explores the mechanisms underlying neutrophil function, elucidates the mechanism of drug delivery mediated by neutrophil-hitchhiking, and discusses the potential applications of this strategy in the treatment of cancer, immune diseases, inflammatory diseases, and other medical conditions.
Collapse
Affiliation(s)
- Menghui Wang
- Department of Day Ward, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang University, Nanchang, Jiangxi Province, China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhenhua Jin
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Haoyu Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Xifu Cheng
- Department of Day Ward, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Qin Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Ying Tang
- Department of Day Ward, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiaoping Zhu
- Department of Day Ward, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Hui Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhikun Ning
- Department of Day Ward, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
8
|
Passino R, Finneran MC, Hafner H, Feng Q, Huffman LD, Zhao XF, Johnson CN, Kawaguchi R, Oses-Prieto JA, Burlingame AL, Geschwind DH, Benowitz LI, Giger RJ. Neutrophil-inflicted vasculature damage suppresses immune-mediated optic nerve regeneration. Cell Rep 2024; 43:113931. [PMID: 38492223 DOI: 10.1016/j.celrep.2024.113931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/03/2024] [Accepted: 02/21/2024] [Indexed: 03/18/2024] Open
Abstract
In adult mammals, injured retinal ganglion cells (RGCs) fail to spontaneously regrow severed axons, resulting in permanent visual deficits. Robust axon growth, however, is observed after intra-ocular injection of particulate β-glucan isolated from yeast. Blood-borne myeloid cells rapidly respond to β-glucan, releasing numerous pro-regenerative factors. Unfortunately, the pro-regenerative effects are undermined by retinal damage inflicted by an overactive immune system. Here, we demonstrate that protection of the inflamed vasculature promotes immune-mediated RGC regeneration. In the absence of microglia, leakiness of the blood-retina barrier increases, pro-inflammatory neutrophils are elevated, and RGC regeneration is reduced. Functional ablation of the complement receptor 3 (CD11b/integrin-αM), but not the complement components C1q-/- or C3-/-, reduces ocular inflammation, protects the blood-retina barrier, and enhances RGC regeneration. Selective targeting of neutrophils with anti-Ly6G does not increase axogenic neutrophils but protects the blood-retina barrier and enhances RGC regeneration. Together, these findings reveal that protection of the inflamed vasculature promotes neuronal regeneration.
Collapse
Affiliation(s)
- Ryan Passino
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Matthew C Finneran
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hannah Hafner
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Qian Feng
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lucas D Huffman
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Xiao-Feng Zhao
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Craig N Johnson
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Riki Kawaguchi
- Departments of Psychiatry and Neurology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Program in Neurogenetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Juan A Oses-Prieto
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA
| | - Alma L Burlingame
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA
| | - Daniel H Geschwind
- Departments of Psychiatry and Neurology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Program in Neurogenetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute of Precision Health, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Larry I Benowitz
- Departments of Neurosurgery and Ophthalmology, Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Boston Children's Hospital, Boston MA 02115, USA; Departmant of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Danne C, Skerniskyte J, Marteyn B, Sokol H. Neutrophils: from IBD to the gut microbiota. Nat Rev Gastroenterol Hepatol 2024; 21:184-197. [PMID: 38110547 DOI: 10.1038/s41575-023-00871-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2023] [Indexed: 12/20/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract that results from dysfunction in innate and/or adaptive immune responses. Impaired innate immunity, which leads to lack of control of an altered intestinal microbiota and to activation of the adaptive immune system, promotes a secondary inflammatory response that is responsible for tissue damage. Neutrophils are key players in innate immunity in IBD, but their roles have been neglected compared with those of other immune cells. The latest studies on neutrophils in IBD have revealed unexpected complexities, with heterogeneous populations and dual functions, both deleterious and protective, for the host. In parallel, interconnections between disease development, intestinal microbiota and neutrophils have been highlighted. Numerous IBD susceptibility genes (such as NOD2, NCF4, LRRK2, CARD9) are involved in neutrophil functions related to defence against microorganisms. Moreover, severe monogenic diseases involving dysfunctional neutrophils, including chronic granulomatous disease, are characterized by intestinal inflammation that mimics IBD and by alterations in the intestinal microbiota. This observation demonstrates the dialogue between neutrophils, gut inflammation and the microbiota. Neutrophils affect microbiota composition and function in several ways. In return, microbial factors, including metabolites, regulate neutrophil production and function directly and indirectly. It is crucial to further investigate the diverse roles played by neutrophils in host-microbiota interactions, both at steady state and in inflammatory conditions, to develop new IBD therapies. In this Review, we discuss the roles of neutrophils in IBD, in light of emerging evidence proving strong interconnections between neutrophils and the gut microbiota, especially in an inflammatory context.
Collapse
Affiliation(s)
- Camille Danne
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service de Gastroentérologie, Paris, France.
- Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France.
| | - Jurate Skerniskyte
- CNRS, UPR 9002, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, Strasbourg, France
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Benoit Marteyn
- CNRS, UPR 9002, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
- Institut Pasteur, Université de Paris, Inserm 1225 Unité de Pathogenèse des Infections Vasculaires, Paris, France
| | - Harry Sokol
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service de Gastroentérologie, Paris, France
- Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
10
|
Mondemé M, Zeroual Y, Soulard D, Hennart B, Beury D, Saliou JM, Carnoy C, Sirard JC, Faveeuw C. Amoxicillin treatment of pneumococcal pneumonia impacts bone marrow neutrophil maturation and function. J Leukoc Biol 2024; 115:463-475. [PMID: 37837383 DOI: 10.1093/jleuko/qiad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 10/16/2023] Open
Abstract
Pneumonia caused by Streptococcus pneumoniae is a leading cause of death worldwide. A growing body of evidence indicates that the successful treatment of bacterial infections results from synergy between antibiotic-mediated direct antibacterial activity and the host's immune defenses. However, the mechanisms underlying the protective immune responses induced by amoxicillin, a β-lactam antibiotic used as the first-line treatment of S. pneumoniae infections, have not been characterized. A better understanding of amoxicillin's effects on host-pathogen interactions might facilitate the development of other treatment options. Given the crucial role of neutrophils in the control of S. pneumoniae infections, we decided to investigate amoxicillin's impact on neutrophil development in a mouse model of pneumococcal superinfection. A single therapeutic dose of amoxicillin almost completely eradicated the bacteria and prevented local and systemic inflammatory responses. Interestingly, in this context, amoxicillin treatment did not impair the emergency granulopoiesis triggered in the bone marrow by S. pneumoniae. Importantly, treatment of pneumonia with amoxicillin was associated with a greater mature neutrophil count in the bone marrow; these neutrophils had specific transcriptomic and proteomic profiles. Furthermore, amoxicillin-conditioned, mature neutrophils in the bone marrow had a less activated phenotype and might be rapidly mobilized in peripheral tissues in response to systemic inflammation. Thus, by revealing a novel effect of amoxicillin on the development and functions of bone marrow neutrophils during S. pneumoniae pneumonia, our findings provide new insights into the impact of amoxicillin treatment on host immune responses.
Collapse
Affiliation(s)
- Mélanie Mondemé
- Université de Lille, CNRS, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille F-59019, France
| | - Yasmine Zeroual
- Université de Lille, CNRS, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille F-59019, France
| | - Daphnée Soulard
- Université de Lille, CNRS, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille F-59019, France
| | - Benjamin Hennart
- Toxicology and Genopathy Unit, Centre Hospitalier Universitaire de Lille, Lille F-59000, France
| | - Delphine Beury
- Université de Lille, CNRS, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - Plateformes Lilloises de Biologie et Santé, Lille F-59000, France
| | - Jean-Michel Saliou
- Université de Lille, CNRS, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - Plateformes Lilloises de Biologie et Santé, Lille F-59000, France
| | - Christophe Carnoy
- Université de Lille, CNRS, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille F-59019, France
| | - Jean-Claude Sirard
- Université de Lille, CNRS, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille F-59019, France
| | - Christelle Faveeuw
- Université de Lille, CNRS, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille F-59019, France
| |
Collapse
|
11
|
Shafqat A, Khan JA, Alkachem AY, Sabur H, Alkattan K, Yaqinuddin A, Sing GK. How Neutrophils Shape the Immune Response: Reassessing Their Multifaceted Role in Health and Disease. Int J Mol Sci 2023; 24:17583. [PMID: 38139412 PMCID: PMC10744338 DOI: 10.3390/ijms242417583] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Neutrophils are the most abundant of the circulating immune cells and are the first to be recruited to sites of inflammation. Neutrophils are a heterogeneous group of immune cells from which are derived extracellular traps (NETs), reactive oxygen species, cytokines, chemokines, immunomodulatory factors, and alarmins that regulate the recruitment and phenotypes of neutrophils, macrophages, dendritic cells, T cells, and B cells. In addition, cytokine-stimulated neutrophils can express class II major histocompatibility complex and the internal machinery necessary for successful antigen presentation to memory CD4+ T cells. This may be relevant in the context of vaccine memory. Neutrophils thus emerge as orchestrators of immune responses that play a key role in determining the outcome of infections, vaccine efficacy, and chronic diseases like autoimmunity and cancer. This review aims to provide a synthesis of current evidence as regards the role of these functions of neutrophils in homeostasis and disease.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia (K.A.); (A.Y.); (G.K.S.)
| | | | | | | | | | | | | |
Collapse
|
12
|
Vultaggio A, Accinno M, Vivarelli E, Mecheri V, Maggiore G, Cosmi L, Parronchi P, Rossi O, Maggi E, Gallo O, Matucci A. Blood CD62L low inflammatory eosinophils are related to the severity of asthma and reduced by mepolizumab. Allergy 2023; 78:3154-3165. [PMID: 37792721 DOI: 10.1111/all.15909] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/30/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Eosinophils have been divided into different subpopulations with distinct phenotypes based on CD62L expression. No data are available regarding the correlation between eosinophils subphenotypes and clinical severity of asthma, as well as the effect of anti-IL-5 therapy on these cells. The study investigates the correlation between blood CD62Llow inflammatory eosinophils (iEos) and clinical severity of severe eosinophilic asthma (SEA) and evaluates the impact of mepolizumab on iEos. METHODS 112 patients were screened and were divided in two groups: biological-naive (n = 51) and biological-treated patients (n = 61). The Biological-naive patients were analyzed before treatment (Group A) and 19 out of 51 patients, were longitudinally analyzed before and after treatment with mepolizumab 100 mg s.c/4 weeks (Group B); 32 patients were excluded because they were being treated with other biological therapies. Blood eosinophils were analyzed by FACS and correlated with clinical scores. In vitro effect of IL-5 and mepolizumab on CD62L expression was assessed. RESULTS A significant correlation between blood CD62Llow cells and clinical scores of asthma and nasal polyps, as well as the number of asthma exacerbations in the last year was shown in untreated patients. In longitudinally studied patients we observed a marked reduction of CD62Llow cells paralleled by an increase in the proportion of CD62Lbright cells, associated with clinical improvement of asthma control. In vitro, CD62L expression on eosinophils is modulated by IL-5 and anti-IL-5. CONCLUSION A positive correlation between CD62Llow iEos and the baseline clinical features of SEA with CRSwNP was shown. Furthermore mepolizumab restores the healthy balance among eosinophils sub-phenotypes in SEA patients.
Collapse
Affiliation(s)
- Alessandra Vultaggio
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Matteo Accinno
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Emanuele Vivarelli
- Immunology and Cellular Therapy Unit, Careggi University Hospital, Florence, Italy
| | - Valentina Mecheri
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giandomenico Maggiore
- Department of Clinical and Experimental Medicine, Otolaryngology Clinic, University of Florence, Florence, Italy
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Paola Parronchi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Olivero Rossi
- Immunoallergology Unit, Careggi University Hospital, Florence, Italy
| | - Enrico Maggi
- Translational Immunology Unit, Immunology Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Oreste Gallo
- Department of Clinical and Experimental Medicine, Otolaryngology Clinic, University of Florence, Florence, Italy
| | - Andrea Matucci
- Immunoallergology Unit, Careggi University Hospital, Florence, Italy
| |
Collapse
|
13
|
Bassani B, Cucchiara M, Butera A, Kayali O, Chiesa A, Palano MT, Olmeo F, Gallazzi M, Dellavia CPB, Mortara L, Parisi L, Bruno A. Neutrophils' Contribution to Periodontitis and Periodontitis-Associated Cardiovascular Diseases. Int J Mol Sci 2023; 24:15370. [PMID: 37895050 PMCID: PMC10607037 DOI: 10.3390/ijms242015370] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Neutrophils represent the primary defense against microbial threats playing a pivotal role in maintaining tissue homeostasis. This review examines the multifaceted involvement of neutrophils in periodontitis, a chronic inflammatory condition affecting the supporting structures of teeth summarizing the contribution of neutrophil dysfunction in periodontitis and periodontal-related comorbidities. Periodontitis, a pathological condition promoted by dysbiosis of the oral microbiota, is characterized by the chronic inflammation of the gingiva and subsequent tissue destruction. Neutrophils are among the first immune cells recruited to the site of infection, releasing antimicrobial peptides, enzymes, and reactive oxygen species to eliminate pathogens. The persistent inflammatory state in periodontitis can lead to aberrant neutrophil activation and a sustained release of proinflammatory mediators, finally resulting in tissue damage, bone resorption, and disease progression. Growing evidence now points to the correlation between periodontitis and systemic comorbidities. Indeed, the release of inflammatory mediators, immune complexes, and oxidative stress by neutrophils, bridge the gap between local and systemic immunity, thus highlighting neutrophils as key players in linking periodontal inflammation to chronic conditions, including cardiovascular diseases, diabetes mellitus, and rheumatoid arthritis. This review underscores the crucial role of neutrophils in the pathogenesis of periodontitis and the complex link between neutrophil dysfunction, local inflammation, and systemic comorbidities. A comprehensive understanding of neutrophil contribution to periodontitis development and their impact on periodontal comorbidities holds significant implications for the management of oral health. Furthermore, it highlights the need for the development of novel approaches aimed at limiting the persistent recruitment and activation of neutrophils, also reducing the impact of periodontal inflammation on broader health contexts, offering promising avenues for improved disease management and patient care.
Collapse
Affiliation(s)
- Barbara Bassani
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138 Milan, Italy; (B.B.); (M.C.); (O.K.); (M.T.P.); (F.O.); (M.G.)
| | - Martina Cucchiara
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138 Milan, Italy; (B.B.); (M.C.); (O.K.); (M.T.P.); (F.O.); (M.G.)
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
| | - Andrea Butera
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (A.B.); (A.C.)
| | - Omar Kayali
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138 Milan, Italy; (B.B.); (M.C.); (O.K.); (M.T.P.); (F.O.); (M.G.)
| | - Alessandro Chiesa
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (A.B.); (A.C.)
| | - Maria Teresa Palano
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138 Milan, Italy; (B.B.); (M.C.); (O.K.); (M.T.P.); (F.O.); (M.G.)
| | - Francesca Olmeo
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138 Milan, Italy; (B.B.); (M.C.); (O.K.); (M.T.P.); (F.O.); (M.G.)
| | - Matteo Gallazzi
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138 Milan, Italy; (B.B.); (M.C.); (O.K.); (M.T.P.); (F.O.); (M.G.)
| | | | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
| | - Luca Parisi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy;
| | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138 Milan, Italy; (B.B.); (M.C.); (O.K.); (M.T.P.); (F.O.); (M.G.)
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
| |
Collapse
|
14
|
Dam P, Celik M, Ustun M, Saha S, Saha C, Kacar EA, Kugu S, Karagulle EN, Tasoglu S, Buyukserin F, Mondal R, Roy P, Macedo MLR, Franco OL, Cardoso MH, Altuntas S, Mandal AK. Wound healing strategies based on nanoparticles incorporated in hydrogel wound patches. RSC Adv 2023; 13:21345-21364. [PMID: 37465579 PMCID: PMC10350660 DOI: 10.1039/d3ra03477a] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
The intricate, tightly controlled mechanism of wound healing that is a vital physiological mechanism is essential to maintaining the skin's natural barrier function. Numerous studies have focused on wound healing as it is a massive burden on the healthcare system. Wound repair is a complicated process with various cell types and microenvironment conditions. In wound healing studies, novel therapeutic approaches have been proposed to deliver an effective treatment. Nanoparticle-based materials are preferred due to their antibacterial activity, biocompatibility, and increased mechanical strength in wound healing. They can be divided into six main groups: metal NPs, ceramic NPs, polymer NPs, self-assembled NPs, composite NPs, and nanoparticle-loaded hydrogels. Each group shows several advantages and disadvantages, and which material will be used depends on the type, depth, and area of the wound. Better wound care/healing techniques are now possible, thanks to the development of wound healing strategies based on these materials, which mimic the extracellular matrix (ECM) microenvironment of the wound. Bearing this in mind, here we reviewed current studies on which NPs have been used in wound healing and how this strategy has become a key biotechnological procedure to treat skin infections and wounds.
Collapse
Affiliation(s)
- Paulami Dam
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Merve Celik
- Biomedical Engineering Graduate Program, TOBB University of Economics and Technology Ankara 06560 Turkey
| | - Merve Ustun
- Graduate School of Sciences and Engineering, Koç University Istanbul 34450 Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
| | - Sayantan Saha
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Chirantan Saha
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Elif Ayse Kacar
- Graduate Program of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey Istanbul Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
| | - Senanur Kugu
- Graduate Program of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey Istanbul Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
| | - Elif Naz Karagulle
- Biomedical Engineering Graduate Program, TOBB University of Economics and Technology Ankara 06560 Turkey
| | - Savaş Tasoglu
- Mechanical Engineering Department, School of Engineering, Koç University Istanbul Turkey
- Koç University Translational Medicine Research Center (KUTTAM), Koç University Istanbul Turkey
| | - Fatih Buyukserin
- Department of Biomedical Engineering, TOBB University of Economics and Technology Ankara 06560 Turkey
| | - Rittick Mondal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Priya Roy
- Department of Law, Raiganj University North Dinajpur West Bengal India
| | - Maria L R Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária 79070900 Campo Grande Mato Grosso do Sul 70790160 Brazil
| | - Octávio L Franco
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Campo Grande 79117900 Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília Brasília DF Brazil
| | - Marlon H Cardoso
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária 79070900 Campo Grande Mato Grosso do Sul 70790160 Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Campo Grande 79117900 Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília Brasília DF Brazil
| | - Sevde Altuntas
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
- Department of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey Istanbul Turkey
| | - Amit Kumar Mandal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
- Centre for Nanotechnology Sciences (CeNS), Raiganj University North Dinajpur West Bengal India
| |
Collapse
|
15
|
Xu H, Lin S, Zhou Z, Li D, Zhang X, Yu M, Zhao R, Wang Y, Qian J, Li X, Li B, Wei C, Chen K, Yoshimura T, Wang JM, Huang J. New genetic and epigenetic insights into the chemokine system: the latest discoveries aiding progression toward precision medicine. Cell Mol Immunol 2023; 20:739-776. [PMID: 37198402 PMCID: PMC10189238 DOI: 10.1038/s41423-023-01032-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
Over the past thirty years, the importance of chemokines and their seven-transmembrane G protein-coupled receptors (GPCRs) has been increasingly recognized. Chemokine interactions with receptors trigger signaling pathway activity to form a network fundamental to diverse immune processes, including host homeostasis and responses to disease. Genetic and nongenetic regulation of both the expression and structure of chemokines and receptors conveys chemokine functional heterogeneity. Imbalances and defects in the system contribute to the pathogenesis of a variety of diseases, including cancer, immune and inflammatory diseases, and metabolic and neurological disorders, which render the system a focus of studies aiming to discover therapies and important biomarkers. The integrated view of chemokine biology underpinning divergence and plasticity has provided insights into immune dysfunction in disease states, including, among others, coronavirus disease 2019 (COVID-19). In this review, by reporting the latest advances in chemokine biology and results from analyses of a plethora of sequencing-based datasets, we outline recent advances in the understanding of the genetic variations and nongenetic heterogeneity of chemokines and receptors and provide an updated view of their contribution to the pathophysiological network, focusing on chemokine-mediated inflammation and cancer. Clarification of the molecular basis of dynamic chemokine-receptor interactions will help advance the understanding of chemokine biology to achieve precision medicine application in the clinic.
Collapse
Affiliation(s)
- Hanli Xu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Shuye Lin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, 101149, Beijing, China
| | - Ziyun Zhou
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Duoduo Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Xiting Zhang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Muhan Yu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Ruoyi Zhao
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Yiheng Wang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Junru Qian
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Xinyi Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Bohan Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Chuhan Wei
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Keqiang Chen
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Teizo Yoshimura
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Ji Ming Wang
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Jiaqiang Huang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China.
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, 101149, Beijing, China.
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA.
| |
Collapse
|