1
|
Verma J, Kumar V, Wilen CE, Rosenholm JM, Bansal KK. Reactive Oxygen Species-Regulated Conjugates Based on Poly(jasmine) Lactone for Simultaneous Delivery of Doxorubicin and Docetaxel. Pharmaceutics 2024; 16:1164. [PMID: 39339200 PMCID: PMC11434831 DOI: 10.3390/pharmaceutics16091164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
In cancer therapy, it is essential to selectively release cytotoxic agents into the tumor to prevent the adverse effects associated with anticancer drugs. Thus, in this study, a stimuli-sensitive polymer-drug conjugate was synthesized for selective drug release. Doxorubicin (DOX) and docetaxel (DTX) were conjugated onto novel poly(jasmine lactone) based copolymer via a thioketal (TK) linker. In addition, a photosensitizer (chlorin e6) was attached to the polymer, which served as a reactive oxygen species generator to cleave the TK linker. The conjugate is readily self-assembled into micelles less than 100 nm in size. Micelles demonstrate a notable increase in their ability to cause cell death when exposed to near-infrared (NIR) light on MDA-MB-231 breast cancer cells. The increase in cytotoxicity is higher than that observed with the combination of free DOX and DTX. The accumulation of DOX in the nucleus after release from the micelles (laser irradiation) was also confirmed by confocal microscopy. In the absence of light, micelles did not show any toxicity while the free drugs were found toxic irrespective of the light exposure. The obtained results suggest the targeted drug delivery potential of micelles regulated by the external stimuli, i.e., NIR light.
Collapse
Affiliation(s)
- Jyoti Verma
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering Åbo Akademi University, Biocity, Tykistökatu 6A, 20520 Turku, Finland
| | - Vishal Kumar
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering Åbo Akademi University, Biocity, Tykistökatu 6A, 20520 Turku, Finland
- Laboratory of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, Aurum, Henrikinkatu 2, 20500 Turku, Finland
| | - Carl-Eric Wilen
- Laboratory of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, Aurum, Henrikinkatu 2, 20500 Turku, Finland
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering Åbo Akademi University, Biocity, Tykistökatu 6A, 20520 Turku, Finland
| | - Kuldeep K Bansal
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering Åbo Akademi University, Biocity, Tykistökatu 6A, 20520 Turku, Finland
- Laboratory of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, Aurum, Henrikinkatu 2, 20500 Turku, Finland
| |
Collapse
|
2
|
Hu R, Lan J, Zhang D, Shen W. Nanotherapeutics for prostate cancer treatment: A comprehensive review. Biomaterials 2024; 305:122469. [PMID: 38244344 DOI: 10.1016/j.biomaterials.2024.122469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
Prostate cancer (PCa) is the most prevalent solid organ malignancy and seriously affects male health. The adverse effects of prostate cancer therapeutics can cause secondary damage to patients. Nanotherapeutics, which have special targeting abilities and controlled therapeutic release profiles, may serve as alternative agents for PCa treatment. At present, many nanotherapeutics have been developed to treat PCa and have shown better treatment effects in animals than traditional therapeutics. Although PCa nanotherapeutics are highly attractive, few successful cases have been reported in clinical practice. To help researchers design valuable nanotherapeutics for PCa treatment and avoid useless efforts, herein, we first reviewed the strategies and challenges involved in prostate cancer treatment. Subsequently, we presented a comprehensive review of nanotherapeutics for PCa treatment, including their targeting methods, controlled release strategies, therapeutic approaches and mechanisms. Finally, we proposed the future prospects of nanotherapeutics for PCa treatment.
Collapse
Affiliation(s)
- Ruimin Hu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jin Lan
- Department of Ultrasound, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Dinglin Zhang
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Wenhao Shen
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
3
|
Jin Z, Al Amili M, Guo S. Tumor Microenvironment-Responsive Drug Delivery Based on Polymeric Micelles for Precision Cancer Therapy: Strategies and Prospects. Biomedicines 2024; 12:417. [PMID: 38398021 PMCID: PMC10886702 DOI: 10.3390/biomedicines12020417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
In clinical practice, drug therapy for cancer is still limited by its inefficiency and high toxicity. For precision therapy, various drug delivery systems, including polymeric micelles self-assembled from amphiphilic polymeric materials, have been developed to achieve tumor-targeting drug delivery. Considering the characteristics of the pathophysiological environment at the drug target site, the design, synthesis, or modification of environmentally responsive polymeric materials has become a crucial strategy for drug-targeted delivery. In comparison to the normal physiological environment, tumors possess a unique microenvironment, characterized by a low pH, high reactive oxygen species concentration, hypoxia, and distinct enzyme systems, providing various stimuli for the environmentally responsive design of polymeric micelles. Polymeric micelles with tumor microenvironment (TME)-responsive characteristics have shown significant improvement in precision therapy for cancer treatment. This review mainly outlines the most promising strategies available for exploiting the tumor microenvironment to construct internal stimulus-responsive drug delivery micelles that target tumors and achieve enhanced antitumor efficacy. In addition, the prospects of TME-responsive polymeric micelles for gene therapy and immunotherapy, the most popular current cancer treatments, are also discussed. TME-responsive drug delivery via polymeric micelles will be an efficient and robust approach for developing clinical cancer therapies in the future.
Collapse
Affiliation(s)
- Zhu Jin
- Correspondence: (Z.J.); (S.G.)
| | | | - Shengrong Guo
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China;
| |
Collapse
|
4
|
Chen Q, Yuan L, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. Meta-Analysis of Nanoparticle Distribution in Tumors and Major Organs in Tumor-Bearing Mice. ACS NANO 2023; 17:19810-19831. [PMID: 37812732 PMCID: PMC10604101 DOI: 10.1021/acsnano.3c04037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/24/2023] [Indexed: 10/11/2023]
Abstract
Low tumor delivery efficiency is a critical barrier in cancer nanomedicine. This study reports an updated version of "Nano-Tumor Database", which increases the number of time-dependent concentration data sets for different nanoparticles (NPs) in tumors from the previous version of 376 data sets with 1732 data points from 200 studies to the current version of 534 data sets with 2345 data points from 297 studies published from 2005 to 2021. Additionally, the current database includes 1972 data sets for five major organs (i.e., liver, spleen, lung, heart, and kidney) with a total of 8461 concentration data points. Tumor delivery and organ distribution are calculated using three pharmacokinetic parameters, including delivery efficiency, maximum concentration, and distribution coefficient. The median tumor delivery efficiency is 0.67% injected dose (ID), which is low but is consistent with previous studies. Employing the best regression model for tumor delivery efficiency, we generate hypothetical scenarios with different combinations of NP factors that may lead to a higher delivery efficiency of >3%ID, which requires further experimentation to confirm. In healthy organs, the highest NP accumulation is in the liver (10.69%ID/g), followed by the spleen 6.93%ID/g and the kidney 3.22%ID/g. Our perspective on how to facilitate NP design and clinical translation is presented. This study reports a substantially expanded "Nano-Tumor Database" and several statistical models that may help nanomedicine design in the future.
Collapse
Affiliation(s)
- Qiran Chen
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32608, United States
- Center
for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32610, United States
| | - Long Yuan
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32608, United States
- Center
for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32610, United States
| | - Wei-Chun Chou
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32608, United States
- Center
for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32610, United States
| | - Yi-Hsien Cheng
- Department
of Anatomy and Physiology, Kansas State
University, Manhattan, Kansas 66506, United States
- Institute
of Computational Comparative Medicine, Kansas
State University, Manhattan, Kansas 66506, United States
| | - Chunla He
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32608, United States
- Department
of Biostatistics College of Public Health and Health Professions, University of Florida, Gainesville, Florida 32608, United States
| | - Nancy A. Monteiro-Riviere
- Nanotechnology
Innovation Center of Kansas State, Kansas
State University, Manhattan, Kansas 66506, United States
- Center
for Chemical Toxicology Research and Pharmacokinetics, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Jim E. Riviere
- Center
for Chemical Toxicology Research and Pharmacokinetics, North Carolina State University, Raleigh, North Carolina 27606, United States
- 1
Data Consortium, Kansas State University, Olathe, Kansas 66061, United States
| | - Zhoumeng Lin
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32608, United States
- Center
for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
5
|
Liu X, Song H, Sun T, Wang H. Responsive Microneedles as a New Platform for Precision Immunotherapy. Pharmaceutics 2023; 15:1407. [PMID: 37242649 PMCID: PMC10220742 DOI: 10.3390/pharmaceutics15051407] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Microneedles are a well-known transdermal or transdermal drug delivery system. Different from intramuscular injection, intravenous injection, etc., the microneedle delivery system provides unique characteristics for immunotherapy administration. Microneedles can deliver immunotherapeutic agents to the epidermis and dermis, where immune cells are abundant, unlike conventional vaccine systems. Furthermore, microneedle devices can be designed to respond to certain endogenous or exogenous stimuli including pH, reactive oxygen species (ROS), enzyme, light, temperature, or mechanical force, thereby allowing controlled release of active compounds in the epidermis and dermis. In this way, multifunctional or stimuli-responsive microneedles for immunotherapy could enhance the efficacy of immune responses to prevent or mitigate disease progression and lessen systemic adverse effects on healthy tissues and organs. Since microneedles are a promising drug delivery system for accurate delivery and controlled drug release, this review focuses on the progress of using reactive microneedles for immunotherapy, especially for tumors. Limitations of current microneedle system are summarized, and the controllable administration and targeting of reactive microneedle systems are examined.
Collapse
Affiliation(s)
- Xinyang Liu
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Haohao Song
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Tairan Sun
- The Second Affiliated Hospital of Hebei North University, Zhangjiakou 075100, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Ding X, Bai S, Liu F, Michał N, Roman S, Peng N, Liu Y. NIR-II-triggered photothermal therapy with Au@PDA/PEG-PI for targeted downregulation of PSMA in prostate cancer. Acta Biomater 2023; 157:487-499. [PMID: 36521678 DOI: 10.1016/j.actbio.2022.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/27/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Although positron emission tomography (PET) imaging products targeting prostate-specific membrane antigen (PSMA) have been approved for marketing, clinical challenges remain in the study of its use as a therapeutic target, such as the complex synthesis process and side effects after treatment. Here, we developed a strategy for targeted photothermal therapy (PTT) using PSMA as the target. The results of molecular docking demonstrated that the synthesized PEG modified urea-based PSMA inhibitor (small molecular PSMA inhibitor, PI) PI-PEG has a high affinity energy (binding energy = - 8.3 kcal mol-1) for the PSMA target. Therefore, modification of PI-PEG onto the surface of gold@polydopamine (Au@PDA) with NIR-II absorption could enable targeted PTT against PSMA. This work revealed that the prepared Au@PDA/PEG-PI were not only highly selective for PSMA, but also could efficiently ablate PSMA expression by targeted PTT at the maximum permissible exposure (MPE) of the NIR-II laser. Moreover, Au@PDA/PEG-PI also have potential for photoacoustic (PA) imaging and computed tomography (CT) imaging. As the first strategy to downregulate the expression of PSMA and successfully inhibit prostate cancer by targeted PTT, this study case provides a new idea for the clinical translation of PSMA as an integrated target for tumor diagnosis and anti-tumor treatment. STATEMENT OF SIGNIFICANCE: (1) Au@PDA/PEG-PI NPs were the novel PTT agent to target PSMA and successfully down-regulate PSMA expression. (2) Molecular docking results demonstrated that PI-PEG inhibitors have a high affinity energy for PSMA (binding energy = - 8.3 kcal mol-1). (3) Au@PDA/PEG-PI NPs can be targeted for efficient PTT at the MPE of the NIR-II laser. (4) Au@PDA/PEG-PI NPs also have the potential for PA and CT imaging.
Collapse
Affiliation(s)
- Xin Ding
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Materials and Nanotechnology, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Shiwei Bai
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Fachuang Liu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Materials and Nanotechnology, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Nowicki Michał
- Institute of Metrology and Biomedical Engineering Faculty of Mechatronics, Warsaw University of Technology, Warsaw 00-661, Poland
| | - Szewczyk Roman
- Institute of Metrology and Biomedical Engineering Faculty of Mechatronics, Warsaw University of Technology, Warsaw 00-661, Poland
| | - Na Peng
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Materials and Nanotechnology, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; Belt and Road Joint Laboratory on Measurement and Control Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Yi Liu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Materials and Nanotechnology, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, PR China.
| |
Collapse
|
7
|
SOX15 transcriptionally increases the function of AOC1 to modulate ferroptosis and progression in prostate cancer. Cell Death Dis 2022; 13:673. [PMID: 35922412 PMCID: PMC9349193 DOI: 10.1038/s41419-022-05108-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 01/21/2023]
Abstract
Amine oxidase copper-containing 1 (AOC1) is considered an oncogene in many types of tumors. Nevertheless, there have been no investigations of AOC1 and its regulatory mechanism in prostate cancer. Here, we reveal a novel action of AOC1 and a tumor suppressor mechanism in prostate cancer. AOC1 is downregulated in prostate cancer. Abatement of AOC1 in prostate cancer tissue is positively correlated with the tumor size, lymph node metastasis, and Gleason score for prostate cancer. Conversely, high expression of AOC1 is significantly associated with reduced proliferation and migration in prostate cancer both in vitro and in vivo. We show that the anticancer effect of AOC1 is mediated by its action on spermidine which leads to the activation of reactive oxygen species and ferroptosis. AOC1 expression in prostate cancer is positively regulated by the transcription factor SOX15. Therefore, SOX15 can transcriptionally promote AOC1 expression and strengthen this effect. Targeting AOC1 and SOX15 may be promising for the treatment of prostate cancer.
Collapse
|
8
|
Liu H, Kong Y, Liu Z, Guo X, Yang B, Yin T, He H, Gou J, Zhang Y, Tang X. Sphingomyelin-based PEGylation Cu(DDC)2 Liposomes Prepared via the Dual Function of Cu2+ for Cancer Therapy: Facilitating DDC Loading and Exerting Synergistic Antitumor Effects. Int J Pharm 2022; 621:121788. [DOI: 10.1016/j.ijpharm.2022.121788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 11/28/2022]
|
9
|
Xu Z, Wang T, Li J, Zhang F, Lou H, Zhang J, Zhang W, Zhang W, Zhou B. Nanosized porous artificial enzyme as a pH-sensitive doxorubicin delivery system for joint enzymatic and chemotherapy towards tumor treatment. NEW J CHEM 2022. [DOI: 10.1039/d2nj02031a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A porous spherical artificial nanozyme (HF-900) prepared via pyrolysis of a porous organic polymer was used as drug carrier for efficient loading and highly selective pH-responsive delivery of doxorubicin (DOX) for the tumor joint nanotherapy.
Collapse
Affiliation(s)
- Zhilu Xu
- Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Ting Wang
- Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Jing Li
- Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Fang Zhang
- Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Han Lou
- Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Jian Zhang
- Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Wenhua Zhang
- Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Weifen Zhang
- Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Baolong Zhou
- Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| |
Collapse
|
10
|
Xu J, Li Y, Chen Y, Wang L, Liao M. Preparation and characterization of a novel polysialic acid/gelatin composite hydrogels cross-linked by tannic acid to improve wound healing after cesarean section dressing. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1927-1943. [PMID: 34240688 DOI: 10.1080/09205063.2021.1950961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The infections and delayed wound healing after cesarean delivery is one of the most complicated issues in surgical medicinal field. In the present investigation, designed novel polysialic acid loaded gelatin (PSA-Gel) composite hydrogels cross-linked by tannic acid (TA) has been developed and used as a facile wound dressing to improve cesarean wound healing ability with prevent bactericidal infections. The cross-linking effect was predominant when the TA content was lower, resulting in the formation of a cross-linked network. An effective TA cross-linking effect on the PSA-Gel hydrogel matrix was achieved when the amount of TA was around 15 wt %. The morphology of as-fabricated hydrogels was characterized using scanning electron microscopy (SEM) with an average pore sizes of PSA-Gel, PSA-Gel-TA-5%, PSA-Gel-TA-10%, and PSA-Gel-TA-15% hydrogels were 95.4 ± 12.6 μm, 120.4 ± 8.2 μm, 165.3 ± 21.6 μm, and 270.2 ± 32.5 μm, respectively. The effects of hydrogels on the swelling ratio, in vitro degradation, and mechanical properties were systemically evaluated. The TA cross-linked PSA-Gel hydrogels display strong antimicrobial behavior against gram-positive (Staphylococcus aureus) gram-negative (Escherichia coli) bacteria strains. Moreover, PSA-Gel-TA hydrogels also displayed favorable cytotoxicity toward L929 fibroblast cell lines. Finally, the therapeutic and wound healing potential of the PSA-Gel-TA hydrogels has been studied in vivo using the excision wound model in rats. The results indicate that the PSA-Gel-TA hydrogels have a greater and significant effect on wound closure and increased the wound healing rate compared with native PSA-Gel hydrogels and untreated control group at 94%, 73% and 65% on day 21. The findings suggest that PSA-Gel-TA hydrogels are promising dressing materials for the treatment of wound healing.
Collapse
Affiliation(s)
- Jia Xu
- Department of Obstetrics and Gynecology, Wenling First people's Hospital, Wenling, China
| | - Yongang Li
- Department of Neurology, Wenling First people's Hospital, Wenling, China
| | - Yi Chen
- Department of Obstetrics and Gynecology, Wenling First people's Hospital, Wenling, China
| | - Lijing Wang
- Department of Gynecology, Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, PR China
| | - Meimei Liao
- Department of Obstetrics and Gynecology, Wenling First people's Hospital, Wenling, China
| |
Collapse
|
11
|
Protease-triggered bioresponsive drug delivery for the targeted theranostics of malignancy. Acta Pharm Sin B 2021; 11:2220-2242. [PMID: 34522585 PMCID: PMC8424222 DOI: 10.1016/j.apsb.2021.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/17/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Proteases have a fundamental role in maintaining physiological homeostasis, but their dysregulation results in severe activity imbalance and pathological conditions, including cancer onset, progression, invasion, and metastasis. This striking importance plus superior biological recognition and catalytic performance of proteases, combining with the excellent physicochemical characteristics of nanomaterials, results in enzyme-activated nano-drug delivery systems (nanoDDS) that perform theranostic functions in highly specific response to the tumor phenotype stimulus. In the tutorial review, the key advances of protease-responsive nanoDDS in the specific diagnosis and targeted treatment for malignancies are emphatically classified according to the effector biomolecule types, on the premise of summarizing the structure and function of each protease. Subsequently, the incomplete matching and recognition between enzyme and substrate, structural design complexity, volume production, and toxicological issues related to the nanocomposites are highlighted to clarify the direction of efforts in nanotheranostics. This will facilitate the promotion of nanotechnology in the management of malignant tumors.
Collapse
|
12
|
Mani S, Swargiary G, Tyagi S, Singh M, Jha NK, Singh KK. Nanotherapeutic approaches to target mitochondria in cancer. Life Sci 2021; 281:119773. [PMID: 34192595 DOI: 10.1016/j.lfs.2021.119773] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 01/18/2023]
Abstract
Treatment of cancer cells exemplifies a difficult test in the light of challenges associated with the nature of cancer cells and the severe side effects too. After making a large number of trials using both traditional and advanced therapies (immunotherapy and hormone therapy), approaches to design new therapies have reached a saturation level. However, nanotechnology-based approaches exhibit higher efficacy and great potential to bypass many of such therapeutic limitations. Because of their higher target specificity, the use of nanoparticles offers incredible potential in cancer therapeutics. Mitochondria, acting as a factory of energy production in cells, reveal an important role in the death as well as the survival of cells. Because of its significant involvement in the proliferation of cancer cells, it is being regarded as an important target for cancer therapeutics. Numerous studies reveal that nanotechnology-based approaches to directly target the mitochondria may help in improving the survival rate of cancer patients. In the current study, we have detailed the significance of mitochondria in the development of cancer phenotype, as well as indicated it as the potential targets for cancer therapy. Our study further highlights the importance of different nanoparticle-based approaches to target mitochondria of cancer cells and the associated outcomes of different studies. Though, nanotechnology-based approaches to target mitochondria of cancer cells demonstrate a potential and efficient way in cancer therapeutics. Yet, further study is needed to overcome the linked limitations.
Collapse
Affiliation(s)
- Shalini Mani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, UP 201301, India.
| | - Geeta Swargiary
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, UP 201301, India
| | - Sakshi Tyagi
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, UP 201301, India
| | - Manisha Singh
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, UP 201301, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Keshav K Singh
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
13
|
Yang M, Zhang W, Yu X, Wang F, Li Y, Zhang Y, Yang Y. Helenalin Facilitates Reactive Oxygen Species-Mediated Apoptosis and Cell Cycle Arrest by Targeting Thioredoxin Reductase-1 in Human Prostate Cancer Cells. Med Sci Monit 2021; 27:e930083. [PMID: 34125740 PMCID: PMC8212699 DOI: 10.12659/msm.930083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Helenalin is a pseudoguaianolide natural product with anti-cancer activities. This study investigated the underlying mechanism of the anti-prostate cancer effects of helenalin in vitro. Material/Methods CCK-8 assay was performed to detect the optimal concentrations of helenalin in DU145 and PC-3 cells. After exposure to helenalin and/or reactive oxygen species (ROS) inhibitor, ROS production was assessed by DCFH-DA staining. Thioredoxin reductase-1 (TrxR1) expression was detected by RT-qPCR and western blot. Moreover, apoptosis and cell cycle were evaluated by flow cytometry. Following TrxR1 knockdown or overexpression, TrxR1 expression, ROS generation, apoptosis, cell cycle, migration, and invasion were examined in cells co-treated with helenalin. Results Helenalin distinctly repressed the viability of prostate cancer cells in a concentration-dependent manner. We chose 8 μM and 4 μM as the optimal concentrations of helenalin for DU145 and PC-3 cells, respectively. Helenalin treatment markedly triggered ROS production and lowered TrxR1 expression, which was ameliorated by ROS inhibitor. Exposure to helenalin facilitated apoptosis as well as G0/G1 cell cycle arrest, which was reversed by ROS inhibitor. Helenalin relieved the inhibitory effect of TrxR1 on ROS production. Furthermore, helenalin ameliorated the decrease in apoptosis rate and the shortening of G0/G1 phase as well as the increase in migration and invasion induced by TrxR1 overexpression. Conclusions Our findings revealed that helenalin accelerated ROS-mediated apoptosis and cell cycle arrest via targeting TrxR1 in human prostate cancer cells.
Collapse
Affiliation(s)
- Mei Yang
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Weihua Zhang
- Department of Internal Medicine, Traditional Chinese Medical Hospital of Huzhou, Huzhou, Zhejiang, China (mainland)
| | - Xiuxiu Yu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Feng Wang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Yeping Li
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Yan Zhang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Yu Yang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| |
Collapse
|
14
|
de Araújo JTC, Duarte JL, Di Filippo LD, Araújo VHS, Carvalho GC, Chorilli M. Nanosystem functionalization strategies for prostate cancer treatment: a review. J Drug Target 2021; 29:808-821. [PMID: 33645369 DOI: 10.1080/1061186x.2021.1892121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PC) has a high morbidity and mortality rate worldwide, and the current clinical guidelines can vary depending on the stage of the disease. Drug delivery nanosystems (DDNs) can improve biopharmaceutical properties of encapsulated anti-cancer drugs by modulating their release kinetics, improving physicochemical stability and reducing toxicity. DDN can also enhance the ability of specific targeting through surface modification by coupling ligands (antibodies, nucleic acids, peptides, aptamer, proteins), thus favouring the cell internalisation process by endocytosis. The purposes of this review are to describe the limitations in the treatment of PC, explore different functionalization such as polymeric, lipid and inorganic nanosystems aimed at the treatment of PC, and demonstrate the improvement of this modification for an active target, as alternative and promising candidates for new therapies.
Collapse
Affiliation(s)
| | - Jonatas Lobato Duarte
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Leonardo Delello Di Filippo
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Victor Hugo Sousa Araújo
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Gabriela Corrêa Carvalho
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Marlus Chorilli
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
15
|
Aboelella NS, Brandle C, Kim T, Ding ZC, Zhou G. Oxidative Stress in the Tumor Microenvironment and Its Relevance to Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13050986. [PMID: 33673398 PMCID: PMC7956301 DOI: 10.3390/cancers13050986] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Cancer cells are consistently under oxidative stress, as reflected by elevated basal level of reactive oxygen species (ROS), due to increased metabolism driven by aberrant cell growth. This feature has been exploited to develop therapeutic strategies that control tumor growth by modulating the oxidative stress in tumor cells. This review provides an overview of recent advances in cancer therapies targeting tumor oxidative stress, and highlights the emerging evidence implicating the effectiveness of cancer immunotherapies in intensifying tumor oxidative stress. The promises and challenges of combining ROS-inducing agents with cancer immunotherapy are also discussed. Abstract It has been well-established that cancer cells are under constant oxidative stress, as reflected by elevated basal level of reactive oxygen species (ROS), due to increased metabolism driven by aberrant cell growth. Cancer cells can adapt to maintain redox homeostasis through a variety of mechanisms. The prevalent perception about ROS is that they are one of the key drivers promoting tumor initiation, progression, metastasis, and drug resistance. Based on this notion, numerous antioxidants that aim to mitigate tumor oxidative stress have been tested for cancer prevention or treatment, although the effectiveness of this strategy has yet to be established. In recent years, it has been increasingly appreciated that ROS have a complex, multifaceted role in the tumor microenvironment (TME), and that tumor redox can be targeted to amplify oxidative stress inside the tumor to cause tumor destruction. Accumulating evidence indicates that cancer immunotherapies can alter tumor redox to intensify tumor oxidative stress, resulting in ROS-dependent tumor rejection. Herein we review the recent progresses regarding the impact of ROS on cancer cells and various immune cells in the TME, and discuss the emerging ROS-modulating strategies that can be used in combination with cancer immunotherapies to achieve enhanced antitumor effects.
Collapse
Affiliation(s)
- Nada S. Aboelella
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.S.A.); (C.B.); (Z.-C.D.)
- The Graduate School, Augusta University, Augusta, GA 30912, USA
| | - Caitlin Brandle
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.S.A.); (C.B.); (Z.-C.D.)
| | - Timothy Kim
- The Center for Undergraduate Research and Scholarship, Augusta University, Augusta, GA 30912, USA;
| | - Zhi-Chun Ding
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.S.A.); (C.B.); (Z.-C.D.)
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Gang Zhou
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.S.A.); (C.B.); (Z.-C.D.)
- The Graduate School, Augusta University, Augusta, GA 30912, USA
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +1-706-721-4472
| |
Collapse
|
16
|
Prabhu P. Tumoral delivery of nanotherapeutics. HANDBOOK ON NANOBIOMATERIALS FOR THERAPEUTICS AND DIAGNOSTIC APPLICATIONS 2021:53-101. [DOI: 10.1016/b978-0-12-821013-0.00024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
17
|
Deng Z, Liu S. Controlled drug delivery with nanoassemblies of redox-responsive prodrug and polyprodrug amphiphiles. J Control Release 2020; 326:276-296. [DOI: 10.1016/j.jconrel.2020.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 01/20/2023]
|
18
|
Hu B, Lian Z, Zhou Z, Shi L, Yu Z. Reactive Oxygen Species-Responsive Adaptable Self-Assembly of Peptides toward Advanced Biomaterials. ACS APPLIED BIO MATERIALS 2020; 3:5529-5551. [DOI: 10.1021/acsabm.0c00758] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Binbin Hu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Weijin Road 94, Tianjin 300071, China
| | - Zhengwen Lian
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Weijin Road 94, Tianjin 300071, China
| | - Zhifei Zhou
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Weijin Road 94, Tianjin 300071, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Weijin Road 94, Tianjin 300071, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Weijin Road 94, Tianjin 300071, China
| |
Collapse
|
19
|
Chu C, Bao Z, Sun M, Wang X, Zhang H, Chen W, Sui Y, Li J, Zhuang Y, Wang D. NIR Stimulus-Responsive PdPt Bimetallic Nanoparticles for Drug Delivery and Chemo-Photothermal Therapy. Pharmaceutics 2020; 12:E675. [PMID: 32709022 PMCID: PMC7408621 DOI: 10.3390/pharmaceutics12070675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 11/17/2022] Open
Abstract
The combination of chemotherapy and phototherapy has attracted increasing attention for cancer treatment in recent years. In the current study, porous PdPt bimetallic nanoparticles (NPs) were synthesized and used as delivery carriers for the anti-cancer drug doxorubicin (DOX). DOX@PdPt NPs were modified with thiol functionalized hyaluronic acid (HA-SH) to generate DOX@PdPt@HA NPs with an average size of 105.2 ± 6.7 nm. Characterization and in vivo and in vitro assessment of anti-tumor effects of DOX@PdPt@HA NPs were further performed. The prepared DOX@PdPt@HA NPs presented a high photothermal conversion efficiency of 49.1% under the irradiation of a single 808 nm near-infrared (NIR) laser. Moreover, NIR laser irradiation-induced photothermal effect triggered the release of DOX from DOX@PdPt@HA NPs. The combined chemo-photothermal treatment of NIR-irradiated DOX@PdPt@HA NPs exerted a stronger inhibitory effect on cell viability than that of DOX or NIR-irradiated PdPt@HA NPs in mouse mammary carcinoma 4T1 cells in vitro. Further, the in vivo combination therapy, which used NIR-irradiated DOX@PdPt@HA NPs in a mouse tumor model established by subcutaneous inoculation of 4T1 cells, was demonstrated to achieve a remarkable tumor-growth inhibition in comparison with chemotherapy or photothermal therapy alone. Results of immunohistochemical staining for caspase-3 and Ki-67 indicated the increased apoptosis and decreased proliferation of tumor cells contributed to the anti-tumor effect of chemo-photothermal treatment. In addition, DOX@PdPt@HA NPs induced negligible toxicity in vivo. Hence, the developed nanoplatform demonstrates great potential for applications in photothermal therapy, drug delivery and controlled release.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Dongkai Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (C.C.); (Z.B.); (M.S.); (X.W.); (H.Z.); (W.C.); (Y.S.); (J.L.); (Y.Z.)
| |
Collapse
|
20
|
Oddone N, Boury F, Garcion E, Grabrucker AM, Martinez MC, Da Ros F, Janaszewska A, Forni F, Vandelli MA, Tosi G, Ruozi B, Duskey JT. Synthesis, Characterization, and In Vitro Studies of an Reactive Oxygen Species (ROS)-Responsive Methoxy Polyethylene Glycol-Thioketal-Melphalan Prodrug for Glioblastoma Treatment. Front Pharmacol 2020; 11:574. [PMID: 32425795 PMCID: PMC7212708 DOI: 10.3389/fphar.2020.00574] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is the most frequent and aggressive primary tumor of the brain and averages a life expectancy in diagnosed patients of only 15 months. Hence, more effective therapies against this malignancy are urgently needed. Several diseases, including cancer, are featured by high levels of reactive oxygen species (ROS), which are possible GBM hallmarks to target or benefit from. Therefore, the covalent linkage of drugs to ROS-responsive molecules can be exploited aiming for a selective drug release within relevant pathological environments. In this work, we designed a new ROS-responsive prodrug by using Melphalan (MPH) covalently coupled with methoxy polyethylene glycol (mPEG) through a ROS-cleavable group thioketal (TK), demonstrating the capacity to self-assembly into nanosized micelles. Full chemical-physical characterization was conducted on the polymeric-prodrug and proper controls, along with in vitro cytotoxicity assayed on different GBM cell lines and “healthy” astrocyte cells confirming the absence of any cytotoxicity of the prodrug on healthy cells (i.e. astrocytes). These results were compared with the non-ROS responsive counterpart, underlining the anti-tumoral activity of ROS-responsive compared to the non-ROS-responsive prodrug on GBM cells expressing high levels of ROS. On the other hand, the combination treatment with this ROS-responsive prodrug and X-ray irradiation on human GBM cells resulted in an increase of the antitumoral effect, and this might be connected to radiotherapy. Hence, these results represent a starting point for a rationale design of innovative and tailored ROS-responsive prodrugs to be used in GBM therapy and in combination with radiotherapy.
Collapse
Affiliation(s)
- Natalia Oddone
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Frank Boury
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Emmanuel Garcion
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Andreas M Grabrucker
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Bernal Institute, University of Limerick, Limerick, Ireland.,Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| | | | - Federica Da Ros
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Janaszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, Lodz, Poland
| | - Flavio Forni
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Angela Vandelli
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Tosi
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Barbara Ruozi
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jason T Duskey
- Nanotech Lab TeFarTI Group, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Umberto Veronesi Foundation, Milano, Italy
| |
Collapse
|